// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2019 Intel Corporation. #include #include #include #include #include #include #include #include #include #include #include #include #include #define OV5675_REG_VALUE_08BIT 1 #define OV5675_REG_VALUE_16BIT 2 #define OV5675_REG_VALUE_24BIT 3 #define OV5675_LINK_FREQ_450MHZ 450000000ULL #define OV5675_SCLK 90000000LL #define OV5675_XVCLK_19_2 19200000 #define OV5675_DATA_LANES 2 #define OV5675_RGB_DEPTH 10 #define OV5675_REG_CHIP_ID 0x300a #define OV5675_CHIP_ID 0x5675 #define OV5675_REG_MODE_SELECT 0x0100 #define OV5675_MODE_STANDBY 0x00 #define OV5675_MODE_STREAMING 0x01 /* vertical-timings from sensor */ #define OV5675_REG_VTS 0x380e #define OV5675_VTS_30FPS 0x07e4 #define OV5675_VTS_30FPS_MIN 0x07e4 #define OV5675_VTS_MAX 0x7fff /* horizontal-timings from sensor */ #define OV5675_REG_HTS 0x380c /* Exposure controls from sensor */ #define OV5675_REG_EXPOSURE 0x3500 #define OV5675_EXPOSURE_MIN 4 #define OV5675_EXPOSURE_MAX_MARGIN 4 #define OV5675_EXPOSURE_STEP 1 /* Analog gain controls from sensor */ #define OV5675_REG_ANALOG_GAIN 0x3508 #define OV5675_ANAL_GAIN_MIN 128 #define OV5675_ANAL_GAIN_MAX 2047 #define OV5675_ANAL_GAIN_STEP 1 /* Digital gain controls from sensor */ #define OV5675_REG_DIGITAL_GAIN 0x350a #define OV5675_REG_MWB_R_GAIN 0x5019 #define OV5675_REG_MWB_G_GAIN 0x501b #define OV5675_REG_MWB_B_GAIN 0x501d #define OV5675_DGTL_GAIN_MIN 1024 #define OV5675_DGTL_GAIN_MAX 4095 #define OV5675_DGTL_GAIN_STEP 1 #define OV5675_DGTL_GAIN_DEFAULT 1024 /* Group Access */ #define OV5675_REG_GROUP_ACCESS 0x3208 #define OV5675_GROUP_HOLD_START 0x0 #define OV5675_GROUP_HOLD_END 0x10 #define OV5675_GROUP_HOLD_LAUNCH 0xa0 /* Test Pattern Control */ #define OV5675_REG_TEST_PATTERN 0x4503 #define OV5675_TEST_PATTERN_ENABLE BIT(7) #define OV5675_TEST_PATTERN_BAR_SHIFT 2 /* Flip Mirror Controls from sensor */ #define OV5675_REG_FORMAT1 0x3820 #define OV5675_REG_FORMAT2 0x373d #define to_ov5675(_sd) container_of(_sd, struct ov5675, sd) static const char * const ov5675_supply_names[] = { "avdd", /* Analog power */ "dovdd", /* Digital I/O power */ "dvdd", /* Digital core power */ }; #define OV5675_NUM_SUPPLIES ARRAY_SIZE(ov5675_supply_names) enum { OV5675_LINK_FREQ_900MBPS, }; struct ov5675_reg { u16 address; u8 val; }; struct ov5675_reg_list { u32 num_of_regs; const struct ov5675_reg *regs; }; struct ov5675_link_freq_config { const struct ov5675_reg_list reg_list; }; struct ov5675_mode { /* Frame width in pixels */ u32 width; /* Frame height in pixels */ u32 height; /* Horizontal timining size */ u32 hts; /* Default vertical timining size */ u32 vts_def; /* Min vertical timining size */ u32 vts_min; /* Link frequency needed for this resolution */ u32 link_freq_index; /* Sensor register settings for this resolution */ const struct ov5675_reg_list reg_list; }; static const struct ov5675_reg mipi_data_rate_900mbps[] = { {0x0103, 0x01}, {0x0100, 0x00}, {0x0300, 0x04}, {0x0302, 0x8d}, {0x0303, 0x00}, {0x030d, 0x26}, }; static const struct ov5675_reg mode_2592x1944_regs[] = { {0x3002, 0x21}, {0x3107, 0x23}, {0x3501, 0x20}, {0x3503, 0x0c}, {0x3508, 0x03}, {0x3509, 0x00}, {0x3600, 0x66}, {0x3602, 0x30}, {0x3610, 0xa5}, {0x3612, 0x93}, {0x3620, 0x80}, {0x3642, 0x0e}, {0x3661, 0x00}, {0x3662, 0x10}, {0x3664, 0xf3}, {0x3665, 0x9e}, {0x3667, 0xa5}, {0x366e, 0x55}, {0x366f, 0x55}, {0x3670, 0x11}, {0x3671, 0x11}, {0x3672, 0x11}, {0x3673, 0x11}, {0x3714, 0x24}, {0x371a, 0x3e}, {0x3733, 0x10}, {0x3734, 0x00}, {0x373d, 0x24}, {0x3764, 0x20}, {0x3765, 0x20}, {0x3766, 0x12}, {0x37a1, 0x14}, {0x37a8, 0x1c}, {0x37ab, 0x0f}, {0x37c2, 0x04}, {0x37cb, 0x00}, {0x37cc, 0x00}, {0x37cd, 0x00}, {0x37ce, 0x00}, {0x37d8, 0x02}, {0x37d9, 0x08}, {0x37dc, 0x04}, {0x3800, 0x00}, {0x3801, 0x00}, {0x3802, 0x00}, {0x3803, 0x04}, {0x3804, 0x0a}, {0x3805, 0x3f}, {0x3806, 0x07}, {0x3807, 0xb3}, {0x3808, 0x0a}, {0x3809, 0x20}, {0x380a, 0x07}, {0x380b, 0x98}, {0x380c, 0x02}, {0x380d, 0xee}, {0x380e, 0x07}, {0x380f, 0xe4}, {0x3811, 0x10}, {0x3813, 0x0d}, {0x3814, 0x01}, {0x3815, 0x01}, {0x3816, 0x01}, {0x3817, 0x01}, {0x381e, 0x02}, {0x3820, 0x88}, {0x3821, 0x01}, {0x3832, 0x04}, {0x3c80, 0x01}, {0x3c82, 0x00}, {0x3c83, 0xc8}, {0x3c8c, 0x0f}, {0x3c8d, 0xa0}, {0x3c90, 0x07}, {0x3c91, 0x00}, {0x3c92, 0x00}, {0x3c93, 0x00}, {0x3c94, 0xd0}, {0x3c95, 0x50}, {0x3c96, 0x35}, {0x3c97, 0x00}, {0x4001, 0xe0}, {0x4008, 0x02}, {0x4009, 0x0d}, {0x400f, 0x80}, {0x4013, 0x02}, {0x4040, 0x00}, {0x4041, 0x07}, {0x404c, 0x50}, {0x404e, 0x20}, {0x4500, 0x06}, {0x4503, 0x00}, {0x450a, 0x04}, {0x4809, 0x04}, {0x480c, 0x12}, {0x4819, 0x70}, {0x4825, 0x32}, {0x4826, 0x32}, {0x482a, 0x06}, {0x4833, 0x08}, {0x4837, 0x0d}, {0x5000, 0x77}, {0x5b00, 0x01}, {0x5b01, 0x10}, {0x5b02, 0x01}, {0x5b03, 0xdb}, {0x5b05, 0x6c}, {0x5e10, 0xfc}, {0x3500, 0x00}, {0x3501, 0x3E}, {0x3502, 0x60}, {0x3503, 0x08}, {0x3508, 0x04}, {0x3509, 0x00}, {0x3832, 0x48}, {0x5780, 0x3e}, {0x5781, 0x0f}, {0x5782, 0x44}, {0x5783, 0x02}, {0x5784, 0x01}, {0x5785, 0x01}, {0x5786, 0x00}, {0x5787, 0x04}, {0x5788, 0x02}, {0x5789, 0x0f}, {0x578a, 0xfd}, {0x578b, 0xf5}, {0x578c, 0xf5}, {0x578d, 0x03}, {0x578e, 0x08}, {0x578f, 0x0c}, {0x5790, 0x08}, {0x5791, 0x06}, {0x5792, 0x00}, {0x5793, 0x52}, {0x5794, 0xa3}, {0x4003, 0x40}, {0x3107, 0x01}, {0x3c80, 0x08}, {0x3c83, 0xb1}, {0x3c8c, 0x10}, {0x3c8d, 0x00}, {0x3c90, 0x00}, {0x3c94, 0x00}, {0x3c95, 0x00}, {0x3c96, 0x00}, {0x37cb, 0x09}, {0x37cc, 0x15}, {0x37cd, 0x1f}, {0x37ce, 0x1f}, }; static const struct ov5675_reg mode_1296x972_regs[] = { {0x3002, 0x21}, {0x3107, 0x23}, {0x3501, 0x20}, {0x3503, 0x0c}, {0x3508, 0x03}, {0x3509, 0x00}, {0x3600, 0x66}, {0x3602, 0x30}, {0x3610, 0xa5}, {0x3612, 0x93}, {0x3620, 0x80}, {0x3642, 0x0e}, {0x3661, 0x00}, {0x3662, 0x08}, {0x3664, 0xf3}, {0x3665, 0x9e}, {0x3667, 0xa5}, {0x366e, 0x55}, {0x366f, 0x55}, {0x3670, 0x11}, {0x3671, 0x11}, {0x3672, 0x11}, {0x3673, 0x11}, {0x3714, 0x28}, {0x371a, 0x3e}, {0x3733, 0x10}, {0x3734, 0x00}, {0x373d, 0x24}, {0x3764, 0x20}, {0x3765, 0x20}, {0x3766, 0x12}, {0x37a1, 0x14}, {0x37a8, 0x1c}, {0x37ab, 0x0f}, {0x37c2, 0x14}, {0x37cb, 0x00}, {0x37cc, 0x00}, {0x37cd, 0x00}, {0x37ce, 0x00}, {0x37d8, 0x02}, {0x37d9, 0x04}, {0x37dc, 0x04}, {0x3800, 0x00}, {0x3801, 0x00}, {0x3802, 0x00}, {0x3803, 0x00}, {0x3804, 0x0a}, {0x3805, 0x3f}, {0x3806, 0x07}, {0x3807, 0xb7}, {0x3808, 0x05}, {0x3809, 0x10}, {0x380a, 0x03}, {0x380b, 0xcc}, {0x380c, 0x02}, {0x380d, 0xee}, {0x380e, 0x07}, {0x380f, 0xd0}, {0x3811, 0x08}, {0x3813, 0x0d}, {0x3814, 0x03}, {0x3815, 0x01}, {0x3816, 0x03}, {0x3817, 0x01}, {0x381e, 0x02}, {0x3820, 0x8b}, {0x3821, 0x01}, {0x3832, 0x04}, {0x3c80, 0x01}, {0x3c82, 0x00}, {0x3c83, 0xc8}, {0x3c8c, 0x0f}, {0x3c8d, 0xa0}, {0x3c90, 0x07}, {0x3c91, 0x00}, {0x3c92, 0x00}, {0x3c93, 0x00}, {0x3c94, 0xd0}, {0x3c95, 0x50}, {0x3c96, 0x35}, {0x3c97, 0x00}, {0x4001, 0xe0}, {0x4008, 0x00}, {0x4009, 0x07}, {0x400f, 0x80}, {0x4013, 0x02}, {0x4040, 0x00}, {0x4041, 0x03}, {0x404c, 0x50}, {0x404e, 0x20}, {0x4500, 0x06}, {0x4503, 0x00}, {0x450a, 0x04}, {0x4809, 0x04}, {0x480c, 0x12}, {0x4819, 0x70}, {0x4825, 0x32}, {0x4826, 0x32}, {0x482a, 0x06}, {0x4833, 0x08}, {0x4837, 0x0d}, {0x5000, 0x77}, {0x5b00, 0x01}, {0x5b01, 0x10}, {0x5b02, 0x01}, {0x5b03, 0xdb}, {0x5b05, 0x6c}, {0x5e10, 0xfc}, {0x3500, 0x00}, {0x3501, 0x1F}, {0x3502, 0x20}, {0x3503, 0x08}, {0x3508, 0x04}, {0x3509, 0x00}, {0x3832, 0x48}, {0x5780, 0x3e}, {0x5781, 0x0f}, {0x5782, 0x44}, {0x5783, 0x02}, {0x5784, 0x01}, {0x5785, 0x01}, {0x5786, 0x00}, {0x5787, 0x04}, {0x5788, 0x02}, {0x5789, 0x0f}, {0x578a, 0xfd}, {0x578b, 0xf5}, {0x578c, 0xf5}, {0x578d, 0x03}, {0x578e, 0x08}, {0x578f, 0x0c}, {0x5790, 0x08}, {0x5791, 0x06}, {0x5792, 0x00}, {0x5793, 0x52}, {0x5794, 0xa3}, {0x4003, 0x40}, {0x3107, 0x01}, {0x3c80, 0x08}, {0x3c83, 0xb1}, {0x3c8c, 0x10}, {0x3c8d, 0x00}, {0x3c90, 0x00}, {0x3c94, 0x00}, {0x3c95, 0x00}, {0x3c96, 0x00}, {0x37cb, 0x09}, {0x37cc, 0x15}, {0x37cd, 0x1f}, {0x37ce, 0x1f}, }; static const char * const ov5675_test_pattern_menu[] = { "Disabled", "Standard Color Bar", "Top-Bottom Darker Color Bar", "Right-Left Darker Color Bar", "Bottom-Top Darker Color Bar" }; static const s64 link_freq_menu_items[] = { OV5675_LINK_FREQ_450MHZ, }; static const struct ov5675_link_freq_config link_freq_configs[] = { [OV5675_LINK_FREQ_900MBPS] = { .reg_list = { .num_of_regs = ARRAY_SIZE(mipi_data_rate_900mbps), .regs = mipi_data_rate_900mbps, } } }; static const struct ov5675_mode supported_modes[] = { { .width = 2592, .height = 1944, .hts = 1500, .vts_def = OV5675_VTS_30FPS, .vts_min = OV5675_VTS_30FPS_MIN, .reg_list = { .num_of_regs = ARRAY_SIZE(mode_2592x1944_regs), .regs = mode_2592x1944_regs, }, .link_freq_index = OV5675_LINK_FREQ_900MBPS, }, { .width = 1296, .height = 972, .hts = 1500, .vts_def = OV5675_VTS_30FPS, .vts_min = OV5675_VTS_30FPS_MIN, .reg_list = { .num_of_regs = ARRAY_SIZE(mode_1296x972_regs), .regs = mode_1296x972_regs, }, .link_freq_index = OV5675_LINK_FREQ_900MBPS, } }; struct ov5675 { struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; struct clk *xvclk; struct gpio_desc *reset_gpio; struct regulator_bulk_data supplies[OV5675_NUM_SUPPLIES]; /* V4L2 Controls */ struct v4l2_ctrl *link_freq; struct v4l2_ctrl *pixel_rate; struct v4l2_ctrl *vblank; struct v4l2_ctrl *hblank; struct v4l2_ctrl *exposure; /* Current mode */ const struct ov5675_mode *cur_mode; /* To serialize asynchronus callbacks */ struct mutex mutex; /* True if the device has been identified */ bool identified; }; static u64 to_pixel_rate(u32 f_index) { u64 pixel_rate = link_freq_menu_items[f_index] * 2 * OV5675_DATA_LANES; do_div(pixel_rate, OV5675_RGB_DEPTH); return pixel_rate; } static u64 to_pixels_per_line(u32 hts, u32 f_index) { u64 ppl = hts * to_pixel_rate(f_index); do_div(ppl, OV5675_SCLK); return ppl; } static int ov5675_read_reg(struct ov5675 *ov5675, u16 reg, u16 len, u32 *val) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); struct i2c_msg msgs[2]; u8 addr_buf[2]; u8 data_buf[4] = {0}; int ret; if (len > 4) return -EINVAL; put_unaligned_be16(reg, addr_buf); msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = sizeof(addr_buf); msgs[0].buf = addr_buf; msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = &data_buf[4 - len]; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret != ARRAY_SIZE(msgs)) return -EIO; *val = get_unaligned_be32(data_buf); return 0; } static int ov5675_write_reg(struct ov5675 *ov5675, u16 reg, u16 len, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); u8 buf[6]; if (len > 4) return -EINVAL; put_unaligned_be16(reg, buf); put_unaligned_be32(val << 8 * (4 - len), buf + 2); if (i2c_master_send(client, buf, len + 2) != len + 2) return -EIO; return 0; } static int ov5675_write_reg_list(struct ov5675 *ov5675, const struct ov5675_reg_list *r_list) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); unsigned int i; int ret; for (i = 0; i < r_list->num_of_regs; i++) { ret = ov5675_write_reg(ov5675, r_list->regs[i].address, 1, r_list->regs[i].val); if (ret) { dev_err_ratelimited(&client->dev, "failed to write reg 0x%4.4x. error = %d", r_list->regs[i].address, ret); return ret; } } return 0; } static int ov5675_update_digital_gain(struct ov5675 *ov5675, u32 d_gain) { int ret; ret = ov5675_write_reg(ov5675, OV5675_REG_GROUP_ACCESS, OV5675_REG_VALUE_08BIT, OV5675_GROUP_HOLD_START); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_MWB_R_GAIN, OV5675_REG_VALUE_16BIT, d_gain); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_MWB_G_GAIN, OV5675_REG_VALUE_16BIT, d_gain); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_MWB_B_GAIN, OV5675_REG_VALUE_16BIT, d_gain); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_GROUP_ACCESS, OV5675_REG_VALUE_08BIT, OV5675_GROUP_HOLD_END); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_GROUP_ACCESS, OV5675_REG_VALUE_08BIT, OV5675_GROUP_HOLD_LAUNCH); return ret; } static int ov5675_test_pattern(struct ov5675 *ov5675, u32 pattern) { if (pattern) pattern = (pattern - 1) << OV5675_TEST_PATTERN_BAR_SHIFT | OV5675_TEST_PATTERN_ENABLE; return ov5675_write_reg(ov5675, OV5675_REG_TEST_PATTERN, OV5675_REG_VALUE_08BIT, pattern); } /* * OV5675 supports keeping the pixel order by mirror and flip function * The Bayer order isn't affected by the flip controls */ static int ov5675_set_ctrl_hflip(struct ov5675 *ov5675, u32 ctrl_val) { int ret; u32 val; ret = ov5675_read_reg(ov5675, OV5675_REG_FORMAT1, OV5675_REG_VALUE_08BIT, &val); if (ret) return ret; return ov5675_write_reg(ov5675, OV5675_REG_FORMAT1, OV5675_REG_VALUE_08BIT, ctrl_val ? val & ~BIT(3) : val | BIT(3)); } static int ov5675_set_ctrl_vflip(struct ov5675 *ov5675, u8 ctrl_val) { int ret; u32 val; ret = ov5675_read_reg(ov5675, OV5675_REG_FORMAT1, OV5675_REG_VALUE_08BIT, &val); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_FORMAT1, OV5675_REG_VALUE_08BIT, ctrl_val ? val | BIT(4) | BIT(5) : val & ~BIT(4) & ~BIT(5)); if (ret) return ret; ret = ov5675_read_reg(ov5675, OV5675_REG_FORMAT2, OV5675_REG_VALUE_08BIT, &val); if (ret) return ret; return ov5675_write_reg(ov5675, OV5675_REG_FORMAT2, OV5675_REG_VALUE_08BIT, ctrl_val ? val | BIT(1) : val & ~BIT(1)); } static int ov5675_set_ctrl(struct v4l2_ctrl *ctrl) { struct ov5675 *ov5675 = container_of(ctrl->handler, struct ov5675, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); s64 exposure_max; int ret = 0; /* Propagate change of current control to all related controls */ if (ctrl->id == V4L2_CID_VBLANK) { /* Update max exposure while meeting expected vblanking */ exposure_max = ov5675->cur_mode->height + ctrl->val - OV5675_EXPOSURE_MAX_MARGIN; __v4l2_ctrl_modify_range(ov5675->exposure, ov5675->exposure->minimum, exposure_max, ov5675->exposure->step, exposure_max); } /* V4L2 controls values will be applied only when power is already up */ if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_ANALOGUE_GAIN: ret = ov5675_write_reg(ov5675, OV5675_REG_ANALOG_GAIN, OV5675_REG_VALUE_16BIT, ctrl->val); break; case V4L2_CID_DIGITAL_GAIN: ret = ov5675_update_digital_gain(ov5675, ctrl->val); break; case V4L2_CID_EXPOSURE: /* 4 least significant bits of expsoure are fractional part * val = val << 4 * for ov5675, the unit of exposure is differnt from other * OmniVision sensors, its exposure value is twice of the * register value, the exposure should be divided by 2 before * set register, e.g. val << 3. */ ret = ov5675_write_reg(ov5675, OV5675_REG_EXPOSURE, OV5675_REG_VALUE_24BIT, ctrl->val << 3); break; case V4L2_CID_VBLANK: ret = ov5675_write_reg(ov5675, OV5675_REG_VTS, OV5675_REG_VALUE_16BIT, ov5675->cur_mode->height + ctrl->val + 10); break; case V4L2_CID_TEST_PATTERN: ret = ov5675_test_pattern(ov5675, ctrl->val); break; case V4L2_CID_HFLIP: ov5675_set_ctrl_hflip(ov5675, ctrl->val); break; case V4L2_CID_VFLIP: ov5675_set_ctrl_vflip(ov5675, ctrl->val); break; default: ret = -EINVAL; break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops ov5675_ctrl_ops = { .s_ctrl = ov5675_set_ctrl, }; static int ov5675_init_controls(struct ov5675 *ov5675) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); struct v4l2_fwnode_device_properties props; struct v4l2_ctrl_handler *ctrl_hdlr; s64 exposure_max, h_blank; int ret; ctrl_hdlr = &ov5675->ctrl_handler; ret = v4l2_ctrl_handler_init(ctrl_hdlr, 10); if (ret) return ret; ctrl_hdlr->lock = &ov5675->mutex; ov5675->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE(link_freq_menu_items) - 1, 0, link_freq_menu_items); if (ov5675->link_freq) ov5675->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; ov5675->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_PIXEL_RATE, 0, to_pixel_rate(OV5675_LINK_FREQ_900MBPS), 1, to_pixel_rate(OV5675_LINK_FREQ_900MBPS)); ov5675->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_VBLANK, ov5675->cur_mode->vts_min - ov5675->cur_mode->height, OV5675_VTS_MAX - ov5675->cur_mode->height, 1, ov5675->cur_mode->vts_def - ov5675->cur_mode->height); h_blank = to_pixels_per_line(ov5675->cur_mode->hts, ov5675->cur_mode->link_freq_index) - ov5675->cur_mode->width; ov5675->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (ov5675->hblank) ov5675->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, OV5675_ANAL_GAIN_MIN, OV5675_ANAL_GAIN_MAX, OV5675_ANAL_GAIN_STEP, OV5675_ANAL_GAIN_MIN); v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_DIGITAL_GAIN, OV5675_DGTL_GAIN_MIN, OV5675_DGTL_GAIN_MAX, OV5675_DGTL_GAIN_STEP, OV5675_DGTL_GAIN_DEFAULT); exposure_max = (ov5675->cur_mode->vts_def - OV5675_EXPOSURE_MAX_MARGIN); ov5675->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_EXPOSURE, OV5675_EXPOSURE_MIN, exposure_max, OV5675_EXPOSURE_STEP, exposure_max); v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ov5675_test_pattern_menu) - 1, 0, 0, ov5675_test_pattern_menu); v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(ctrl_hdlr, &ov5675_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); if (ctrl_hdlr->error) { v4l2_ctrl_handler_free(ctrl_hdlr); return ctrl_hdlr->error; } ret = v4l2_fwnode_device_parse(&client->dev, &props); if (ret) goto error; ret = v4l2_ctrl_new_fwnode_properties(ctrl_hdlr, &ov5675_ctrl_ops, &props); if (ret) goto error; ov5675->sd.ctrl_handler = ctrl_hdlr; return 0; error: v4l2_ctrl_handler_free(ctrl_hdlr); return ret; } static void ov5675_update_pad_format(const struct ov5675_mode *mode, struct v4l2_mbus_framefmt *fmt) { fmt->width = mode->width; fmt->height = mode->height; fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10; fmt->field = V4L2_FIELD_NONE; } static int ov5675_identify_module(struct ov5675 *ov5675) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); int ret; u32 val; if (ov5675->identified) return 0; ret = ov5675_read_reg(ov5675, OV5675_REG_CHIP_ID, OV5675_REG_VALUE_24BIT, &val); if (ret) return ret; if (val != OV5675_CHIP_ID) { dev_err(&client->dev, "chip id mismatch: %x!=%x", OV5675_CHIP_ID, val); return -ENXIO; } ov5675->identified = true; return 0; } static int ov5675_start_streaming(struct ov5675 *ov5675) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); const struct ov5675_reg_list *reg_list; int link_freq_index, ret; ret = ov5675_identify_module(ov5675); if (ret) return ret; link_freq_index = ov5675->cur_mode->link_freq_index; reg_list = &link_freq_configs[link_freq_index].reg_list; ret = ov5675_write_reg_list(ov5675, reg_list); if (ret) { dev_err(&client->dev, "failed to set plls"); return ret; } reg_list = &ov5675->cur_mode->reg_list; ret = ov5675_write_reg_list(ov5675, reg_list); if (ret) { dev_err(&client->dev, "failed to set mode"); return ret; } ret = __v4l2_ctrl_handler_setup(ov5675->sd.ctrl_handler); if (ret) return ret; ret = ov5675_write_reg(ov5675, OV5675_REG_MODE_SELECT, OV5675_REG_VALUE_08BIT, OV5675_MODE_STREAMING); if (ret) { dev_err(&client->dev, "failed to set stream"); return ret; } return 0; } static void ov5675_stop_streaming(struct ov5675 *ov5675) { struct i2c_client *client = v4l2_get_subdevdata(&ov5675->sd); if (ov5675_write_reg(ov5675, OV5675_REG_MODE_SELECT, OV5675_REG_VALUE_08BIT, OV5675_MODE_STANDBY)) dev_err(&client->dev, "failed to set stream"); } static int ov5675_set_stream(struct v4l2_subdev *sd, int enable) { struct ov5675 *ov5675 = to_ov5675(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; mutex_lock(&ov5675->mutex); if (enable) { ret = pm_runtime_resume_and_get(&client->dev); if (ret < 0) { mutex_unlock(&ov5675->mutex); return ret; } ret = ov5675_start_streaming(ov5675); if (ret) { enable = 0; ov5675_stop_streaming(ov5675); pm_runtime_put(&client->dev); } } else { ov5675_stop_streaming(ov5675); pm_runtime_put(&client->dev); } mutex_unlock(&ov5675->mutex); return ret; } static int ov5675_power_off(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov5675 *ov5675 = to_ov5675(sd); usleep_range(90, 100); clk_disable_unprepare(ov5675->xvclk); gpiod_set_value_cansleep(ov5675->reset_gpio, 1); regulator_bulk_disable(OV5675_NUM_SUPPLIES, ov5675->supplies); return 0; } static int ov5675_power_on(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov5675 *ov5675 = to_ov5675(sd); int ret; ret = clk_prepare_enable(ov5675->xvclk); if (ret < 0) { dev_err(dev, "failed to enable xvclk: %d\n", ret); return ret; } gpiod_set_value_cansleep(ov5675->reset_gpio, 1); ret = regulator_bulk_enable(OV5675_NUM_SUPPLIES, ov5675->supplies); if (ret) { clk_disable_unprepare(ov5675->xvclk); return ret; } /* Reset pulse should be at least 2ms and reset gpio released only once * regulators are stable. */ usleep_range(2000, 2200); gpiod_set_value_cansleep(ov5675->reset_gpio, 0); /* Worst case quiesence gap is 1.365 milliseconds @ 6MHz XVCLK * Add an additional threshold grace period to ensure reset * completion before initiating our first I2C transaction. */ usleep_range(1500, 1600); return 0; } static int ov5675_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ov5675 *ov5675 = to_ov5675(sd); const struct ov5675_mode *mode; s32 vblank_def, h_blank; mode = v4l2_find_nearest_size(supported_modes, ARRAY_SIZE(supported_modes), width, height, fmt->format.width, fmt->format.height); mutex_lock(&ov5675->mutex); ov5675_update_pad_format(mode, &fmt->format); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { *v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format; } else { ov5675->cur_mode = mode; __v4l2_ctrl_s_ctrl(ov5675->link_freq, mode->link_freq_index); __v4l2_ctrl_s_ctrl_int64(ov5675->pixel_rate, to_pixel_rate(mode->link_freq_index)); /* Update limits and set FPS to default */ vblank_def = mode->vts_def - mode->height; __v4l2_ctrl_modify_range(ov5675->vblank, mode->vts_min - mode->height, OV5675_VTS_MAX - mode->height, 1, vblank_def); __v4l2_ctrl_s_ctrl(ov5675->vblank, vblank_def); h_blank = to_pixels_per_line(mode->hts, mode->link_freq_index) - mode->width; __v4l2_ctrl_modify_range(ov5675->hblank, h_blank, h_blank, 1, h_blank); } mutex_unlock(&ov5675->mutex); return 0; } static int ov5675_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ov5675 *ov5675 = to_ov5675(sd); mutex_lock(&ov5675->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad); else ov5675_update_pad_format(ov5675->cur_mode, &fmt->format); mutex_unlock(&ov5675->mutex); return 0; } static int ov5675_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_selection *sel) { if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; switch (sel->target) { case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.top = 0; sel->r.left = 0; sel->r.width = 2624; sel->r.height = 2000; return 0; case V4L2_SEL_TGT_CROP: case V4L2_SEL_TGT_CROP_DEFAULT: sel->r.top = 16; sel->r.left = 16; sel->r.width = 2592; sel->r.height = 1944; return 0; } return -EINVAL; } static int ov5675_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_SGRBG10_1X10; return 0; } static int ov5675_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = supported_modes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int ov5675_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct ov5675 *ov5675 = to_ov5675(sd); mutex_lock(&ov5675->mutex); ov5675_update_pad_format(&supported_modes[0], v4l2_subdev_state_get_format(fh->state, 0)); mutex_unlock(&ov5675->mutex); return 0; } static const struct v4l2_subdev_video_ops ov5675_video_ops = { .s_stream = ov5675_set_stream, }; static const struct v4l2_subdev_pad_ops ov5675_pad_ops = { .set_fmt = ov5675_set_format, .get_fmt = ov5675_get_format, .get_selection = ov5675_get_selection, .enum_mbus_code = ov5675_enum_mbus_code, .enum_frame_size = ov5675_enum_frame_size, }; static const struct v4l2_subdev_ops ov5675_subdev_ops = { .video = &ov5675_video_ops, .pad = &ov5675_pad_ops, }; static const struct media_entity_operations ov5675_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_internal_ops ov5675_internal_ops = { .open = ov5675_open, }; static int ov5675_get_hwcfg(struct ov5675 *ov5675, struct device *dev) { struct fwnode_handle *ep; struct fwnode_handle *fwnode = dev_fwnode(dev); struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_CSI2_DPHY }; u32 xvclk_rate; int ret; unsigned int i, j; if (!fwnode) return -ENXIO; ov5675->xvclk = devm_clk_get_optional(dev, NULL); if (IS_ERR(ov5675->xvclk)) return dev_err_probe(dev, PTR_ERR(ov5675->xvclk), "failed to get xvclk: %ld\n", PTR_ERR(ov5675->xvclk)); if (ov5675->xvclk) { xvclk_rate = clk_get_rate(ov5675->xvclk); } else { ret = fwnode_property_read_u32(fwnode, "clock-frequency", &xvclk_rate); if (ret) { dev_err(dev, "can't get clock frequency"); return ret; } } if (xvclk_rate != OV5675_XVCLK_19_2) { dev_err(dev, "external clock rate %u is unsupported", xvclk_rate); return -EINVAL; } ov5675->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(ov5675->reset_gpio)) { ret = PTR_ERR(ov5675->reset_gpio); dev_err(dev, "failed to get reset-gpios: %d\n", ret); return ret; } for (i = 0; i < OV5675_NUM_SUPPLIES; i++) ov5675->supplies[i].supply = ov5675_supply_names[i]; ret = devm_regulator_bulk_get(dev, OV5675_NUM_SUPPLIES, ov5675->supplies); if (ret) return ret; ep = fwnode_graph_get_next_endpoint(fwnode, NULL); if (!ep) return -ENXIO; ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); fwnode_handle_put(ep); if (ret) return ret; if (bus_cfg.bus.mipi_csi2.num_data_lanes != OV5675_DATA_LANES) { dev_err(dev, "number of CSI2 data lanes %d is not supported", bus_cfg.bus.mipi_csi2.num_data_lanes); ret = -EINVAL; goto check_hwcfg_error; } if (!bus_cfg.nr_of_link_frequencies) { dev_err(dev, "no link frequencies defined"); ret = -EINVAL; goto check_hwcfg_error; } for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); i++) { for (j = 0; j < bus_cfg.nr_of_link_frequencies; j++) { if (link_freq_menu_items[i] == bus_cfg.link_frequencies[j]) break; } if (j == bus_cfg.nr_of_link_frequencies) { dev_err(dev, "no link frequency %lld supported", link_freq_menu_items[i]); ret = -EINVAL; goto check_hwcfg_error; } } check_hwcfg_error: v4l2_fwnode_endpoint_free(&bus_cfg); return ret; } static void ov5675_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov5675 *ov5675 = to_ov5675(sd); v4l2_async_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); pm_runtime_disable(&client->dev); mutex_destroy(&ov5675->mutex); if (!pm_runtime_status_suspended(&client->dev)) ov5675_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); } static int ov5675_probe(struct i2c_client *client) { struct ov5675 *ov5675; bool full_power; int ret; ov5675 = devm_kzalloc(&client->dev, sizeof(*ov5675), GFP_KERNEL); if (!ov5675) return -ENOMEM; ret = ov5675_get_hwcfg(ov5675, &client->dev); if (ret) { dev_err(&client->dev, "failed to get HW configuration: %d", ret); return ret; } v4l2_i2c_subdev_init(&ov5675->sd, client, &ov5675_subdev_ops); ret = ov5675_power_on(&client->dev); if (ret) { dev_err(&client->dev, "failed to power on: %d\n", ret); return ret; } full_power = acpi_dev_state_d0(&client->dev); if (full_power) { ret = ov5675_identify_module(ov5675); if (ret) { dev_err(&client->dev, "failed to find sensor: %d", ret); goto probe_power_off; } } mutex_init(&ov5675->mutex); ov5675->cur_mode = &supported_modes[0]; ret = ov5675_init_controls(ov5675); if (ret) { dev_err(&client->dev, "failed to init controls: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } ov5675->sd.internal_ops = &ov5675_internal_ops; ov5675->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; ov5675->sd.entity.ops = &ov5675_subdev_entity_ops; ov5675->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ov5675->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&ov5675->sd.entity, 1, &ov5675->pad); if (ret) { dev_err(&client->dev, "failed to init entity pads: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } ret = v4l2_async_register_subdev_sensor(&ov5675->sd); if (ret < 0) { dev_err(&client->dev, "failed to register V4L2 subdev: %d", ret); goto probe_error_media_entity_cleanup; } /* Set the device's state to active if it's in D0 state. */ if (full_power) pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); pm_runtime_idle(&client->dev); return 0; probe_error_media_entity_cleanup: media_entity_cleanup(&ov5675->sd.entity); probe_error_v4l2_ctrl_handler_free: v4l2_ctrl_handler_free(ov5675->sd.ctrl_handler); mutex_destroy(&ov5675->mutex); probe_power_off: ov5675_power_off(&client->dev); return ret; } static const struct dev_pm_ops ov5675_pm_ops = { SET_RUNTIME_PM_OPS(ov5675_power_off, ov5675_power_on, NULL) }; #ifdef CONFIG_ACPI static const struct acpi_device_id ov5675_acpi_ids[] = { {"OVTI5675"}, {} }; MODULE_DEVICE_TABLE(acpi, ov5675_acpi_ids); #endif static const struct of_device_id ov5675_of_match[] = { { .compatible = "ovti,ov5675", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ov5675_of_match); static struct i2c_driver ov5675_i2c_driver = { .driver = { .name = "ov5675", .pm = &ov5675_pm_ops, .acpi_match_table = ACPI_PTR(ov5675_acpi_ids), .of_match_table = ov5675_of_match, }, .probe = ov5675_probe, .remove = ov5675_remove, .flags = I2C_DRV_ACPI_WAIVE_D0_PROBE, }; module_i2c_driver(ov5675_i2c_driver); MODULE_AUTHOR("Shawn Tu"); MODULE_DESCRIPTION("OmniVision OV5675 sensor driver"); MODULE_LICENSE("GPL v2");