// SPDX-License-Identifier: GPL-2.0 /* * MaxLinear MxL301RF OFDM tuner driver * * Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com> */ /* * NOTICE: * This driver is incomplete and lacks init/config of the chips, * as the necessary info is not disclosed. * Other features like get_if_frequency() are missing as well. * It assumes that users of this driver (such as a PCI bridge of * DTV receiver cards) properly init and configure the chip * via I2C *before* calling this driver's init() function. * * Currently, PT3 driver is the only one that uses this driver, * and contains init/config code in its firmware. * Thus some part of the code might be dependent on PT3 specific config. */ #include <linux/kernel.h> #include "mxl301rf.h" struct mxl301rf_state { struct mxl301rf_config cfg; struct i2c_client *i2c; }; static struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c) { return container_of(c, struct mxl301rf_state, cfg); } static int raw_write(struct mxl301rf_state *state, const u8 *buf, int len) { int ret; ret = i2c_master_send(state->i2c, buf, len); if (ret >= 0 && ret < len) ret = -EIO; return (ret == len) ? 0 : ret; } static int reg_write(struct mxl301rf_state *state, u8 reg, u8 val) { u8 buf[2] = { reg, val }; return raw_write(state, buf, 2); } static int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val) { u8 wbuf[2] = { 0xfb, reg }; int ret; ret = raw_write(state, wbuf, sizeof(wbuf)); if (ret == 0) ret = i2c_master_recv(state->i2c, val, 1); if (ret >= 0 && ret < 1) ret = -EIO; return (ret == 1) ? 0 : ret; } /* tuner_ops */ /* get RSSI and update property cache, set to *out in % */ static int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out) { struct mxl301rf_state *state; int ret; u8 rf_in1, rf_in2, rf_off1, rf_off2; u16 rf_in, rf_off; s64 level; struct dtv_fe_stats *rssi; rssi = &fe->dtv_property_cache.strength; rssi->len = 1; rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE; *out = 0; state = fe->tuner_priv; ret = reg_write(state, 0x14, 0x01); if (ret < 0) return ret; usleep_range(1000, 2000); ret = reg_read(state, 0x18, &rf_in1); if (ret == 0) ret = reg_read(state, 0x19, &rf_in2); if (ret == 0) ret = reg_read(state, 0xd6, &rf_off1); if (ret == 0) ret = reg_read(state, 0xd7, &rf_off2); if (ret != 0) return ret; rf_in = (rf_in2 & 0x07) << 8 | rf_in1; rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3); level = rf_in - rf_off - (113 << 3); /* x8 dBm */ level = level * 1000 / 8; rssi->stat[0].svalue = level; rssi->stat[0].scale = FE_SCALE_DECIBEL; /* *out = (level - min) * 100 / (max - min) */ *out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2); return 0; } /* spur shift parameters */ struct shf { u32 freq; /* Channel center frequency */ u32 ofst_th; /* Offset frequency threshold */ u8 shf_val; /* Spur shift value */ u8 shf_dir; /* Spur shift direction */ }; static const struct shf shf_tab[] = { { 64500, 500, 0x92, 0x07 }, { 191500, 300, 0xe2, 0x07 }, { 205500, 500, 0x2c, 0x04 }, { 212500, 500, 0x1e, 0x04 }, { 226500, 500, 0xd4, 0x07 }, { 99143, 500, 0x9c, 0x07 }, { 173143, 500, 0xd4, 0x07 }, { 191143, 300, 0xd4, 0x07 }, { 207143, 500, 0xce, 0x07 }, { 225143, 500, 0xce, 0x07 }, { 243143, 500, 0xd4, 0x07 }, { 261143, 500, 0xd4, 0x07 }, { 291143, 500, 0xd4, 0x07 }, { 339143, 500, 0x2c, 0x04 }, { 117143, 500, 0x7a, 0x07 }, { 135143, 300, 0x7a, 0x07 }, { 153143, 500, 0x01, 0x07 } }; struct reg_val { u8 reg; u8 val; } __attribute__ ((__packed__)); static const struct reg_val set_idac[] = { { 0x0d, 0x00 }, { 0x0c, 0x67 }, { 0x6f, 0x89 }, { 0x70, 0x0c }, { 0x6f, 0x8a }, { 0x70, 0x0e }, { 0x6f, 0x8b }, { 0x70, 0x1c }, }; static int mxl301rf_set_params(struct dvb_frontend *fe) { struct reg_val tune0[] = { { 0x13, 0x00 }, /* abort tuning */ { 0x3b, 0xc0 }, { 0x3b, 0x80 }, { 0x10, 0x95 }, /* BW */ { 0x1a, 0x05 }, { 0x61, 0x00 }, /* spur shift value (placeholder) */ { 0x62, 0xa0 } /* spur shift direction (placeholder) */ }; struct reg_val tune1[] = { { 0x11, 0x40 }, /* RF frequency L (placeholder) */ { 0x12, 0x0e }, /* RF frequency H (placeholder) */ { 0x13, 0x01 } /* start tune */ }; struct mxl301rf_state *state; u32 freq; u16 f; u32 tmp, div; int i, ret; state = fe->tuner_priv; freq = fe->dtv_property_cache.frequency; /* spur shift function (for analog) */ for (i = 0; i < ARRAY_SIZE(shf_tab); i++) { if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 && freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) { tune0[5].val = shf_tab[i].shf_val; tune0[6].val = 0xa0 | shf_tab[i].shf_dir; break; } } ret = raw_write(state, (u8 *) tune0, sizeof(tune0)); if (ret < 0) goto failed; usleep_range(3000, 4000); /* convert freq to 10.6 fixed point float [MHz] */ f = freq / 1000000; tmp = freq % 1000000; div = 1000000; for (i = 0; i < 6; i++) { f <<= 1; div >>= 1; if (tmp > div) { tmp -= div; f |= 1; } } if (tmp > 7812) f++; tune1[0].val = f & 0xff; tune1[1].val = f >> 8; ret = raw_write(state, (u8 *) tune1, sizeof(tune1)); if (ret < 0) goto failed; msleep(31); ret = reg_write(state, 0x1a, 0x0d); if (ret < 0) goto failed; ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac)); if (ret < 0) goto failed; return 0; failed: dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } static const struct reg_val standby_data[] = { { 0x01, 0x00 }, { 0x13, 0x00 } }; static int mxl301rf_sleep(struct dvb_frontend *fe) { struct mxl301rf_state *state; int ret; state = fe->tuner_priv; ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data)); if (ret < 0) dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } /* init sequence is not public. * the parent must have init'ed the device. * just wake up here. */ static int mxl301rf_init(struct dvb_frontend *fe) { struct mxl301rf_state *state; int ret; state = fe->tuner_priv; ret = reg_write(state, 0x01, 0x01); if (ret < 0) { dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } return 0; } /* I2C driver functions */ static const struct dvb_tuner_ops mxl301rf_ops = { .info = { .name = "MaxLinear MxL301RF", .frequency_min_hz = 93 * MHz, .frequency_max_hz = 803 * MHz + 142857, }, .init = mxl301rf_init, .sleep = mxl301rf_sleep, .set_params = mxl301rf_set_params, .get_rf_strength = mxl301rf_get_rf_strength, }; static int mxl301rf_probe(struct i2c_client *client) { struct mxl301rf_state *state; struct mxl301rf_config *cfg; struct dvb_frontend *fe; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; state->i2c = client; cfg = client->dev.platform_data; memcpy(&state->cfg, cfg, sizeof(state->cfg)); fe = cfg->fe; fe->tuner_priv = state; memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops)); i2c_set_clientdata(client, &state->cfg); dev_info(&client->dev, "MaxLinear MxL301RF attached.\n"); return 0; } static void mxl301rf_remove(struct i2c_client *client) { struct mxl301rf_state *state; state = cfg_to_state(i2c_get_clientdata(client)); state->cfg.fe->tuner_priv = NULL; kfree(state); } static const struct i2c_device_id mxl301rf_id[] = { { "mxl301rf" }, {} }; MODULE_DEVICE_TABLE(i2c, mxl301rf_id); static struct i2c_driver mxl301rf_driver = { .driver = { .name = "mxl301rf", }, .probe = mxl301rf_probe, .remove = mxl301rf_remove, .id_table = mxl301rf_id, }; module_i2c_driver(mxl301rf_driver); MODULE_DESCRIPTION("MaxLinear MXL301RF tuner"); MODULE_AUTHOR("Akihiro TSUKADA"); MODULE_LICENSE("GPL");