/* * TI Touch Screen driver * * Copyright (C) 2011 Texas Instruments Incorporated - http://www.ti.com/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define ADCFSM_STEPID 0x10 #define SEQ_SETTLE 275 #define MAX_12BIT ((1 << 12) - 1) static const int config_pins[] = { STEPCONFIG_XPP, STEPCONFIG_XNN, STEPCONFIG_YPP, STEPCONFIG_YNN, }; struct titsc { struct input_dev *input; struct ti_tscadc_dev *mfd_tscadc; unsigned int irq; unsigned int wires; unsigned int x_plate_resistance; bool pen_down; int steps_to_configure; u32 config_inp[4]; u32 bit_xp, bit_xn, bit_yp, bit_yn; u32 inp_xp, inp_xn, inp_yp, inp_yn; }; static unsigned int titsc_readl(struct titsc *ts, unsigned int reg) { return readl(ts->mfd_tscadc->tscadc_base + reg); } static void titsc_writel(struct titsc *tsc, unsigned int reg, unsigned int val) { writel(val, tsc->mfd_tscadc->tscadc_base + reg); } static int titsc_config_wires(struct titsc *ts_dev) { u32 analog_line[4]; u32 wire_order[4]; int i, bit_cfg; for (i = 0; i < 4; i++) { /* * Get the order in which TSC wires are attached * w.r.t. each of the analog input lines on the EVM. */ analog_line[i] = (ts_dev->config_inp[i] & 0xF0) >> 4; wire_order[i] = ts_dev->config_inp[i] & 0x0F; if (WARN_ON(analog_line[i] > 7)) return -EINVAL; if (WARN_ON(wire_order[i] > ARRAY_SIZE(config_pins))) return -EINVAL; } for (i = 0; i < 4; i++) { int an_line; int wi_order; an_line = analog_line[i]; wi_order = wire_order[i]; bit_cfg = config_pins[wi_order]; if (bit_cfg == 0) return -EINVAL; switch (wi_order) { case 0: ts_dev->bit_xp = bit_cfg; ts_dev->inp_xp = an_line; break; case 1: ts_dev->bit_xn = bit_cfg; ts_dev->inp_xn = an_line; break; case 2: ts_dev->bit_yp = bit_cfg; ts_dev->inp_yp = an_line; break; case 3: ts_dev->bit_yn = bit_cfg; ts_dev->inp_yn = an_line; break; } } return 0; } static void titsc_step_config(struct titsc *ts_dev) { unsigned int config; unsigned int stepenable = 0; int i, total_steps; /* Configure the Step registers */ total_steps = 2 * ts_dev->steps_to_configure; config = STEPCONFIG_MODE_HWSYNC | STEPCONFIG_AVG_16 | ts_dev->bit_xp; switch (ts_dev->wires) { case 4: config |= STEPCONFIG_INP(ts_dev->inp_yp) | ts_dev->bit_xn; break; case 5: config |= ts_dev->bit_yn | STEPCONFIG_INP_AN4 | ts_dev->bit_xn | ts_dev->bit_yp; break; case 8: config |= STEPCONFIG_INP(ts_dev->inp_yp) | ts_dev->bit_xn; break; } for (i = 1; i <= ts_dev->steps_to_configure; i++) { titsc_writel(ts_dev, REG_STEPCONFIG(i), config); titsc_writel(ts_dev, REG_STEPDELAY(i), STEPCONFIG_OPENDLY); } config = 0; config = STEPCONFIG_MODE_HWSYNC | STEPCONFIG_AVG_16 | ts_dev->bit_yn | STEPCONFIG_INM_ADCREFM | STEPCONFIG_FIFO1; switch (ts_dev->wires) { case 4: config |= ts_dev->bit_yp | STEPCONFIG_INP(ts_dev->inp_xp); break; case 5: config |= ts_dev->bit_xp | STEPCONFIG_INP_AN4 | ts_dev->bit_xn | ts_dev->bit_yp; break; case 8: config |= ts_dev->bit_yp | STEPCONFIG_INP(ts_dev->inp_xp); break; } for (i = (ts_dev->steps_to_configure + 1); i <= total_steps; i++) { titsc_writel(ts_dev, REG_STEPCONFIG(i), config); titsc_writel(ts_dev, REG_STEPDELAY(i), STEPCONFIG_OPENDLY); } config = 0; /* Charge step configuration */ config = ts_dev->bit_xp | ts_dev->bit_yn | STEPCHARGE_RFP_XPUL | STEPCHARGE_RFM_XNUR | STEPCHARGE_INM_AN1 | STEPCHARGE_INP(ts_dev->inp_yp); titsc_writel(ts_dev, REG_CHARGECONFIG, config); titsc_writel(ts_dev, REG_CHARGEDELAY, CHARGEDLY_OPENDLY); config = 0; /* Configure to calculate pressure */ config = STEPCONFIG_MODE_HWSYNC | STEPCONFIG_AVG_16 | ts_dev->bit_yp | ts_dev->bit_xn | STEPCONFIG_INM_ADCREFM | STEPCONFIG_INP(ts_dev->inp_xp); titsc_writel(ts_dev, REG_STEPCONFIG(total_steps + 1), config); titsc_writel(ts_dev, REG_STEPDELAY(total_steps + 1), STEPCONFIG_OPENDLY); config |= STEPCONFIG_INP(ts_dev->inp_yn) | STEPCONFIG_FIFO1; titsc_writel(ts_dev, REG_STEPCONFIG(total_steps + 2), config); titsc_writel(ts_dev, REG_STEPDELAY(total_steps + 2), STEPCONFIG_OPENDLY); /* The steps1 … end and bit 0 for TS_Charge */ stepenable = (1 << (total_steps + 2)) - 1; am335x_tsc_se_set(ts_dev->mfd_tscadc, stepenable); } static void titsc_read_coordinates(struct titsc *ts_dev, unsigned int *x, unsigned int *y) { unsigned int fifocount = titsc_readl(ts_dev, REG_FIFO0CNT); unsigned int prev_val_x = ~0, prev_val_y = ~0; unsigned int prev_diff_x = ~0, prev_diff_y = ~0; unsigned int read, diff; unsigned int i, channel; /* * Delta filter is used to remove large variations in sampled * values from ADC. The filter tries to predict where the next * coordinate could be. This is done by taking a previous * coordinate and subtracting it form current one. Further the * algorithm compares the difference with that of a present value, * if true the value is reported to the sub system. */ for (i = 0; i < fifocount - 1; i++) { read = titsc_readl(ts_dev, REG_FIFO0); channel = read & 0xf0000; channel = channel >> 0x10; if ((channel >= 0) && (channel < ts_dev->steps_to_configure)) { read &= 0xfff; diff = abs(read - prev_val_x); if (diff < prev_diff_x) { prev_diff_x = diff; *x = read; } prev_val_x = read; } read = titsc_readl(ts_dev, REG_FIFO1); channel = read & 0xf0000; channel = channel >> 0x10; if ((channel >= ts_dev->steps_to_configure) && (channel < (2 * ts_dev->steps_to_configure - 1))) { read &= 0xfff; diff = abs(read - prev_val_y); if (diff < prev_diff_y) { prev_diff_y = diff; *y = read; } prev_val_y = read; } } } static irqreturn_t titsc_irq(int irq, void *dev) { struct titsc *ts_dev = dev; struct input_dev *input_dev = ts_dev->input; unsigned int status, irqclr = 0; unsigned int x = 0, y = 0; unsigned int z1, z2, z; unsigned int fsm; unsigned int fifo1count, fifo0count; int i; status = titsc_readl(ts_dev, REG_IRQSTATUS); if (status & IRQENB_FIFO0THRES) { titsc_read_coordinates(ts_dev, &x, &y); z1 = titsc_readl(ts_dev, REG_FIFO0) & 0xfff; z2 = titsc_readl(ts_dev, REG_FIFO1) & 0xfff; fifo1count = titsc_readl(ts_dev, REG_FIFO1CNT); for (i = 0; i < fifo1count; i++) titsc_readl(ts_dev, REG_FIFO1); fifo0count = titsc_readl(ts_dev, REG_FIFO0CNT); for (i = 0; i < fifo0count; i++) titsc_readl(ts_dev, REG_FIFO0); if (ts_dev->pen_down && z1 != 0 && z2 != 0) { /* * Calculate pressure using formula * Resistance(touch) = x plate resistance * * x postion/4096 * ((z2 / z1) - 1) */ z = z2 - z1; z *= x; z *= ts_dev->x_plate_resistance; z /= z1; z = (z + 2047) >> 12; if (z <= MAX_12BIT) { input_report_abs(input_dev, ABS_X, x); input_report_abs(input_dev, ABS_Y, y); input_report_abs(input_dev, ABS_PRESSURE, z); input_report_key(input_dev, BTN_TOUCH, 1); input_sync(input_dev); } } irqclr |= IRQENB_FIFO0THRES; } /* * Time for sequencer to settle, to read * correct state of the sequencer. */ udelay(SEQ_SETTLE); status = titsc_readl(ts_dev, REG_RAWIRQSTATUS); if (status & IRQENB_PENUP) { /* Pen up event */ fsm = titsc_readl(ts_dev, REG_ADCFSM); if (fsm == ADCFSM_STEPID) { ts_dev->pen_down = false; input_report_key(input_dev, BTN_TOUCH, 0); input_report_abs(input_dev, ABS_PRESSURE, 0); input_sync(input_dev); } else { ts_dev->pen_down = true; } irqclr |= IRQENB_PENUP; } titsc_writel(ts_dev, REG_IRQSTATUS, irqclr); am335x_tsc_se_update(ts_dev->mfd_tscadc); return IRQ_HANDLED; } /* * The functions for inserting/removing driver as a module. */ static int titsc_probe(struct platform_device *pdev) { struct titsc *ts_dev; struct input_dev *input_dev; struct ti_tscadc_dev *tscadc_dev = ti_tscadc_dev_get(pdev); struct mfd_tscadc_board *pdata; int err; pdata = tscadc_dev->dev->platform_data; if (!pdata) { dev_err(&pdev->dev, "Could not find platform data\n"); return -EINVAL; } /* Allocate memory for device */ ts_dev = kzalloc(sizeof(struct titsc), GFP_KERNEL); input_dev = input_allocate_device(); if (!ts_dev || !input_dev) { dev_err(&pdev->dev, "failed to allocate memory.\n"); err = -ENOMEM; goto err_free_mem; } tscadc_dev->tsc = ts_dev; ts_dev->mfd_tscadc = tscadc_dev; ts_dev->input = input_dev; ts_dev->irq = tscadc_dev->irq; ts_dev->wires = pdata->tsc_init->wires; ts_dev->x_plate_resistance = pdata->tsc_init->x_plate_resistance; ts_dev->steps_to_configure = pdata->tsc_init->steps_to_configure; memcpy(ts_dev->config_inp, pdata->tsc_init->wire_config, sizeof(pdata->tsc_init->wire_config)); err = request_irq(ts_dev->irq, titsc_irq, 0, pdev->dev.driver->name, ts_dev); if (err) { dev_err(&pdev->dev, "failed to allocate irq.\n"); goto err_free_mem; } titsc_writel(ts_dev, REG_IRQENABLE, IRQENB_FIFO0THRES); err = titsc_config_wires(ts_dev); if (err) { dev_err(&pdev->dev, "wrong i/p wire configuration\n"); goto err_free_irq; } titsc_step_config(ts_dev); titsc_writel(ts_dev, REG_FIFO0THR, ts_dev->steps_to_configure); input_dev->name = "ti-tsc"; input_dev->dev.parent = &pdev->dev; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS); input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH); input_set_abs_params(input_dev, ABS_X, 0, MAX_12BIT, 0, 0); input_set_abs_params(input_dev, ABS_Y, 0, MAX_12BIT, 0, 0); input_set_abs_params(input_dev, ABS_PRESSURE, 0, MAX_12BIT, 0, 0); /* register to the input system */ err = input_register_device(input_dev); if (err) goto err_free_irq; platform_set_drvdata(pdev, ts_dev); return 0; err_free_irq: free_irq(ts_dev->irq, ts_dev); err_free_mem: input_free_device(input_dev); kfree(ts_dev); return err; } static int titsc_remove(struct platform_device *pdev) { struct titsc *ts_dev = platform_get_drvdata(pdev); u32 steps; free_irq(ts_dev->irq, ts_dev); /* total steps followed by the enable mask */ steps = 2 * ts_dev->steps_to_configure + 2; steps = (1 << steps) - 1; am335x_tsc_se_clr(ts_dev->mfd_tscadc, steps); input_unregister_device(ts_dev->input); platform_set_drvdata(pdev, NULL); kfree(ts_dev); return 0; } #ifdef CONFIG_PM static int titsc_suspend(struct device *dev) { struct titsc *ts_dev = dev_get_drvdata(dev); struct ti_tscadc_dev *tscadc_dev; unsigned int idle; tscadc_dev = ti_tscadc_dev_get(to_platform_device(dev)); if (device_may_wakeup(tscadc_dev->dev)) { idle = titsc_readl(ts_dev, REG_IRQENABLE); titsc_writel(ts_dev, REG_IRQENABLE, (idle | IRQENB_HW_PEN)); titsc_writel(ts_dev, REG_IRQWAKEUP, IRQWKUP_ENB); } return 0; } static int titsc_resume(struct device *dev) { struct titsc *ts_dev = dev_get_drvdata(dev); struct ti_tscadc_dev *tscadc_dev; tscadc_dev = ti_tscadc_dev_get(to_platform_device(dev)); if (device_may_wakeup(tscadc_dev->dev)) { titsc_writel(ts_dev, REG_IRQWAKEUP, 0x00); titsc_writel(ts_dev, REG_IRQCLR, IRQENB_HW_PEN); } titsc_step_config(ts_dev); titsc_writel(ts_dev, REG_FIFO0THR, ts_dev->steps_to_configure); return 0; } static const struct dev_pm_ops titsc_pm_ops = { .suspend = titsc_suspend, .resume = titsc_resume, }; #define TITSC_PM_OPS (&titsc_pm_ops) #else #define TITSC_PM_OPS NULL #endif static struct platform_driver ti_tsc_driver = { .probe = titsc_probe, .remove = titsc_remove, .driver = { .name = "tsc", .owner = THIS_MODULE, .pm = TITSC_PM_OPS, }, }; module_platform_driver(ti_tsc_driver); MODULE_DESCRIPTION("TI touchscreen controller driver"); MODULE_AUTHOR("Rachna Patil "); MODULE_LICENSE("GPL");