// SPDX-License-Identifier: GPL-2.0 /* * Hantro VPU codec driver * * Copyright (C) 2018 Collabora, Ltd. * Copyright 2018 Google LLC. * Tomasz Figa * * Based on s5p-mfc driver by Samsung Electronics Co., Ltd. * Copyright (C) 2011 Samsung Electronics Co., Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "hantro_v4l2.h" #include "hantro.h" #include "hantro_hw.h" #define DRIVER_NAME "hantro-vpu" int hantro_debug; module_param_named(debug, hantro_debug, int, 0644); MODULE_PARM_DESC(debug, "Debug level - higher value produces more verbose messages"); void *hantro_get_ctrl(struct hantro_ctx *ctx, u32 id) { struct v4l2_ctrl *ctrl; ctrl = v4l2_ctrl_find(&ctx->ctrl_handler, id); return ctrl ? ctrl->p_cur.p : NULL; } dma_addr_t hantro_get_ref(struct hantro_ctx *ctx, u64 ts) { struct vb2_queue *q = v4l2_m2m_get_dst_vq(ctx->fh.m2m_ctx); struct vb2_buffer *buf; buf = vb2_find_buffer(q, ts); if (!buf) return 0; return hantro_get_dec_buf_addr(ctx, buf); } static const struct v4l2_event hantro_eos_event = { .type = V4L2_EVENT_EOS }; static void hantro_job_finish_no_pm(struct hantro_dev *vpu, struct hantro_ctx *ctx, enum vb2_buffer_state result) { struct vb2_v4l2_buffer *src, *dst; src = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); dst = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); if (WARN_ON(!src)) return; if (WARN_ON(!dst)) return; src->sequence = ctx->sequence_out++; dst->sequence = ctx->sequence_cap++; if (v4l2_m2m_is_last_draining_src_buf(ctx->fh.m2m_ctx, src)) { dst->flags |= V4L2_BUF_FLAG_LAST; v4l2_event_queue_fh(&ctx->fh, &hantro_eos_event); v4l2_m2m_mark_stopped(ctx->fh.m2m_ctx); } v4l2_m2m_buf_done_and_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx, result); } static void hantro_job_finish(struct hantro_dev *vpu, struct hantro_ctx *ctx, enum vb2_buffer_state result) { pm_runtime_mark_last_busy(vpu->dev); pm_runtime_put_autosuspend(vpu->dev); clk_bulk_disable(vpu->variant->num_clocks, vpu->clocks); hantro_job_finish_no_pm(vpu, ctx, result); } void hantro_irq_done(struct hantro_dev *vpu, enum vb2_buffer_state result) { struct hantro_ctx *ctx = v4l2_m2m_get_curr_priv(vpu->m2m_dev); /* * If cancel_delayed_work returns false * the timeout expired. The watchdog is running, * and will take care of finishing the job. */ if (cancel_delayed_work(&vpu->watchdog_work)) { if (result == VB2_BUF_STATE_DONE && ctx->codec_ops->done) ctx->codec_ops->done(ctx); hantro_job_finish(vpu, ctx, result); } } void hantro_watchdog(struct work_struct *work) { struct hantro_dev *vpu; struct hantro_ctx *ctx; vpu = container_of(to_delayed_work(work), struct hantro_dev, watchdog_work); ctx = v4l2_m2m_get_curr_priv(vpu->m2m_dev); if (ctx) { vpu_err("frame processing timed out!\n"); if (ctx->codec_ops->reset) ctx->codec_ops->reset(ctx); hantro_job_finish(vpu, ctx, VB2_BUF_STATE_ERROR); } } void hantro_start_prepare_run(struct hantro_ctx *ctx) { struct vb2_v4l2_buffer *src_buf; src_buf = hantro_get_src_buf(ctx); v4l2_ctrl_request_setup(src_buf->vb2_buf.req_obj.req, &ctx->ctrl_handler); if (!ctx->is_encoder && !ctx->dev->variant->late_postproc) { if (hantro_needs_postproc(ctx, ctx->vpu_dst_fmt)) hantro_postproc_enable(ctx); else hantro_postproc_disable(ctx); } } void hantro_end_prepare_run(struct hantro_ctx *ctx) { struct vb2_v4l2_buffer *src_buf; if (!ctx->is_encoder && ctx->dev->variant->late_postproc) { if (hantro_needs_postproc(ctx, ctx->vpu_dst_fmt)) hantro_postproc_enable(ctx); else hantro_postproc_disable(ctx); } src_buf = hantro_get_src_buf(ctx); v4l2_ctrl_request_complete(src_buf->vb2_buf.req_obj.req, &ctx->ctrl_handler); /* Kick the watchdog. */ schedule_delayed_work(&ctx->dev->watchdog_work, msecs_to_jiffies(2000)); } static void device_run(void *priv) { struct hantro_ctx *ctx = priv; struct vb2_v4l2_buffer *src, *dst; int ret; src = hantro_get_src_buf(ctx); dst = hantro_get_dst_buf(ctx); ret = pm_runtime_resume_and_get(ctx->dev->dev); if (ret < 0) goto err_cancel_job; ret = clk_bulk_enable(ctx->dev->variant->num_clocks, ctx->dev->clocks); if (ret) goto err_cancel_job; v4l2_m2m_buf_copy_metadata(src, dst, true); if (ctx->codec_ops->run(ctx)) goto err_cancel_job; return; err_cancel_job: hantro_job_finish_no_pm(ctx->dev, ctx, VB2_BUF_STATE_ERROR); } static const struct v4l2_m2m_ops vpu_m2m_ops = { .device_run = device_run, }; static int queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { struct hantro_ctx *ctx = priv; int ret; src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; src_vq->io_modes = VB2_MMAP | VB2_DMABUF; src_vq->drv_priv = ctx; src_vq->ops = &hantro_queue_ops; src_vq->mem_ops = &vb2_dma_contig_memops; /* * Driver does mostly sequential access, so sacrifice TLB efficiency * for faster allocation. Also, no CPU access on the source queue, * so no kernel mapping needed. */ src_vq->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES | DMA_ATTR_NO_KERNEL_MAPPING; src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; src_vq->lock = &ctx->dev->vpu_mutex; src_vq->dev = ctx->dev->v4l2_dev.dev; src_vq->supports_requests = true; ret = vb2_queue_init(src_vq); if (ret) return ret; dst_vq->bidirectional = true; dst_vq->mem_ops = &vb2_dma_contig_memops; dst_vq->dma_attrs = DMA_ATTR_ALLOC_SINGLE_PAGES; /* * The Kernel needs access to the JPEG destination buffer for the * JPEG encoder to fill in the JPEG headers. */ if (!ctx->is_encoder) { dst_vq->dma_attrs |= DMA_ATTR_NO_KERNEL_MAPPING; dst_vq->max_num_buffers = MAX_POSTPROC_BUFFERS; } dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE; dst_vq->io_modes = VB2_MMAP | VB2_DMABUF; dst_vq->drv_priv = ctx; dst_vq->ops = &hantro_queue_ops; dst_vq->buf_struct_size = sizeof(struct hantro_decoded_buffer); dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; dst_vq->lock = &ctx->dev->vpu_mutex; dst_vq->dev = ctx->dev->v4l2_dev.dev; return vb2_queue_init(dst_vq); } static int hantro_try_ctrl(struct v4l2_ctrl *ctrl) { if (ctrl->id == V4L2_CID_STATELESS_H264_SPS) { const struct v4l2_ctrl_h264_sps *sps = ctrl->p_new.p_h264_sps; if (sps->chroma_format_idc > 1) /* Only 4:0:0 and 4:2:0 are supported */ return -EINVAL; if (sps->bit_depth_luma_minus8 != sps->bit_depth_chroma_minus8) /* Luma and chroma bit depth mismatch */ return -EINVAL; if (sps->bit_depth_luma_minus8 != 0) /* Only 8-bit is supported */ return -EINVAL; } else if (ctrl->id == V4L2_CID_STATELESS_HEVC_SPS) { const struct v4l2_ctrl_hevc_sps *sps = ctrl->p_new.p_hevc_sps; if (sps->bit_depth_luma_minus8 != 0 && sps->bit_depth_luma_minus8 != 2) /* Only 8-bit and 10-bit are supported */ return -EINVAL; } else if (ctrl->id == V4L2_CID_STATELESS_VP9_FRAME) { const struct v4l2_ctrl_vp9_frame *dec_params = ctrl->p_new.p_vp9_frame; /* We only support profile 0 */ if (dec_params->profile != 0) return -EINVAL; } else if (ctrl->id == V4L2_CID_STATELESS_AV1_SEQUENCE) { const struct v4l2_ctrl_av1_sequence *sequence = ctrl->p_new.p_av1_sequence; if (sequence->bit_depth != 8 && sequence->bit_depth != 10) return -EINVAL; } return 0; } static int hantro_jpeg_s_ctrl(struct v4l2_ctrl *ctrl) { struct hantro_ctx *ctx; ctx = container_of(ctrl->handler, struct hantro_ctx, ctrl_handler); vpu_debug(1, "s_ctrl: id = %d, val = %d\n", ctrl->id, ctrl->val); switch (ctrl->id) { case V4L2_CID_JPEG_COMPRESSION_QUALITY: ctx->jpeg_quality = ctrl->val; break; default: return -EINVAL; } return 0; } static int hantro_vp9_s_ctrl(struct v4l2_ctrl *ctrl) { struct hantro_ctx *ctx; ctx = container_of(ctrl->handler, struct hantro_ctx, ctrl_handler); switch (ctrl->id) { case V4L2_CID_STATELESS_VP9_FRAME: { int bit_depth = ctrl->p_new.p_vp9_frame->bit_depth; if (ctx->bit_depth == bit_depth) return 0; return hantro_reset_raw_fmt(ctx, bit_depth, HANTRO_AUTO_POSTPROC); } default: return -EINVAL; } return 0; } static int hantro_hevc_s_ctrl(struct v4l2_ctrl *ctrl) { struct hantro_ctx *ctx; ctx = container_of(ctrl->handler, struct hantro_ctx, ctrl_handler); switch (ctrl->id) { case V4L2_CID_STATELESS_HEVC_SPS: { const struct v4l2_ctrl_hevc_sps *sps = ctrl->p_new.p_hevc_sps; int bit_depth = sps->bit_depth_luma_minus8 + 8; if (ctx->bit_depth == bit_depth) return 0; return hantro_reset_raw_fmt(ctx, bit_depth, HANTRO_AUTO_POSTPROC); } default: return -EINVAL; } return 0; } static int hantro_av1_s_ctrl(struct v4l2_ctrl *ctrl) { struct hantro_ctx *ctx; ctx = container_of(ctrl->handler, struct hantro_ctx, ctrl_handler); switch (ctrl->id) { case V4L2_CID_STATELESS_AV1_SEQUENCE: { int bit_depth = ctrl->p_new.p_av1_sequence->bit_depth; bool need_postproc = HANTRO_AUTO_POSTPROC; if (ctrl->p_new.p_av1_sequence->flags & V4L2_AV1_SEQUENCE_FLAG_FILM_GRAIN_PARAMS_PRESENT) need_postproc = HANTRO_FORCE_POSTPROC; if (ctx->bit_depth == bit_depth && ctx->need_postproc == need_postproc) return 0; return hantro_reset_raw_fmt(ctx, bit_depth, need_postproc); } default: return -EINVAL; } return 0; } static const struct v4l2_ctrl_ops hantro_ctrl_ops = { .try_ctrl = hantro_try_ctrl, }; static const struct v4l2_ctrl_ops hantro_jpeg_ctrl_ops = { .s_ctrl = hantro_jpeg_s_ctrl, }; static const struct v4l2_ctrl_ops hantro_vp9_ctrl_ops = { .s_ctrl = hantro_vp9_s_ctrl, }; static const struct v4l2_ctrl_ops hantro_hevc_ctrl_ops = { .try_ctrl = hantro_try_ctrl, .s_ctrl = hantro_hevc_s_ctrl, }; static const struct v4l2_ctrl_ops hantro_av1_ctrl_ops = { .try_ctrl = hantro_try_ctrl, .s_ctrl = hantro_av1_s_ctrl, }; #define HANTRO_JPEG_ACTIVE_MARKERS (V4L2_JPEG_ACTIVE_MARKER_APP0 | \ V4L2_JPEG_ACTIVE_MARKER_COM | \ V4L2_JPEG_ACTIVE_MARKER_DQT | \ V4L2_JPEG_ACTIVE_MARKER_DHT) static const struct hantro_ctrl controls[] = { { .codec = HANTRO_JPEG_ENCODER, .cfg = { .id = V4L2_CID_JPEG_COMPRESSION_QUALITY, .min = 5, .max = 100, .step = 1, .def = 50, .ops = &hantro_jpeg_ctrl_ops, }, }, { .codec = HANTRO_JPEG_ENCODER, .cfg = { .id = V4L2_CID_JPEG_ACTIVE_MARKER, .max = HANTRO_JPEG_ACTIVE_MARKERS, .def = HANTRO_JPEG_ACTIVE_MARKERS, /* * Changing the set of active markers/segments also * messes up the alignment of the JPEG header, which * is needed to allow the hardware to write directly * to the output buffer. Implementing this introduces * a lot of complexity for little gain, as the markers * enabled is already the minimum required set. */ .flags = V4L2_CTRL_FLAG_READ_ONLY, }, }, { .codec = HANTRO_MPEG2_DECODER, .cfg = { .id = V4L2_CID_STATELESS_MPEG2_SEQUENCE, }, }, { .codec = HANTRO_MPEG2_DECODER, .cfg = { .id = V4L2_CID_STATELESS_MPEG2_PICTURE, }, }, { .codec = HANTRO_MPEG2_DECODER, .cfg = { .id = V4L2_CID_STATELESS_MPEG2_QUANTISATION, }, }, { .codec = HANTRO_VP8_DECODER, .cfg = { .id = V4L2_CID_STATELESS_VP8_FRAME, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_DECODE_PARAMS, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_SPS, .ops = &hantro_ctrl_ops, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_PPS, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_SCALING_MATRIX, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_DECODE_MODE, .min = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, .def = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, .max = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_STATELESS_H264_START_CODE, .min = V4L2_STATELESS_H264_START_CODE_ANNEX_B, .def = V4L2_STATELESS_H264_START_CODE_ANNEX_B, .max = V4L2_STATELESS_H264_START_CODE_ANNEX_B, }, }, { .codec = HANTRO_H264_DECODER, .cfg = { .id = V4L2_CID_MPEG_VIDEO_H264_PROFILE, .min = V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE, .max = V4L2_MPEG_VIDEO_H264_PROFILE_HIGH, .menu_skip_mask = BIT(V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED), .def = V4L2_MPEG_VIDEO_H264_PROFILE_MAIN, } }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_DECODE_MODE, .min = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, .max = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, .def = V4L2_STATELESS_HEVC_DECODE_MODE_FRAME_BASED, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_START_CODE, .min = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, .max = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, .def = V4L2_STATELESS_HEVC_START_CODE_ANNEX_B, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_MPEG_VIDEO_HEVC_PROFILE, .min = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN, .max = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN_10, .def = V4L2_MPEG_VIDEO_HEVC_PROFILE_MAIN, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_MPEG_VIDEO_HEVC_LEVEL, .min = V4L2_MPEG_VIDEO_HEVC_LEVEL_1, .max = V4L2_MPEG_VIDEO_HEVC_LEVEL_5_1, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_SPS, .ops = &hantro_hevc_ctrl_ops, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_PPS, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_DECODE_PARAMS, }, }, { .codec = HANTRO_HEVC_DECODER, .cfg = { .id = V4L2_CID_STATELESS_HEVC_SCALING_MATRIX, }, }, { .codec = HANTRO_VP9_DECODER, .cfg = { .id = V4L2_CID_STATELESS_VP9_FRAME, .ops = &hantro_vp9_ctrl_ops, }, }, { .codec = HANTRO_VP9_DECODER, .cfg = { .id = V4L2_CID_STATELESS_VP9_COMPRESSED_HDR, }, }, { .codec = HANTRO_AV1_DECODER, .cfg = { .id = V4L2_CID_STATELESS_AV1_FRAME, }, }, { .codec = HANTRO_AV1_DECODER, .cfg = { .id = V4L2_CID_STATELESS_AV1_TILE_GROUP_ENTRY, .dims = { V4L2_AV1_MAX_TILE_COUNT }, }, }, { .codec = HANTRO_AV1_DECODER, .cfg = { .id = V4L2_CID_STATELESS_AV1_SEQUENCE, .ops = &hantro_av1_ctrl_ops, }, }, { .codec = HANTRO_AV1_DECODER, .cfg = { .id = V4L2_CID_STATELESS_AV1_FILM_GRAIN, }, }, }; static int hantro_ctrls_setup(struct hantro_dev *vpu, struct hantro_ctx *ctx, int allowed_codecs) { int i, num_ctrls = ARRAY_SIZE(controls); v4l2_ctrl_handler_init(&ctx->ctrl_handler, num_ctrls); for (i = 0; i < num_ctrls; i++) { if (!(allowed_codecs & controls[i].codec)) continue; v4l2_ctrl_new_custom(&ctx->ctrl_handler, &controls[i].cfg, NULL); if (ctx->ctrl_handler.error) { vpu_err("Adding control (%d) failed %d\n", controls[i].cfg.id, ctx->ctrl_handler.error); v4l2_ctrl_handler_free(&ctx->ctrl_handler); return ctx->ctrl_handler.error; } } return v4l2_ctrl_handler_setup(&ctx->ctrl_handler); } /* * V4L2 file operations. */ static int hantro_open(struct file *filp) { struct hantro_dev *vpu = video_drvdata(filp); struct video_device *vdev = video_devdata(filp); struct hantro_func *func = hantro_vdev_to_func(vdev); struct hantro_ctx *ctx; int allowed_codecs, ret; /* * We do not need any extra locking here, because we operate only * on local data here, except reading few fields from dev, which * do not change through device's lifetime (which is guaranteed by * reference on module from open()) and V4L2 internal objects (such * as vdev and ctx->fh), which have proper locking done in respective * helper functions used here. */ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = vpu; if (func->id == MEDIA_ENT_F_PROC_VIDEO_ENCODER) { allowed_codecs = vpu->variant->codec & HANTRO_ENCODERS; ctx->is_encoder = true; } else if (func->id == MEDIA_ENT_F_PROC_VIDEO_DECODER) { allowed_codecs = vpu->variant->codec & HANTRO_DECODERS; ctx->is_encoder = false; } else { ret = -ENODEV; goto err_ctx_free; } ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(vpu->m2m_dev, ctx, queue_init); if (IS_ERR(ctx->fh.m2m_ctx)) { ret = PTR_ERR(ctx->fh.m2m_ctx); goto err_ctx_free; } v4l2_fh_init(&ctx->fh, vdev); filp->private_data = &ctx->fh; v4l2_fh_add(&ctx->fh); hantro_reset_fmts(ctx); ret = hantro_ctrls_setup(vpu, ctx, allowed_codecs); if (ret) { vpu_err("Failed to set up controls\n"); goto err_fh_free; } ctx->fh.ctrl_handler = &ctx->ctrl_handler; return 0; err_fh_free: v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); err_ctx_free: kfree(ctx); return ret; } static int hantro_release(struct file *filp) { struct hantro_ctx *ctx = container_of(filp->private_data, struct hantro_ctx, fh); /* * No need for extra locking because this was the last reference * to this file. */ v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); v4l2_ctrl_handler_free(&ctx->ctrl_handler); kfree(ctx); return 0; } static const struct v4l2_file_operations hantro_fops = { .owner = THIS_MODULE, .open = hantro_open, .release = hantro_release, .poll = v4l2_m2m_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = v4l2_m2m_fop_mmap, }; static const struct of_device_id of_hantro_match[] = { #ifdef CONFIG_VIDEO_HANTRO_ROCKCHIP { .compatible = "rockchip,px30-vpu", .data = &px30_vpu_variant, }, { .compatible = "rockchip,rk3036-vpu", .data = &rk3036_vpu_variant, }, { .compatible = "rockchip,rk3066-vpu", .data = &rk3066_vpu_variant, }, { .compatible = "rockchip,rk3288-vpu", .data = &rk3288_vpu_variant, }, { .compatible = "rockchip,rk3328-vpu", .data = &rk3328_vpu_variant, }, { .compatible = "rockchip,rk3399-vpu", .data = &rk3399_vpu_variant, }, { .compatible = "rockchip,rk3568-vepu", .data = &rk3568_vepu_variant, }, { .compatible = "rockchip,rk3568-vpu", .data = &rk3568_vpu_variant, }, { .compatible = "rockchip,rk3588-vepu121", .data = &rk3568_vepu_variant, }, { .compatible = "rockchip,rk3588-av1-vpu", .data = &rk3588_vpu981_variant, }, #endif #ifdef CONFIG_VIDEO_HANTRO_IMX8M { .compatible = "nxp,imx8mm-vpu-g1", .data = &imx8mm_vpu_g1_variant, }, { .compatible = "nxp,imx8mq-vpu", .data = &imx8mq_vpu_variant, }, { .compatible = "nxp,imx8mq-vpu-g1", .data = &imx8mq_vpu_g1_variant }, { .compatible = "nxp,imx8mq-vpu-g2", .data = &imx8mq_vpu_g2_variant }, #endif #ifdef CONFIG_VIDEO_HANTRO_SAMA5D4 { .compatible = "microchip,sama5d4-vdec", .data = &sama5d4_vdec_variant, }, #endif #ifdef CONFIG_VIDEO_HANTRO_SUNXI { .compatible = "allwinner,sun50i-h6-vpu-g2", .data = &sunxi_vpu_variant, }, #endif #ifdef CONFIG_VIDEO_HANTRO_STM32MP25 { .compatible = "st,stm32mp25-vdec", .data = &stm32mp25_vdec_variant, }, { .compatible = "st,stm32mp25-venc", .data = &stm32mp25_venc_variant, }, #endif { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, of_hantro_match); static int hantro_register_entity(struct media_device *mdev, struct media_entity *entity, const char *entity_name, struct media_pad *pads, int num_pads, int function, struct video_device *vdev) { char *name; int ret; entity->obj_type = MEDIA_ENTITY_TYPE_BASE; if (function == MEDIA_ENT_F_IO_V4L) { entity->info.dev.major = VIDEO_MAJOR; entity->info.dev.minor = vdev->minor; } name = devm_kasprintf(mdev->dev, GFP_KERNEL, "%s-%s", vdev->name, entity_name); if (!name) return -ENOMEM; entity->name = name; entity->function = function; ret = media_entity_pads_init(entity, num_pads, pads); if (ret) return ret; ret = media_device_register_entity(mdev, entity); if (ret) return ret; return 0; } static int hantro_attach_func(struct hantro_dev *vpu, struct hantro_func *func) { struct media_device *mdev = &vpu->mdev; struct media_link *link; int ret; /* Create the three encoder entities with their pads */ func->source_pad.flags = MEDIA_PAD_FL_SOURCE; ret = hantro_register_entity(mdev, &func->vdev.entity, "source", &func->source_pad, 1, MEDIA_ENT_F_IO_V4L, &func->vdev); if (ret) return ret; func->proc_pads[0].flags = MEDIA_PAD_FL_SINK; func->proc_pads[1].flags = MEDIA_PAD_FL_SOURCE; ret = hantro_register_entity(mdev, &func->proc, "proc", func->proc_pads, 2, func->id, &func->vdev); if (ret) goto err_rel_entity0; func->sink_pad.flags = MEDIA_PAD_FL_SINK; ret = hantro_register_entity(mdev, &func->sink, "sink", &func->sink_pad, 1, MEDIA_ENT_F_IO_V4L, &func->vdev); if (ret) goto err_rel_entity1; /* Connect the three entities */ ret = media_create_pad_link(&func->vdev.entity, 0, &func->proc, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rel_entity2; ret = media_create_pad_link(&func->proc, 1, &func->sink, 0, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (ret) goto err_rm_links0; /* Create video interface */ func->intf_devnode = media_devnode_create(mdev, MEDIA_INTF_T_V4L_VIDEO, 0, VIDEO_MAJOR, func->vdev.minor); if (!func->intf_devnode) { ret = -ENOMEM; goto err_rm_links1; } /* Connect the two DMA engines to the interface */ link = media_create_intf_link(&func->vdev.entity, &func->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_devnode; } link = media_create_intf_link(&func->sink, &func->intf_devnode->intf, MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); if (!link) { ret = -ENOMEM; goto err_rm_devnode; } return 0; err_rm_devnode: media_devnode_remove(func->intf_devnode); err_rm_links1: media_entity_remove_links(&func->sink); err_rm_links0: media_entity_remove_links(&func->proc); media_entity_remove_links(&func->vdev.entity); err_rel_entity2: media_device_unregister_entity(&func->sink); err_rel_entity1: media_device_unregister_entity(&func->proc); err_rel_entity0: media_device_unregister_entity(&func->vdev.entity); return ret; } static void hantro_detach_func(struct hantro_func *func) { media_devnode_remove(func->intf_devnode); media_entity_remove_links(&func->sink); media_entity_remove_links(&func->proc); media_entity_remove_links(&func->vdev.entity); media_device_unregister_entity(&func->sink); media_device_unregister_entity(&func->proc); media_device_unregister_entity(&func->vdev.entity); } static int hantro_add_func(struct hantro_dev *vpu, unsigned int funcid) { const struct of_device_id *match; struct hantro_func *func; struct video_device *vfd; int ret; match = of_match_node(of_hantro_match, vpu->dev->of_node); func = devm_kzalloc(vpu->dev, sizeof(*func), GFP_KERNEL); if (!func) { v4l2_err(&vpu->v4l2_dev, "Failed to allocate video device\n"); return -ENOMEM; } func->id = funcid; vfd = &func->vdev; vfd->fops = &hantro_fops; vfd->release = video_device_release_empty; vfd->lock = &vpu->vpu_mutex; vfd->v4l2_dev = &vpu->v4l2_dev; vfd->vfl_dir = VFL_DIR_M2M; vfd->device_caps = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_M2M_MPLANE; vfd->ioctl_ops = &hantro_ioctl_ops; strscpy(vfd->name, match->compatible, sizeof(vfd->name)); strlcat(vfd->name, funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER ? "-enc" : "-dec", sizeof(vfd->name)); if (funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER) { vpu->encoder = func; v4l2_disable_ioctl(vfd, VIDIOC_TRY_DECODER_CMD); v4l2_disable_ioctl(vfd, VIDIOC_DECODER_CMD); } else { vpu->decoder = func; v4l2_disable_ioctl(vfd, VIDIOC_TRY_ENCODER_CMD); v4l2_disable_ioctl(vfd, VIDIOC_ENCODER_CMD); } video_set_drvdata(vfd, vpu); ret = video_register_device(vfd, VFL_TYPE_VIDEO, -1); if (ret) { v4l2_err(&vpu->v4l2_dev, "Failed to register video device\n"); return ret; } ret = hantro_attach_func(vpu, func); if (ret) { v4l2_err(&vpu->v4l2_dev, "Failed to attach functionality to the media device\n"); goto err_unreg_dev; } v4l2_info(&vpu->v4l2_dev, "registered %s as /dev/video%d\n", vfd->name, vfd->num); return 0; err_unreg_dev: video_unregister_device(vfd); return ret; } static int hantro_add_enc_func(struct hantro_dev *vpu) { if (!vpu->variant->enc_fmts) return 0; return hantro_add_func(vpu, MEDIA_ENT_F_PROC_VIDEO_ENCODER); } static int hantro_add_dec_func(struct hantro_dev *vpu) { if (!vpu->variant->dec_fmts) return 0; return hantro_add_func(vpu, MEDIA_ENT_F_PROC_VIDEO_DECODER); } static void hantro_remove_func(struct hantro_dev *vpu, unsigned int funcid) { struct hantro_func *func; if (funcid == MEDIA_ENT_F_PROC_VIDEO_ENCODER) func = vpu->encoder; else func = vpu->decoder; if (!func) return; hantro_detach_func(func); video_unregister_device(&func->vdev); } static void hantro_remove_enc_func(struct hantro_dev *vpu) { hantro_remove_func(vpu, MEDIA_ENT_F_PROC_VIDEO_ENCODER); } static void hantro_remove_dec_func(struct hantro_dev *vpu) { hantro_remove_func(vpu, MEDIA_ENT_F_PROC_VIDEO_DECODER); } static const struct media_device_ops hantro_m2m_media_ops = { .req_validate = vb2_request_validate, .req_queue = v4l2_m2m_request_queue, }; /* * Some SoCs, like RK3588 have multiple identical Hantro cores, but the * kernel is currently missing support for multi-core handling. Exposing * separate devices for each core to userspace is bad, since that does * not allow scheduling tasks properly (and creates ABI). With this workaround * the driver will only probe for the first core and early exit for the other * cores. Once the driver gains multi-core support, the same technique * for detecting the main core can be used to cluster all cores together. */ static int hantro_disable_multicore(struct hantro_dev *vpu) { struct device_node *node = NULL; const char *compatible; bool is_main_core; int ret; /* Intentionally ignores the fallback strings */ ret = of_property_read_string(vpu->dev->of_node, "compatible", &compatible); if (ret) return ret; /* The first compatible and available node found is considered the main core */ do { node = of_find_compatible_node(node, NULL, compatible); if (of_device_is_available(node)) break; } while (node); if (!node) return -EINVAL; is_main_core = (vpu->dev->of_node == node); of_node_put(node); if (!is_main_core) { dev_info(vpu->dev, "missing multi-core support, ignoring this instance\n"); return -ENODEV; } return 0; } static int hantro_probe(struct platform_device *pdev) { const struct of_device_id *match; struct hantro_dev *vpu; int num_bases; int i, ret; vpu = devm_kzalloc(&pdev->dev, sizeof(*vpu), GFP_KERNEL); if (!vpu) return -ENOMEM; vpu->dev = &pdev->dev; vpu->pdev = pdev; mutex_init(&vpu->vpu_mutex); spin_lock_init(&vpu->irqlock); match = of_match_node(of_hantro_match, pdev->dev.of_node); vpu->variant = match->data; ret = hantro_disable_multicore(vpu); if (ret) return ret; /* * Support for nxp,imx8mq-vpu is kept for backwards compatibility * but it's deprecated. Please update your DTS file to use * nxp,imx8mq-vpu-g1 or nxp,imx8mq-vpu-g2 instead. */ if (of_device_is_compatible(pdev->dev.of_node, "nxp,imx8mq-vpu")) dev_warn(&pdev->dev, "%s compatible is deprecated\n", match->compatible); INIT_DELAYED_WORK(&vpu->watchdog_work, hantro_watchdog); vpu->clocks = devm_kcalloc(&pdev->dev, vpu->variant->num_clocks, sizeof(*vpu->clocks), GFP_KERNEL); if (!vpu->clocks) return -ENOMEM; if (vpu->variant->num_clocks > 1) { for (i = 0; i < vpu->variant->num_clocks; i++) vpu->clocks[i].id = vpu->variant->clk_names[i]; ret = devm_clk_bulk_get(&pdev->dev, vpu->variant->num_clocks, vpu->clocks); if (ret) return ret; } else { /* * If the driver has a single clk, chances are there will be no * actual name in the DT bindings. */ vpu->clocks[0].clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(vpu->clocks[0].clk)) return PTR_ERR(vpu->clocks[0].clk); } vpu->resets = devm_reset_control_array_get_optional_exclusive(&pdev->dev); if (IS_ERR(vpu->resets)) return PTR_ERR(vpu->resets); num_bases = vpu->variant->num_regs ?: 1; vpu->reg_bases = devm_kcalloc(&pdev->dev, num_bases, sizeof(*vpu->reg_bases), GFP_KERNEL); if (!vpu->reg_bases) return -ENOMEM; for (i = 0; i < num_bases; i++) { vpu->reg_bases[i] = vpu->variant->reg_names ? devm_platform_ioremap_resource_byname(pdev, vpu->variant->reg_names[i]) : devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(vpu->reg_bases[i])) return PTR_ERR(vpu->reg_bases[i]); } vpu->enc_base = vpu->reg_bases[0] + vpu->variant->enc_offset; vpu->dec_base = vpu->reg_bases[0] + vpu->variant->dec_offset; /** * TODO: Eventually allow taking advantage of full 64-bit address space. * Until then we assume the MSB portion of buffers' base addresses is * always 0 due to this masking operation. */ ret = dma_set_coherent_mask(vpu->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(vpu->dev, "Could not set DMA coherent mask.\n"); return ret; } vb2_dma_contig_set_max_seg_size(&pdev->dev, DMA_BIT_MASK(32)); for (i = 0; i < vpu->variant->num_irqs; i++) { const char *irq_name; int irq; if (!vpu->variant->irqs[i].handler) continue; if (vpu->variant->num_irqs > 1) { irq_name = vpu->variant->irqs[i].name; irq = platform_get_irq_byname(vpu->pdev, irq_name); } else { /* * If the driver has a single IRQ, chances are there * will be no actual name in the DT bindings. */ irq_name = "default"; irq = platform_get_irq(vpu->pdev, 0); } if (irq < 0) return irq; ret = devm_request_irq(vpu->dev, irq, vpu->variant->irqs[i].handler, 0, dev_name(vpu->dev), vpu); if (ret) { dev_err(vpu->dev, "Could not request %s IRQ.\n", irq_name); return ret; } } if (vpu->variant->init) { ret = vpu->variant->init(vpu); if (ret) { dev_err(&pdev->dev, "Failed to init VPU hardware\n"); return ret; } } pm_runtime_set_autosuspend_delay(vpu->dev, 100); pm_runtime_use_autosuspend(vpu->dev); pm_runtime_enable(vpu->dev); ret = reset_control_deassert(vpu->resets); if (ret) { dev_err(&pdev->dev, "Failed to deassert resets\n"); goto err_pm_disable; } ret = clk_bulk_prepare(vpu->variant->num_clocks, vpu->clocks); if (ret) { dev_err(&pdev->dev, "Failed to prepare clocks\n"); goto err_rst_assert; } ret = v4l2_device_register(&pdev->dev, &vpu->v4l2_dev); if (ret) { dev_err(&pdev->dev, "Failed to register v4l2 device\n"); goto err_clk_unprepare; } platform_set_drvdata(pdev, vpu); vpu->m2m_dev = v4l2_m2m_init(&vpu_m2m_ops); if (IS_ERR(vpu->m2m_dev)) { v4l2_err(&vpu->v4l2_dev, "Failed to init mem2mem device\n"); ret = PTR_ERR(vpu->m2m_dev); goto err_v4l2_unreg; } vpu->mdev.dev = vpu->dev; strscpy(vpu->mdev.model, DRIVER_NAME, sizeof(vpu->mdev.model)); media_device_init(&vpu->mdev); vpu->mdev.ops = &hantro_m2m_media_ops; vpu->v4l2_dev.mdev = &vpu->mdev; ret = hantro_add_enc_func(vpu); if (ret) { dev_err(&pdev->dev, "Failed to register encoder\n"); goto err_m2m_rel; } ret = hantro_add_dec_func(vpu); if (ret) { dev_err(&pdev->dev, "Failed to register decoder\n"); goto err_rm_enc_func; } ret = media_device_register(&vpu->mdev); if (ret) { v4l2_err(&vpu->v4l2_dev, "Failed to register mem2mem media device\n"); goto err_rm_dec_func; } return 0; err_rm_dec_func: hantro_remove_dec_func(vpu); err_rm_enc_func: hantro_remove_enc_func(vpu); err_m2m_rel: media_device_cleanup(&vpu->mdev); v4l2_m2m_release(vpu->m2m_dev); err_v4l2_unreg: v4l2_device_unregister(&vpu->v4l2_dev); err_clk_unprepare: clk_bulk_unprepare(vpu->variant->num_clocks, vpu->clocks); err_rst_assert: reset_control_assert(vpu->resets); err_pm_disable: pm_runtime_dont_use_autosuspend(vpu->dev); pm_runtime_disable(vpu->dev); return ret; } static void hantro_remove(struct platform_device *pdev) { struct hantro_dev *vpu = platform_get_drvdata(pdev); v4l2_info(&vpu->v4l2_dev, "Removing %s\n", pdev->name); media_device_unregister(&vpu->mdev); hantro_remove_dec_func(vpu); hantro_remove_enc_func(vpu); media_device_cleanup(&vpu->mdev); v4l2_m2m_release(vpu->m2m_dev); v4l2_device_unregister(&vpu->v4l2_dev); clk_bulk_unprepare(vpu->variant->num_clocks, vpu->clocks); reset_control_assert(vpu->resets); pm_runtime_dont_use_autosuspend(vpu->dev); pm_runtime_disable(vpu->dev); } #ifdef CONFIG_PM static int hantro_runtime_resume(struct device *dev) { struct hantro_dev *vpu = dev_get_drvdata(dev); if (vpu->variant->runtime_resume) return vpu->variant->runtime_resume(vpu); return 0; } #endif static const struct dev_pm_ops hantro_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(NULL, hantro_runtime_resume, NULL) }; static struct platform_driver hantro_driver = { .probe = hantro_probe, .remove_new = hantro_remove, .driver = { .name = DRIVER_NAME, .of_match_table = of_hantro_match, .pm = &hantro_pm_ops, }, }; module_platform_driver(hantro_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Alpha Lin "); MODULE_AUTHOR("Tomasz Figa "); MODULE_AUTHOR("Ezequiel Garcia "); MODULE_DESCRIPTION("Hantro VPU codec driver");