// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Red Hat GmbH * * This file is released under the GPL. * * Device-mapper target to emulate smaller logical block * size on backing devices exposing (natively) larger ones. * * E.g. 512 byte sector emulation on 4K native disks. */ #include "dm.h" #include #include #include #define DM_MSG_PREFIX "ebs" static void ebs_dtr(struct dm_target *ti); /* Emulated block size context. */ struct ebs_c { struct dm_dev *dev; /* Underlying device to emulate block size on. */ struct dm_bufio_client *bufio; /* Use dm-bufio for read and read-modify-write processing. */ struct workqueue_struct *wq; /* Workqueue for ^ processing of bios. */ struct work_struct ws; /* Work item used for ^. */ struct bio_list bios_in; /* Worker bios input list. */ spinlock_t lock; /* Guard bios input list above. */ sector_t start; /* table line argument, see ebs_ctr below. */ unsigned int e_bs; /* Emulated block size in sectors exposed to upper layer. */ unsigned int u_bs; /* Underlying block size in sectors retrieved from/set on lower layer device. */ unsigned char block_shift; /* bitshift sectors -> blocks used in dm-bufio API. */ bool u_bs_set:1; /* Flag to indicate underlying block size is set on table line. */ }; static inline sector_t __sector_to_block(struct ebs_c *ec, sector_t sector) { return sector >> ec->block_shift; } static inline sector_t __block_mod(sector_t sector, unsigned int bs) { return sector & (bs - 1); } /* Return number of blocks for a bio, accounting for misalignment of start and end sectors. */ static inline unsigned int __nr_blocks(struct ebs_c *ec, struct bio *bio) { sector_t end_sector = __block_mod(bio->bi_iter.bi_sector, ec->u_bs) + bio_sectors(bio); return __sector_to_block(ec, end_sector) + (__block_mod(end_sector, ec->u_bs) ? 1 : 0); } static inline bool __ebs_check_bs(unsigned int bs) { return bs && is_power_of_2(bs); } /* * READ/WRITE: * * copy blocks between bufio blocks and bio vector's (partial/overlapping) pages. */ static int __ebs_rw_bvec(struct ebs_c *ec, enum req_op op, struct bio_vec *bv, struct bvec_iter *iter) { int r = 0; unsigned char *ba, *pa; unsigned int cur_len; unsigned int bv_len = bv->bv_len; unsigned int buf_off = to_bytes(__block_mod(iter->bi_sector, ec->u_bs)); sector_t block = __sector_to_block(ec, iter->bi_sector); struct dm_buffer *b; if (unlikely(!bv->bv_page || !bv_len)) return -EIO; pa = bvec_virt(bv); /* Handle overlapping page <-> blocks */ while (bv_len) { cur_len = min(dm_bufio_get_block_size(ec->bufio) - buf_off, bv_len); /* Avoid reading for writes in case bio vector's page overwrites block completely. */ if (op == REQ_OP_READ || buf_off || bv_len < dm_bufio_get_block_size(ec->bufio)) ba = dm_bufio_read(ec->bufio, block, &b); else ba = dm_bufio_new(ec->bufio, block, &b); if (IS_ERR(ba)) { /* * Carry on with next buffer, if any, to issue all possible * data but return error. */ r = PTR_ERR(ba); } else { /* Copy data to/from bio to buffer if read/new was successful above. */ ba += buf_off; if (op == REQ_OP_READ) { memcpy(pa, ba, cur_len); flush_dcache_page(bv->bv_page); } else { flush_dcache_page(bv->bv_page); memcpy(ba, pa, cur_len); dm_bufio_mark_partial_buffer_dirty(b, buf_off, buf_off + cur_len); } dm_bufio_release(b); } pa += cur_len; bv_len -= cur_len; buf_off = 0; block++; } return r; } /* READ/WRITE: iterate bio vector's copying between (partial) pages and bufio blocks. */ static int __ebs_rw_bio(struct ebs_c *ec, enum req_op op, struct bio *bio) { int r = 0, rr; struct bio_vec bv; struct bvec_iter iter; bio_for_each_bvec(bv, bio, iter) { rr = __ebs_rw_bvec(ec, op, &bv, &iter); if (rr) r = rr; } return r; } /* * Discard bio's blocks, i.e. pass discards down. * * Avoid discarding partial blocks at beginning and end; * return 0 in case no blocks can be discarded as a result. */ static int __ebs_discard_bio(struct ebs_c *ec, struct bio *bio) { sector_t block, blocks, sector = bio->bi_iter.bi_sector; block = __sector_to_block(ec, sector); blocks = __nr_blocks(ec, bio); /* * Partial first underlying block (__nr_blocks() may have * resulted in one block). */ if (__block_mod(sector, ec->u_bs)) { block++; blocks--; } /* Partial last underlying block if any. */ if (blocks && __block_mod(bio_end_sector(bio), ec->u_bs)) blocks--; return blocks ? dm_bufio_issue_discard(ec->bufio, block, blocks) : 0; } /* Release blocks them from the bufio cache. */ static void __ebs_forget_bio(struct ebs_c *ec, struct bio *bio) { sector_t blocks, sector = bio->bi_iter.bi_sector; blocks = __nr_blocks(ec, bio); dm_bufio_forget_buffers(ec->bufio, __sector_to_block(ec, sector), blocks); } /* Worker function to process incoming bios. */ static void __ebs_process_bios(struct work_struct *ws) { int r; bool write = false; sector_t block1, block2; struct ebs_c *ec = container_of(ws, struct ebs_c, ws); struct bio *bio; struct bio_list bios; bio_list_init(&bios); spin_lock_irq(&ec->lock); bios = ec->bios_in; bio_list_init(&ec->bios_in); spin_unlock_irq(&ec->lock); /* Prefetch all read and any mis-aligned write buffers */ bio_list_for_each(bio, &bios) { block1 = __sector_to_block(ec, bio->bi_iter.bi_sector); if (bio_op(bio) == REQ_OP_READ) dm_bufio_prefetch(ec->bufio, block1, __nr_blocks(ec, bio)); else if (bio_op(bio) == REQ_OP_WRITE && !(bio->bi_opf & REQ_PREFLUSH)) { block2 = __sector_to_block(ec, bio_end_sector(bio)); if (__block_mod(bio->bi_iter.bi_sector, ec->u_bs)) dm_bufio_prefetch(ec->bufio, block1, 1); if (__block_mod(bio_end_sector(bio), ec->u_bs) && block2 != block1) dm_bufio_prefetch(ec->bufio, block2, 1); } } bio_list_for_each(bio, &bios) { r = -EIO; if (bio_op(bio) == REQ_OP_READ) r = __ebs_rw_bio(ec, REQ_OP_READ, bio); else if (bio_op(bio) == REQ_OP_WRITE) { write = true; r = __ebs_rw_bio(ec, REQ_OP_WRITE, bio); } else if (bio_op(bio) == REQ_OP_DISCARD) { __ebs_forget_bio(ec, bio); r = __ebs_discard_bio(ec, bio); } if (r < 0) bio->bi_status = errno_to_blk_status(r); } /* * We write dirty buffers after processing I/O on them * but before we endio thus addressing REQ_FUA/REQ_SYNC. */ r = write ? dm_bufio_write_dirty_buffers(ec->bufio) : 0; while ((bio = bio_list_pop(&bios))) { /* Any other request is endioed. */ if (unlikely(r && bio_op(bio) == REQ_OP_WRITE)) bio_io_error(bio); else bio_endio(bio); } } /* * Construct an emulated block size mapping: [] * * : path of the underlying device * : offset in 512 bytes sectors into * : emulated block size in units of 512 bytes exposed to the upper layer * []: underlying block size in units of 512 bytes imposed on the lower layer; * optional, if not supplied, retrieve logical block size from underlying device */ static int ebs_ctr(struct dm_target *ti, unsigned int argc, char **argv) { int r; unsigned short tmp1; unsigned long long tmp; char dummy; struct ebs_c *ec; if (argc < 3 || argc > 4) { ti->error = "Invalid argument count"; return -EINVAL; } ec = ti->private = kzalloc(sizeof(*ec), GFP_KERNEL); if (!ec) { ti->error = "Cannot allocate ebs context"; return -ENOMEM; } r = -EINVAL; if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1 || tmp != (sector_t)tmp || (sector_t)tmp >= ti->len) { ti->error = "Invalid device offset sector"; goto bad; } ec->start = tmp; if (sscanf(argv[2], "%hu%c", &tmp1, &dummy) != 1 || !__ebs_check_bs(tmp1) || to_bytes(tmp1) > PAGE_SIZE) { ti->error = "Invalid emulated block size"; goto bad; } ec->e_bs = tmp1; if (argc > 3) { if (sscanf(argv[3], "%hu%c", &tmp1, &dummy) != 1 || !__ebs_check_bs(tmp1)) { ti->error = "Invalid underlying block size"; goto bad; } ec->u_bs = tmp1; ec->u_bs_set = true; } else ec->u_bs_set = false; r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ec->dev); if (r) { ti->error = "Device lookup failed"; ec->dev = NULL; goto bad; } r = -EINVAL; if (!ec->u_bs_set) { ec->u_bs = to_sector(bdev_logical_block_size(ec->dev->bdev)); if (!__ebs_check_bs(ec->u_bs)) { ti->error = "Invalid retrieved underlying block size"; goto bad; } } if (!ec->u_bs_set && ec->e_bs == ec->u_bs) DMINFO("Emulation superfluous: emulated equal to underlying block size"); if (__block_mod(ec->start, ec->u_bs)) { ti->error = "Device offset must be multiple of underlying block size"; goto bad; } ec->bufio = dm_bufio_client_create(ec->dev->bdev, to_bytes(ec->u_bs), 1, 0, NULL, NULL, 0); if (IS_ERR(ec->bufio)) { ti->error = "Cannot create dm bufio client"; r = PTR_ERR(ec->bufio); ec->bufio = NULL; goto bad; } ec->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM); if (!ec->wq) { ti->error = "Cannot create dm-" DM_MSG_PREFIX " workqueue"; r = -ENOMEM; goto bad; } ec->block_shift = __ffs(ec->u_bs); INIT_WORK(&ec->ws, &__ebs_process_bios); bio_list_init(&ec->bios_in); spin_lock_init(&ec->lock); ti->num_flush_bios = 1; ti->num_discard_bios = 1; ti->num_secure_erase_bios = 0; ti->num_write_zeroes_bios = 0; return 0; bad: ebs_dtr(ti); return r; } static void ebs_dtr(struct dm_target *ti) { struct ebs_c *ec = ti->private; if (ec->wq) destroy_workqueue(ec->wq); if (ec->bufio) dm_bufio_client_destroy(ec->bufio); if (ec->dev) dm_put_device(ti, ec->dev); kfree(ec); } static int ebs_map(struct dm_target *ti, struct bio *bio) { struct ebs_c *ec = ti->private; bio_set_dev(bio, ec->dev->bdev); bio->bi_iter.bi_sector = ec->start + dm_target_offset(ti, bio->bi_iter.bi_sector); if (unlikely(bio_op(bio) == REQ_OP_FLUSH)) return DM_MAPIO_REMAPPED; /* * Only queue for bufio processing in case of partial or overlapping buffers * -or- * emulation with ebs == ubs aiming for tests of dm-bufio overhead. */ if (likely(__block_mod(bio->bi_iter.bi_sector, ec->u_bs) || __block_mod(bio_end_sector(bio), ec->u_bs) || ec->e_bs == ec->u_bs)) { spin_lock_irq(&ec->lock); bio_list_add(&ec->bios_in, bio); spin_unlock_irq(&ec->lock); queue_work(ec->wq, &ec->ws); return DM_MAPIO_SUBMITTED; } /* Forget any buffer content relative to this direct backing device I/O. */ __ebs_forget_bio(ec, bio); return DM_MAPIO_REMAPPED; } static void ebs_status(struct dm_target *ti, status_type_t type, unsigned int status_flags, char *result, unsigned int maxlen) { struct ebs_c *ec = ti->private; switch (type) { case STATUSTYPE_INFO: *result = '\0'; break; case STATUSTYPE_TABLE: snprintf(result, maxlen, ec->u_bs_set ? "%s %llu %u %u" : "%s %llu %u", ec->dev->name, (unsigned long long) ec->start, ec->e_bs, ec->u_bs); break; case STATUSTYPE_IMA: *result = '\0'; break; } } static int ebs_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) { struct ebs_c *ec = ti->private; struct dm_dev *dev = ec->dev; /* * Only pass ioctls through if the device sizes match exactly. */ *bdev = dev->bdev; return !!(ec->start || ti->len != bdev_nr_sectors(dev->bdev)); } static void ebs_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct ebs_c *ec = ti->private; limits->logical_block_size = to_bytes(ec->e_bs); limits->physical_block_size = to_bytes(ec->u_bs); limits->alignment_offset = limits->physical_block_size; limits->io_min = limits->logical_block_size; } static int ebs_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct ebs_c *ec = ti->private; return fn(ti, ec->dev, ec->start, ti->len, data); } static struct target_type ebs_target = { .name = "ebs", .version = {1, 0, 1}, .features = 0, .module = THIS_MODULE, .ctr = ebs_ctr, .dtr = ebs_dtr, .map = ebs_map, .status = ebs_status, .io_hints = ebs_io_hints, .prepare_ioctl = ebs_prepare_ioctl, .iterate_devices = ebs_iterate_devices, }; module_dm(ebs); MODULE_AUTHOR("Heinz Mauelshagen "); MODULE_DESCRIPTION(DM_NAME " emulated block size target"); MODULE_LICENSE("GPL");