// SPDX-License-Identifier: GPL-2.0-or-later /* * netup_unidvb_spi.c * * Internal SPI driver for NetUP Universal Dual DVB-CI * * Copyright (C) 2014 NetUP Inc. * Copyright (C) 2014 Sergey Kozlov * Copyright (C) 2014 Abylay Ospan */ #include "netup_unidvb.h" #include #include #include #include #define NETUP_SPI_CTRL_IRQ 0x1000 #define NETUP_SPI_CTRL_IMASK 0x2000 #define NETUP_SPI_CTRL_START 0x8000 #define NETUP_SPI_CTRL_LAST_CS 0x4000 #define NETUP_SPI_TIMEOUT 6000 enum netup_spi_state { SPI_STATE_START, SPI_STATE_DONE, }; struct netup_spi_regs { __u8 data[1024]; __le16 control_stat; __le16 clock_divider; } __packed __aligned(1); struct netup_spi { struct device *dev; struct spi_controller *ctlr; struct netup_spi_regs __iomem *regs; u8 __iomem *mmio; spinlock_t lock; wait_queue_head_t waitq; enum netup_spi_state state; }; static char netup_spi_name[64] = "fpga"; static struct mtd_partition netup_spi_flash_partitions = { .name = netup_spi_name, .size = 0x1000000, /* 16MB */ .offset = 0, .mask_flags = MTD_CAP_ROM }; static struct flash_platform_data spi_flash_data = { .name = "netup0_m25p128", .parts = &netup_spi_flash_partitions, .nr_parts = 1, }; static struct spi_board_info netup_spi_board = { .modalias = "m25p128", .max_speed_hz = 11000000, .chip_select = 0, .mode = SPI_MODE_0, .platform_data = &spi_flash_data, }; irqreturn_t netup_spi_interrupt(struct netup_spi *spi) { u16 reg; unsigned long flags; if (!spi) return IRQ_NONE; spin_lock_irqsave(&spi->lock, flags); reg = readw(&spi->regs->control_stat); if (!(reg & NETUP_SPI_CTRL_IRQ)) { spin_unlock_irqrestore(&spi->lock, flags); dev_dbg(&spi->ctlr->dev, "%s(): not mine interrupt\n", __func__); return IRQ_NONE; } writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat); reg = readw(&spi->regs->control_stat); writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat); spi->state = SPI_STATE_DONE; wake_up(&spi->waitq); spin_unlock_irqrestore(&spi->lock, flags); dev_dbg(&spi->ctlr->dev, "%s(): SPI interrupt handled\n", __func__); return IRQ_HANDLED; } static int netup_spi_transfer(struct spi_controller *ctlr, struct spi_message *msg) { struct netup_spi *spi = spi_controller_get_devdata(ctlr); struct spi_transfer *t; int result = 0; u32 tr_size; /* reset CS */ writew(NETUP_SPI_CTRL_LAST_CS, &spi->regs->control_stat); writew(0, &spi->regs->control_stat); list_for_each_entry(t, &msg->transfers, transfer_list) { tr_size = t->len; while (tr_size) { u32 frag_offset = t->len - tr_size; u32 frag_size = (tr_size > sizeof(spi->regs->data)) ? sizeof(spi->regs->data) : tr_size; int frag_last = 0; if (list_is_last(&t->transfer_list, &msg->transfers) && frag_offset + frag_size == t->len) { frag_last = 1; } if (t->tx_buf) { memcpy_toio(spi->regs->data, t->tx_buf + frag_offset, frag_size); } else { memset_io(spi->regs->data, 0, frag_size); } spi->state = SPI_STATE_START; writew((frag_size & 0x3ff) | NETUP_SPI_CTRL_IMASK | NETUP_SPI_CTRL_START | (frag_last ? NETUP_SPI_CTRL_LAST_CS : 0), &spi->regs->control_stat); dev_dbg(&spi->ctlr->dev, "%s(): control_stat 0x%04x\n", __func__, readw(&spi->regs->control_stat)); wait_event_timeout(spi->waitq, spi->state != SPI_STATE_START, msecs_to_jiffies(NETUP_SPI_TIMEOUT)); if (spi->state == SPI_STATE_DONE) { if (t->rx_buf) { memcpy_fromio(t->rx_buf + frag_offset, spi->regs->data, frag_size); } } else { if (spi->state == SPI_STATE_START) { dev_dbg(&spi->ctlr->dev, "%s(): transfer timeout\n", __func__); } else { dev_dbg(&spi->ctlr->dev, "%s(): invalid state %d\n", __func__, spi->state); } result = -EIO; goto done; } tr_size -= frag_size; msg->actual_length += frag_size; } } done: msg->status = result; spi_finalize_current_message(ctlr); return result; } static int netup_spi_setup(struct spi_device *spi) { return 0; } int netup_spi_init(struct netup_unidvb_dev *ndev) { struct spi_controller *ctlr; struct netup_spi *nspi; ctlr = devm_spi_alloc_host(&ndev->pci_dev->dev, sizeof(struct netup_spi)); if (!ctlr) { dev_err(&ndev->pci_dev->dev, "%s(): unable to alloc SPI host\n", __func__); return -EINVAL; } nspi = spi_controller_get_devdata(ctlr); ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST; ctlr->bus_num = -1; ctlr->num_chipselect = 1; ctlr->transfer_one_message = netup_spi_transfer; ctlr->setup = netup_spi_setup; spin_lock_init(&nspi->lock); init_waitqueue_head(&nspi->waitq); nspi->ctlr = ctlr; nspi->regs = (struct netup_spi_regs __iomem *)(ndev->bmmio0 + 0x4000); writew(2, &nspi->regs->clock_divider); writew(NETUP_UNIDVB_IRQ_SPI, ndev->bmmio0 + REG_IMASK_SET); ndev->spi = nspi; if (spi_register_controller(ctlr)) { ndev->spi = NULL; dev_err(&ndev->pci_dev->dev, "%s(): unable to register SPI bus\n", __func__); return -EINVAL; } snprintf(netup_spi_name, sizeof(netup_spi_name), "fpga_%02x:%02x.%01x", ndev->pci_bus, ndev->pci_slot, ndev->pci_func); if (!spi_new_device(ctlr, &netup_spi_board)) { spi_unregister_controller(ctlr); ndev->spi = NULL; dev_err(&ndev->pci_dev->dev, "%s(): unable to create SPI device\n", __func__); return -EINVAL; } dev_dbg(&ndev->pci_dev->dev, "%s(): SPI init OK\n", __func__); return 0; } void netup_spi_release(struct netup_unidvb_dev *ndev) { u16 reg; unsigned long flags; struct netup_spi *spi = ndev->spi; if (!spi) return; spi_unregister_controller(spi->ctlr); spin_lock_irqsave(&spi->lock, flags); reg = readw(&spi->regs->control_stat); writew(reg | NETUP_SPI_CTRL_IRQ, &spi->regs->control_stat); reg = readw(&spi->regs->control_stat); writew(reg & ~NETUP_SPI_CTRL_IMASK, &spi->regs->control_stat); spin_unlock_irqrestore(&spi->lock, flags); ndev->spi = NULL; }