// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010 Christoph Mair * Copyright (c) 2012 Bosch Sensortec GmbH * Copyright (c) 2012 Unixphere AB * Copyright (c) 2014 Intel Corporation * Copyright (c) 2016 Linus Walleij * * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. * * Datasheet: * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf * * Notice: * The link to the bmp180 datasheet points to an outdated version missing these changes: * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 */ #define pr_fmt(fmt) "bmp280: " fmt #include #include #include #include #include #include #include #include #include /* For irq_get_irq_data() */ #include #include #include #include #include #include #include #include #include #include #include #include "bmp280.h" /* * These enums are used for indexing into the array of calibration * coefficients for BMP180. */ enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; enum bmp380_odr { BMP380_ODR_200HZ, BMP380_ODR_100HZ, BMP380_ODR_50HZ, BMP380_ODR_25HZ, BMP380_ODR_12_5HZ, BMP380_ODR_6_25HZ, BMP380_ODR_3_125HZ, BMP380_ODR_1_5625HZ, BMP380_ODR_0_78HZ, BMP380_ODR_0_39HZ, BMP380_ODR_0_2HZ, BMP380_ODR_0_1HZ, BMP380_ODR_0_05HZ, BMP380_ODR_0_02HZ, BMP380_ODR_0_01HZ, BMP380_ODR_0_006HZ, BMP380_ODR_0_003HZ, BMP380_ODR_0_0015HZ, }; enum bmp580_odr { BMP580_ODR_240HZ, BMP580_ODR_218HZ, BMP580_ODR_199HZ, BMP580_ODR_179HZ, BMP580_ODR_160HZ, BMP580_ODR_149HZ, BMP580_ODR_140HZ, BMP580_ODR_129HZ, BMP580_ODR_120HZ, BMP580_ODR_110HZ, BMP580_ODR_100HZ, BMP580_ODR_89HZ, BMP580_ODR_80HZ, BMP580_ODR_70HZ, BMP580_ODR_60HZ, BMP580_ODR_50HZ, BMP580_ODR_45HZ, BMP580_ODR_40HZ, BMP580_ODR_35HZ, BMP580_ODR_30HZ, BMP580_ODR_25HZ, BMP580_ODR_20HZ, BMP580_ODR_15HZ, BMP580_ODR_10HZ, BMP580_ODR_5HZ, BMP580_ODR_4HZ, BMP580_ODR_3HZ, BMP580_ODR_2HZ, BMP580_ODR_1HZ, BMP580_ODR_0_5HZ, BMP580_ODR_0_25HZ, BMP580_ODR_0_125HZ, }; /* * These enums are used for indexing into the array of compensation * parameters for BMP280. */ enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; enum { /* Temperature calib indexes */ BMP380_T1 = 0, BMP380_T2 = 2, BMP380_T3 = 4, /* Pressure calib indexes */ BMP380_P1 = 5, BMP380_P2 = 7, BMP380_P3 = 9, BMP380_P4 = 10, BMP380_P5 = 11, BMP380_P6 = 13, BMP380_P7 = 15, BMP380_P8 = 16, BMP380_P9 = 17, BMP380_P10 = 19, BMP380_P11 = 20, }; enum bmp280_scan { BMP280_PRESS, BMP280_TEMP, BME280_HUMID, }; static const struct iio_chan_spec bmp280_channels[] = { { .type = IIO_PRESSURE, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, { .type = IIO_TEMP, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 1, .scan_type = { .sign = 's', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(2), }; static const struct iio_chan_spec bme280_channels[] = { { .type = IIO_PRESSURE, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, { .type = IIO_TEMP, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 1, .scan_type = { .sign = 's', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, { .type = IIO_HUMIDITYRELATIVE, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .scan_index = 2, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(3), }; static const struct iio_chan_spec bmp380_channels[] = { { .type = IIO_PRESSURE, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, { .type = IIO_TEMP, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .scan_index = 1, .scan_type = { .sign = 's', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(2), }; static const struct iio_chan_spec bmp580_channels[] = { { .type = IIO_PRESSURE, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .scan_index = 0, .scan_type = { .sign = 'u', .realbits = 24, .storagebits = 32, .endianness = IIO_LE, }, }, { .type = IIO_TEMP, /* PROCESSED maintained for ABI backwards compatibility */ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .scan_index = 1, .scan_type = { .sign = 's', .realbits = 24, .storagebits = 32, .endianness = IIO_LE, }, }, IIO_CHAN_SOFT_TIMESTAMP(2), }; static int bmp280_read_calib(struct bmp280_data *data) { struct bmp280_calib *calib = &data->calib.bmp280; int ret; /* Read temperature and pressure calibration values. */ ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); if (ret) { dev_err(data->dev, "failed to read calibration parameters\n"); return ret; } /* Toss calibration data into the entropy pool */ add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); /* Parse temperature calibration values. */ calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); /* Parse pressure calibration values. */ calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); return 0; } static int bme280_read_calib(struct bmp280_data *data) { struct bmp280_calib *calib = &data->calib.bmp280; struct device *dev = data->dev; unsigned int tmp; int ret; /* Load shared calibration params with bmp280 first */ ret = bmp280_read_calib(data); if (ret) return ret; /* * Read humidity calibration values. * Due to some odd register addressing we cannot just * do a big bulk read. Instead, we have to read each Hx * value separately and sometimes do some bit shifting... * Humidity data is only available on BME280. */ ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp); if (ret) { dev_err(dev, "failed to read H1 comp value\n"); return ret; } calib->H1 = tmp; ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2, &data->le16, sizeof(data->le16)); if (ret) { dev_err(dev, "failed to read H2 comp value\n"); return ret; } calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp); if (ret) { dev_err(dev, "failed to read H3 comp value\n"); return ret; } calib->H3 = tmp; ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4, &data->be16, sizeof(data->be16)); if (ret) { dev_err(dev, "failed to read H4 comp value\n"); return ret; } calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | (be16_to_cpu(data->be16) & 0xf), 11); ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5, &data->le16, sizeof(data->le16)); if (ret) { dev_err(dev, "failed to read H5 comp value\n"); return ret; } calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp); if (ret) { dev_err(dev, "failed to read H6 comp value\n"); return ret; } calib->H6 = sign_extend32(tmp, 7); return 0; } static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity) { u16 value_humidity; int ret; ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB, &data->be16, BME280_NUM_HUMIDITY_BYTES); if (ret) { dev_err(data->dev, "failed to read humidity\n"); return ret; } value_humidity = be16_to_cpu(data->be16); if (value_humidity == BMP280_HUMIDITY_SKIPPED) { dev_err(data->dev, "reading humidity skipped\n"); return -EIO; } *adc_humidity = value_humidity; return 0; } /* * Returns humidity in percent, resolution is 0.01 percent. Output value of * "47445" represents 47445/1024 = 46.333 %RH. * * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". */ static u32 bme280_compensate_humidity(struct bmp280_data *data, u16 adc_humidity, s32 t_fine) { struct bmp280_calib *calib = &data->calib.bmp280; s32 var; var = t_fine - (s32)76800; var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) + (s32)2097152) * calib->H2 + 8192) >> 14); var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; var = clamp_val(var, 0, 419430400); return var >> 12; } static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) { u32 value_temp; int ret; ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, data->buf, BMP280_NUM_TEMP_BYTES); if (ret) { dev_err(data->dev, "failed to read temperature\n"); return ret; } value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); if (value_temp == BMP280_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); return -EIO; } *adc_temp = value_temp; return 0; } /* * Returns temperature in DegC, resolution is 0.01 DegC. Output value of * "5123" equals 51.23 DegC. t_fine carries fine temperature as global * value. * * Taken from datasheet, Section 3.11.3, "Compensation formula". */ static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp) { struct bmp280_calib *calib = &data->calib.bmp280; s32 var1, var2; var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) * ((s32)calib->T2)) >> 11; var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) * ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) * ((s32)calib->T3))) >> 14; return var1 + var2; /* t_fine = var1 + var2 */ } static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine) { u32 adc_temp; int ret; ret = bmp280_read_temp_adc(data, &adc_temp); if (ret) return ret; *t_fine = bmp280_calc_t_fine(data, adc_temp); return 0; } static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp) { return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256; } static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press) { u32 value_press; int ret; ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, data->buf, BMP280_NUM_PRESS_BYTES); if (ret) { dev_err(data->dev, "failed to read pressure\n"); return ret; } value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); if (value_press == BMP280_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); return -EIO; } *adc_press = value_press; return 0; } /* * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 * integer bits and 8 fractional bits). Output value of "24674867" * represents 24674867/256 = 96386.2 Pa = 963.862 hPa * * Taken from datasheet, Section 3.11.3, "Compensation formula". */ static u32 bmp280_compensate_press(struct bmp280_data *data, u32 adc_press, s32 t_fine) { struct bmp280_calib *calib = &data->calib.bmp280; s64 var1, var2, p; var1 = ((s64)t_fine) - 128000; var2 = var1 * var1 * (s64)calib->P6; var2 += (var1 * (s64)calib->P5) << 17; var2 += ((s64)calib->P4) << 35; var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + ((var1 * (s64)calib->P2) << 12); var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; if (var1 == 0) return 0; p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125; p = div64_s64(p, var1); var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; var2 = ((s64)(calib->P8) * p) >> 19; p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); return (u32)p; } static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp) { u32 adc_temp; int ret; ret = bmp280_read_temp_adc(data, &adc_temp); if (ret) return ret; *comp_temp = bmp280_compensate_temp(data, adc_temp); return 0; } static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press) { u32 adc_press; s32 t_fine; int ret; ret = bmp280_get_t_fine(data, &t_fine); if (ret) return ret; ret = bmp280_read_press_adc(data, &adc_press); if (ret) return ret; *comp_press = bmp280_compensate_press(data, adc_press, t_fine); return 0; } static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity) { u16 adc_humidity; s32 t_fine; int ret; ret = bmp280_get_t_fine(data, &t_fine); if (ret) return ret; ret = bme280_read_humid_adc(data, &adc_humidity); if (ret) return ret; *comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); return 0; } static int bmp280_read_raw_impl(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmp280_data *data = iio_priv(indio_dev); int chan_value; int ret; guard(mutex)(&data->lock); switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_HUMIDITYRELATIVE: ret = data->chip_info->read_humid(data, &chan_value); if (ret) return ret; *val = data->chip_info->humid_coeffs[0] * chan_value; *val2 = data->chip_info->humid_coeffs[1]; return data->chip_info->humid_coeffs_type; case IIO_PRESSURE: ret = data->chip_info->read_press(data, &chan_value); if (ret) return ret; *val = data->chip_info->press_coeffs[0] * chan_value; *val2 = data->chip_info->press_coeffs[1]; return data->chip_info->press_coeffs_type; case IIO_TEMP: ret = data->chip_info->read_temp(data, &chan_value); if (ret) return ret; *val = data->chip_info->temp_coeffs[0] * chan_value; *val2 = data->chip_info->temp_coeffs[1]; return data->chip_info->temp_coeffs_type; default: return -EINVAL; } case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_HUMIDITYRELATIVE: ret = data->chip_info->read_humid(data, &chan_value); if (ret) return ret; *val = chan_value; return IIO_VAL_INT; case IIO_PRESSURE: ret = data->chip_info->read_press(data, &chan_value); if (ret) return ret; *val = chan_value; return IIO_VAL_INT; case IIO_TEMP: ret = data->chip_info->read_temp(data, &chan_value); if (ret) return ret; *val = chan_value; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_HUMIDITYRELATIVE: *val = data->chip_info->humid_coeffs[0]; *val2 = data->chip_info->humid_coeffs[1]; return data->chip_info->humid_coeffs_type; case IIO_PRESSURE: *val = data->chip_info->press_coeffs[0]; *val2 = data->chip_info->press_coeffs[1]; return data->chip_info->press_coeffs_type; case IIO_TEMP: *val = data->chip_info->temp_coeffs[0]; *val2 = data->chip_info->temp_coeffs[1]; return data->chip_info->temp_coeffs_type; default: return -EINVAL; } case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_HUMIDITYRELATIVE: *val = 1 << data->oversampling_humid; return IIO_VAL_INT; case IIO_PRESSURE: *val = 1 << data->oversampling_press; return IIO_VAL_INT; case IIO_TEMP: *val = 1 << data->oversampling_temp; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: if (!data->chip_info->sampling_freq_avail) return -EINVAL; *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: if (!data->chip_info->iir_filter_coeffs_avail) return -EINVAL; *val = (1 << data->iir_filter_coeff) - 1; return IIO_VAL_INT; default: return -EINVAL; } } static int bmp280_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bmp280_data *data = iio_priv(indio_dev); int ret; pm_runtime_get_sync(data->dev); ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return ret; } static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, int val) { const int *avail = data->chip_info->oversampling_humid_avail; const int n = data->chip_info->num_oversampling_humid_avail; int ret, prev; int i; for (i = 0; i < n; i++) { if (avail[i] == val) { prev = data->oversampling_humid; data->oversampling_humid = ilog2(val); ret = data->chip_info->chip_config(data); if (ret) { data->oversampling_humid = prev; data->chip_info->chip_config(data); return ret; } return 0; } } return -EINVAL; } static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, int val) { const int *avail = data->chip_info->oversampling_temp_avail; const int n = data->chip_info->num_oversampling_temp_avail; int ret, prev; int i; for (i = 0; i < n; i++) { if (avail[i] == val) { prev = data->oversampling_temp; data->oversampling_temp = ilog2(val); ret = data->chip_info->chip_config(data); if (ret) { data->oversampling_temp = prev; data->chip_info->chip_config(data); return ret; } return 0; } } return -EINVAL; } static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, int val) { const int *avail = data->chip_info->oversampling_press_avail; const int n = data->chip_info->num_oversampling_press_avail; int ret, prev; int i; for (i = 0; i < n; i++) { if (avail[i] == val) { prev = data->oversampling_press; data->oversampling_press = ilog2(val); ret = data->chip_info->chip_config(data); if (ret) { data->oversampling_press = prev; data->chip_info->chip_config(data); return ret; } return 0; } } return -EINVAL; } static int bmp280_write_sampling_frequency(struct bmp280_data *data, int val, int val2) { const int (*avail)[2] = data->chip_info->sampling_freq_avail; const int n = data->chip_info->num_sampling_freq_avail; int ret, prev; int i; for (i = 0; i < n; i++) { if (avail[i][0] == val && avail[i][1] == val2) { prev = data->sampling_freq; data->sampling_freq = i; ret = data->chip_info->chip_config(data); if (ret) { data->sampling_freq = prev; data->chip_info->chip_config(data); return ret; } return 0; } } return -EINVAL; } static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) { const int *avail = data->chip_info->iir_filter_coeffs_avail; const int n = data->chip_info->num_iir_filter_coeffs_avail; int ret, prev; int i; for (i = 0; i < n; i++) { if (avail[i] - 1 == val) { prev = data->iir_filter_coeff; data->iir_filter_coeff = i; ret = data->chip_info->chip_config(data); if (ret) { data->iir_filter_coeff = prev; data->chip_info->chip_config(data); return ret; } return 0; } } return -EINVAL; } static int bmp280_write_raw_impl(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmp280_data *data = iio_priv(indio_dev); guard(mutex)(&data->lock); /* * Helper functions to update sensor running configuration. * If an error happens applying new settings, will try restore * previous parameters to ensure the sensor is left in a known * working configuration. */ switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_HUMIDITYRELATIVE: return bme280_write_oversampling_ratio_humid(data, val); case IIO_PRESSURE: return bmp280_write_oversampling_ratio_press(data, val); case IIO_TEMP: return bmp280_write_oversampling_ratio_temp(data, val); default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: return bmp280_write_sampling_frequency(data, val, val2); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return bmp280_write_iir_filter_coeffs(data, val); default: return -EINVAL; } } static int bmp280_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmp280_data *data = iio_priv(indio_dev); int ret; pm_runtime_get_sync(data->dev); ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return ret; } static int bmp280_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct bmp280_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_PRESSURE: *vals = data->chip_info->oversampling_press_avail; *length = data->chip_info->num_oversampling_press_avail; break; case IIO_TEMP: *vals = data->chip_info->oversampling_temp_avail; *length = data->chip_info->num_oversampling_temp_avail; break; default: return -EINVAL; } *type = IIO_VAL_INT; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *vals = (const int *)data->chip_info->sampling_freq_avail; *type = IIO_VAL_INT_PLUS_MICRO; /* Values are stored in a 2D matrix */ *length = data->chip_info->num_sampling_freq_avail; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *vals = data->chip_info->iir_filter_coeffs_avail; *type = IIO_VAL_INT; *length = data->chip_info->num_iir_filter_coeffs_avail; return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_info bmp280_info = { .read_raw = &bmp280_read_raw, .read_avail = &bmp280_read_avail, .write_raw = &bmp280_write_raw, }; static const unsigned long bmp280_avail_scan_masks[] = { BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 0 }; static const unsigned long bme280_avail_scan_masks[] = { BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 0 }; static int bmp280_chip_config(struct bmp280_data *data) { u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); int ret; ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, BMP280_OSRS_TEMP_MASK | BMP280_OSRS_PRESS_MASK | BMP280_MODE_MASK, osrs | BMP280_MODE_NORMAL); if (ret) { dev_err(data->dev, "failed to write ctrl_meas register\n"); return ret; } ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, BMP280_FILTER_MASK, BMP280_FILTER_4X); if (ret) { dev_err(data->dev, "failed to write config register\n"); return ret; } return ret; } static irqreturn_t bmp280_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmp280_data *data = iio_priv(indio_dev); s32 adc_temp, adc_press, t_fine; int ret; guard(mutex)(&data->lock); /* Burst read data registers */ ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, data->buf, BMP280_BURST_READ_BYTES); if (ret) { dev_err(data->dev, "failed to burst read sensor data\n"); goto out; } /* Temperature calculations */ adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); if (adc_temp == BMP280_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); goto out; } data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp); /* Pressure calculations */ adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); if (adc_press == BMP280_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); goto out; } t_fine = bmp280_calc_t_fine(data, adc_temp); data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine); iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; static const int bmp280_temp_coeffs[] = { 10, 1 }; static const int bmp280_press_coeffs[] = { 1, 256000 }; const struct bmp280_chip_info bmp280_chip_info = { .id_reg = BMP280_REG_ID, .chip_id = bmp280_chip_ids, .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), .regmap_config = &bmp280_regmap_config, .start_up_time = 2000, .channels = bmp280_channels, .num_channels = ARRAY_SIZE(bmp280_channels), .avail_scan_masks = bmp280_avail_scan_masks, .oversampling_temp_avail = bmp280_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), /* * Oversampling config values on BMx280 have one additional setting * that other generations of the family don't: * The value 0 means the measurement is bypassed instead of * oversampling set to x1. * * To account for this difference, and preserve the same common * config logic, this is handled later on chip_config callback * incrementing one unit the oversampling setting. */ .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, .oversampling_press_avail = bmp280_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, .temp_coeffs = bmp280_temp_coeffs, .temp_coeffs_type = IIO_VAL_FRACTIONAL, .press_coeffs = bmp280_press_coeffs, .press_coeffs_type = IIO_VAL_FRACTIONAL, .chip_config = bmp280_chip_config, .read_temp = bmp280_read_temp, .read_press = bmp280_read_press, .read_calib = bmp280_read_calib, .trigger_handler = bmp280_trigger_handler, }; EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); static int bme280_chip_config(struct bmp280_data *data) { u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); int ret; /* * Oversampling of humidity must be set before oversampling of * temperature/pressure is set to become effective. */ ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY, BME280_OSRS_HUMIDITY_MASK, osrs); if (ret) { dev_err(data->dev, "failed to set humidity oversampling"); return ret; } return bmp280_chip_config(data); } static irqreturn_t bme280_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmp280_data *data = iio_priv(indio_dev); s32 adc_temp, adc_press, adc_humidity, t_fine; int ret; guard(mutex)(&data->lock); /* Burst read data registers */ ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, data->buf, BME280_BURST_READ_BYTES); if (ret) { dev_err(data->dev, "failed to burst read sensor data\n"); goto out; } /* Temperature calculations */ adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); if (adc_temp == BMP280_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); goto out; } data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp); /* Pressure calculations */ adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); if (adc_press == BMP280_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); goto out; } t_fine = bmp280_calc_t_fine(data, adc_temp); data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine); /* Humidity calculations */ adc_humidity = get_unaligned_be16(&data->buf[6]); if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { dev_err(data->dev, "reading humidity skipped\n"); goto out; } data->sensor_data[2] = bme280_compensate_humidity(data, adc_humidity, t_fine); iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; static const int bme280_humid_coeffs[] = { 1000, 1024 }; const struct bmp280_chip_info bme280_chip_info = { .id_reg = BMP280_REG_ID, .chip_id = bme280_chip_ids, .num_chip_id = ARRAY_SIZE(bme280_chip_ids), .regmap_config = &bme280_regmap_config, .start_up_time = 2000, .channels = bme280_channels, .num_channels = ARRAY_SIZE(bme280_channels), .avail_scan_masks = bme280_avail_scan_masks, .oversampling_temp_avail = bmp280_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, .oversampling_press_avail = bmp280_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, .oversampling_humid_avail = bmp280_oversampling_avail, .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, .temp_coeffs = bmp280_temp_coeffs, .temp_coeffs_type = IIO_VAL_FRACTIONAL, .press_coeffs = bmp280_press_coeffs, .press_coeffs_type = IIO_VAL_FRACTIONAL, .humid_coeffs = bme280_humid_coeffs, .humid_coeffs_type = IIO_VAL_FRACTIONAL, .chip_config = bme280_chip_config, .read_temp = bmp280_read_temp, .read_press = bmp280_read_press, .read_humid = bme280_read_humid, .read_calib = bme280_read_calib, .trigger_handler = bme280_trigger_handler, }; EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); /* * Helper function to send a command to BMP3XX sensors. * * Sensor processes commands written to the CMD register and signals * execution result through "cmd_rdy" and "cmd_error" flags available on * STATUS and ERROR registers. */ static int bmp380_cmd(struct bmp280_data *data, u8 cmd) { unsigned int reg; int ret; /* Check if device is ready to process a command */ ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); if (ret) { dev_err(data->dev, "failed to read error register\n"); return ret; } if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { dev_err(data->dev, "device is not ready to accept commands\n"); return -EBUSY; } /* Send command to process */ ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); if (ret) { dev_err(data->dev, "failed to send command to device\n"); return ret; } /* Wait for 2ms for command to be processed */ usleep_range(data->start_up_time, data->start_up_time + 100); /* Check for command processing error */ ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); if (ret) { dev_err(data->dev, "error reading ERROR reg\n"); return ret; } if (reg & BMP380_ERR_CMD_MASK) { dev_err(data->dev, "error processing command 0x%X\n", cmd); return -EINVAL; } return 0; } static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) { u32 value_temp; int ret; ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, data->buf, BMP280_NUM_TEMP_BYTES); if (ret) { dev_err(data->dev, "failed to read temperature\n"); return ret; } value_temp = get_unaligned_le24(data->buf); if (value_temp == BMP380_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); return -EIO; } *adc_temp = value_temp; return 0; } /* * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. * * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo * https://github.com/BoschSensortec/BMP3-Sensor-API. */ static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp) { s64 var1, var2, var3, var4, var5, var6; struct bmp380_calib *calib = &data->calib.bmp380; var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); var2 = var1 * ((s64) calib->T2); var3 = var1 * var1; var4 = var3 * ((s64) calib->T3); var5 = (var2 << 18) + var4; var6 = var5 >> 32; return (s32)var6; /* t_fine = var6 */ } static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine) { s32 adc_temp; int ret; ret = bmp380_read_temp_adc(data, &adc_temp); if (ret) return ret; *t_fine = bmp380_calc_t_fine(data, adc_temp); return 0; } static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) { s64 comp_temp; s32 var6; var6 = bmp380_calc_t_fine(data, adc_temp); comp_temp = (var6 * 25) >> 14; comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); return (s32) comp_temp; } static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press) { u32 value_press; int ret; ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, data->buf, BMP280_NUM_PRESS_BYTES); if (ret) { dev_err(data->dev, "failed to read pressure\n"); return ret; } value_press = get_unaligned_le24(data->buf); if (value_press == BMP380_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); return -EIO; } *adc_press = value_press; return 0; } /* * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. * * Taken from datasheet, Section 9.3. "Pressure compensation" and repository * https://github.com/BoschSensortec/BMP3-Sensor-API. */ static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press, s32 t_fine) { s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; struct bmp380_calib *calib = &data->calib.bmp380; u32 comp_press; var1 = (s64)t_fine * (s64)t_fine; var2 = var1 >> 6; var3 = (var2 * ((s64)t_fine)) >> 8; var4 = ((s64)calib->P8 * var3) >> 5; var5 = ((s64)calib->P7 * var1) << 4; var6 = ((s64)calib->P6 * (s64)t_fine) << 22; offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; var2 = ((s64)calib->P4 * var3) >> 5; var4 = ((s64)calib->P3 * var1) << 2; var5 = ((s64)calib->P2 - ((s64)1 << 14)) * ((s64)t_fine << 21); sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + var2 + var4 + var5; var1 = (sensitivity >> 24) * (s64)adc_press; var2 = (s64)calib->P10 * (s64)t_fine; var3 = var2 + ((s64)calib->P9 << 16); var4 = (var3 * (s64)adc_press) >> 13; /* * Dividing by 10 followed by multiplying by 10 to avoid * possible overflow caused by (uncomp_data->pressure * partial_data4). */ var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; var5 *= 10; var6 = (s64)adc_press * (s64)adc_press; var2 = ((s64)calib->P11 * var6) >> 16; var3 = (var2 * (s64)adc_press) >> 7; var4 = (offset >> 2) + var1 + var5 + var3; comp_press = ((u64)var4 * 25) >> 40; comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); return comp_press; } static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp) { u32 adc_temp; int ret; ret = bmp380_read_temp_adc(data, &adc_temp); if (ret) return ret; *comp_temp = bmp380_compensate_temp(data, adc_temp); return 0; } static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press) { u32 adc_press, t_fine; int ret; ret = bmp380_get_t_fine(data, &t_fine); if (ret) return ret; ret = bmp380_read_press_adc(data, &adc_press); if (ret) return ret; *comp_press = bmp380_compensate_press(data, adc_press, t_fine); return 0; } static int bmp380_read_calib(struct bmp280_data *data) { struct bmp380_calib *calib = &data->calib.bmp380; int ret; /* Read temperature and pressure calibration data */ ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); if (ret) { dev_err(data->dev, "failed to read calibration parameters\n"); return ret; } /* Toss the temperature calibration data into the entropy pool */ add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); /* Parse calibration values */ calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); calib->T3 = data->bmp380_cal_buf[BMP380_T3]; calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); calib->P3 = data->bmp380_cal_buf[BMP380_P3]; calib->P4 = data->bmp380_cal_buf[BMP380_P4]; calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); calib->P7 = data->bmp380_cal_buf[BMP380_P7]; calib->P8 = data->bmp380_cal_buf[BMP380_P8]; calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); calib->P10 = data->bmp380_cal_buf[BMP380_P10]; calib->P11 = data->bmp380_cal_buf[BMP380_P11]; return 0; } static const int bmp380_odr_table[][2] = { [BMP380_ODR_200HZ] = {200, 0}, [BMP380_ODR_100HZ] = {100, 0}, [BMP380_ODR_50HZ] = {50, 0}, [BMP380_ODR_25HZ] = {25, 0}, [BMP380_ODR_12_5HZ] = {12, 500000}, [BMP380_ODR_6_25HZ] = {6, 250000}, [BMP380_ODR_3_125HZ] = {3, 125000}, [BMP380_ODR_1_5625HZ] = {1, 562500}, [BMP380_ODR_0_78HZ] = {0, 781250}, [BMP380_ODR_0_39HZ] = {0, 390625}, [BMP380_ODR_0_2HZ] = {0, 195313}, [BMP380_ODR_0_1HZ] = {0, 97656}, [BMP380_ODR_0_05HZ] = {0, 48828}, [BMP380_ODR_0_02HZ] = {0, 24414}, [BMP380_ODR_0_01HZ] = {0, 12207}, [BMP380_ODR_0_006HZ] = {0, 6104}, [BMP380_ODR_0_003HZ] = {0, 3052}, [BMP380_ODR_0_0015HZ] = {0, 1526}, }; static int bmp380_preinit(struct bmp280_data *data) { /* BMP3xx requires soft-reset as part of initialization */ return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); } static int bmp380_chip_config(struct bmp280_data *data) { bool change = false, aux; unsigned int tmp; u8 osrs; int ret; /* Configure power control register */ ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, BMP380_CTRL_SENSORS_MASK, BMP380_CTRL_SENSORS_PRESS_EN | BMP380_CTRL_SENSORS_TEMP_EN); if (ret) { dev_err(data->dev, "failed to write operation control register\n"); return ret; } /* Configure oversampling */ osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, BMP380_OSRS_TEMP_MASK | BMP380_OSRS_PRESS_MASK, osrs, &aux); if (ret) { dev_err(data->dev, "failed to write oversampling register\n"); return ret; } change = change || aux; /* Configure output data rate */ ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, BMP380_ODRS_MASK, data->sampling_freq, &aux); if (ret) { dev_err(data->dev, "failed to write ODR selection register\n"); return ret; } change = change || aux; /* Set filter data */ ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), &aux); if (ret) { dev_err(data->dev, "failed to write config register\n"); return ret; } change = change || aux; if (change) { /* * The configurations errors are detected on the fly during a * measurement cycle. If the sampling frequency is too low, it's * faster to reset the measurement loop than wait until the next * measurement is due. * * Resets sensor measurement loop toggling between sleep and * normal operating modes. */ ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, BMP380_MODE_MASK, FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); if (ret) { dev_err(data->dev, "failed to set sleep mode\n"); return ret; } usleep_range(2000, 2500); ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, BMP380_MODE_MASK, FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); if (ret) { dev_err(data->dev, "failed to set normal mode\n"); return ret; } /* * Waits for measurement before checking configuration error * flag. Selected longest measurement time, calculated from * formula in datasheet section 3.9.2 with an offset of ~+15% * as it seen as well in table 3.9.1. */ msleep(150); /* Check config error flag */ ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); if (ret) { dev_err(data->dev, "failed to read error register\n"); return ret; } if (tmp & BMP380_ERR_CONF_MASK) { dev_warn(data->dev, "sensor flagged configuration as incompatible\n"); return -EINVAL; } } return 0; } static irqreturn_t bmp380_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmp280_data *data = iio_priv(indio_dev); s32 adc_temp, adc_press, t_fine; int ret; guard(mutex)(&data->lock); /* Burst read data registers */ ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, data->buf, BMP280_BURST_READ_BYTES); if (ret) { dev_err(data->dev, "failed to burst read sensor data\n"); goto out; } /* Temperature calculations */ adc_temp = get_unaligned_le24(&data->buf[3]); if (adc_temp == BMP380_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); goto out; } data->sensor_data[1] = bmp380_compensate_temp(data, adc_temp); /* Pressure calculations */ adc_press = get_unaligned_le24(&data->buf[0]); if (adc_press == BMP380_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); goto out; } t_fine = bmp380_calc_t_fine(data, adc_temp); data->sensor_data[0] = bmp380_compensate_press(data, adc_press, t_fine); iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; static const int bmp380_temp_coeffs[] = { 10, 1 }; static const int bmp380_press_coeffs[] = { 1, 100000 }; const struct bmp280_chip_info bmp380_chip_info = { .id_reg = BMP380_REG_ID, .chip_id = bmp380_chip_ids, .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), .regmap_config = &bmp380_regmap_config, .spi_read_extra_byte = true, .start_up_time = 2000, .channels = bmp380_channels, .num_channels = ARRAY_SIZE(bmp380_channels), .avail_scan_masks = bmp280_avail_scan_masks, .oversampling_temp_avail = bmp380_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), .oversampling_temp_default = ilog2(1), .oversampling_press_avail = bmp380_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), .oversampling_press_default = ilog2(4), .sampling_freq_avail = bmp380_odr_table, .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, .sampling_freq_default = BMP380_ODR_50HZ, .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), .iir_filter_coeff_default = 2, .temp_coeffs = bmp380_temp_coeffs, .temp_coeffs_type = IIO_VAL_FRACTIONAL, .press_coeffs = bmp380_press_coeffs, .press_coeffs_type = IIO_VAL_FRACTIONAL, .chip_config = bmp380_chip_config, .read_temp = bmp380_read_temp, .read_press = bmp380_read_press, .read_calib = bmp380_read_calib, .preinit = bmp380_preinit, .trigger_handler = bmp380_trigger_handler, }; EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); static int bmp580_soft_reset(struct bmp280_data *data) { unsigned int reg; int ret; ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); if (ret) { dev_err(data->dev, "failed to send reset command to device\n"); return ret; } usleep_range(2000, 2500); /* Dummy read of chip_id */ ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); if (ret) { dev_err(data->dev, "failed to reestablish comms after reset\n"); return ret; } ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); if (ret) { dev_err(data->dev, "error reading interrupt status register\n"); return ret; } if (!(reg & BMP580_INT_STATUS_POR_MASK)) { dev_err(data->dev, "error resetting sensor\n"); return -EINVAL; } return 0; } /** * bmp580_nvm_operation() - Helper function to commit NVM memory operations * @data: sensor data struct * @is_write: flag to signal write operation */ static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) { unsigned long timeout, poll; unsigned int reg; int ret; /* Check NVM ready flag */ ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); if (ret) { dev_err(data->dev, "failed to check nvm status\n"); return ret; } if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { dev_err(data->dev, "sensor's nvm is not ready\n"); return -EIO; } /* Start NVM operation sequence */ ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0); if (ret) { dev_err(data->dev, "failed to send nvm operation's first sequence\n"); return ret; } if (is_write) { /* Send NVM write sequence */ ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_WRITE_SEQ_1); if (ret) { dev_err(data->dev, "failed to send nvm write sequence\n"); return ret; } /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ poll = 2000; timeout = 12000; } else { /* Send NVM read sequence */ ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_READ_SEQ_1); if (ret) { dev_err(data->dev, "failed to send nvm read sequence\n"); return ret; } /* Datasheet says on 4.8.1.1 it takes approximately 200us */ poll = 50; timeout = 400; } /* Wait until NVM is ready again */ ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, (reg & BMP580_STATUS_NVM_RDY_MASK), poll, timeout); if (ret) { dev_err(data->dev, "error checking nvm operation status\n"); return ret; } /* Check NVM error flags */ if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { dev_err(data->dev, "error processing nvm operation\n"); return -EIO; } return 0; } /* * Contrary to previous sensors families, compensation algorithm is builtin. * We are only required to read the register raw data and adapt the ranges * for what is expected on IIO ABI. */ static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp) { s32 value_temp; int ret; ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf, BMP280_NUM_TEMP_BYTES); if (ret) { dev_err(data->dev, "failed to read temperature\n"); return ret; } value_temp = get_unaligned_le24(data->buf); if (value_temp == BMP580_TEMP_SKIPPED) { dev_err(data->dev, "reading temperature skipped\n"); return -EIO; } *raw_temp = sign_extend32(value_temp, 23); return 0; } static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press) { u32 value_press; int ret; ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf, BMP280_NUM_PRESS_BYTES); if (ret) { dev_err(data->dev, "failed to read pressure\n"); return ret; } value_press = get_unaligned_le24(data->buf); if (value_press == BMP580_PRESS_SKIPPED) { dev_err(data->dev, "reading pressure skipped\n"); return -EIO; } *raw_press = value_press; return 0; } static const int bmp580_odr_table[][2] = { [BMP580_ODR_240HZ] = {240, 0}, [BMP580_ODR_218HZ] = {218, 0}, [BMP580_ODR_199HZ] = {199, 0}, [BMP580_ODR_179HZ] = {179, 0}, [BMP580_ODR_160HZ] = {160, 0}, [BMP580_ODR_149HZ] = {149, 0}, [BMP580_ODR_140HZ] = {140, 0}, [BMP580_ODR_129HZ] = {129, 0}, [BMP580_ODR_120HZ] = {120, 0}, [BMP580_ODR_110HZ] = {110, 0}, [BMP580_ODR_100HZ] = {100, 0}, [BMP580_ODR_89HZ] = {89, 0}, [BMP580_ODR_80HZ] = {80, 0}, [BMP580_ODR_70HZ] = {70, 0}, [BMP580_ODR_60HZ] = {60, 0}, [BMP580_ODR_50HZ] = {50, 0}, [BMP580_ODR_45HZ] = {45, 0}, [BMP580_ODR_40HZ] = {40, 0}, [BMP580_ODR_35HZ] = {35, 0}, [BMP580_ODR_30HZ] = {30, 0}, [BMP580_ODR_25HZ] = {25, 0}, [BMP580_ODR_20HZ] = {20, 0}, [BMP580_ODR_15HZ] = {15, 0}, [BMP580_ODR_10HZ] = {10, 0}, [BMP580_ODR_5HZ] = {5, 0}, [BMP580_ODR_4HZ] = {4, 0}, [BMP580_ODR_3HZ] = {3, 0}, [BMP580_ODR_2HZ] = {2, 0}, [BMP580_ODR_1HZ] = {1, 0}, [BMP580_ODR_0_5HZ] = {0, 500000}, [BMP580_ODR_0_25HZ] = {0, 250000}, [BMP580_ODR_0_125HZ] = {0, 125000}, }; static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val, size_t bytes) { struct bmp280_data *data = priv; u16 *dst = val; int ret, addr; guard(mutex)(&data->lock); /* Set sensor in standby mode */ ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, BMP580_ODR_DEEPSLEEP_DIS | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); if (ret) { dev_err(data->dev, "failed to change sensor to standby mode\n"); goto exit; } /* Wait standby transition time */ usleep_range(2500, 3000); while (bytes >= sizeof(*dst)) { addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); if (ret) { dev_err(data->dev, "error writing nvm address\n"); goto exit; } ret = bmp580_nvm_operation(data, false); if (ret) goto exit; ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16, sizeof(data->le16)); if (ret) { dev_err(data->dev, "error reading nvm data regs\n"); goto exit; } *dst++ = le16_to_cpu(data->le16); bytes -= sizeof(*dst); offset += sizeof(*dst); } exit: /* Restore chip config */ data->chip_info->chip_config(data); return ret; } static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, size_t bytes) { struct bmp280_data *data = priv; int ret; pm_runtime_get_sync(data->dev); ret = bmp580_nvmem_read_impl(priv, offset, val, bytes); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return ret; } static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val, size_t bytes) { struct bmp280_data *data = priv; u16 *buf = val; int ret, addr; guard(mutex)(&data->lock); /* Set sensor in standby mode */ ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, BMP580_ODR_DEEPSLEEP_DIS | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); if (ret) { dev_err(data->dev, "failed to change sensor to standby mode\n"); goto exit; } /* Wait standby transition time */ usleep_range(2500, 3000); while (bytes >= sizeof(*buf)) { addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN | FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); if (ret) { dev_err(data->dev, "error writing nvm address\n"); goto exit; } data->le16 = cpu_to_le16(*buf++); ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16, sizeof(data->le16)); if (ret) { dev_err(data->dev, "error writing LSB NVM data regs\n"); goto exit; } ret = bmp580_nvm_operation(data, true); if (ret) goto exit; /* Disable programming mode bit */ ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN); if (ret) { dev_err(data->dev, "error resetting nvm write\n"); goto exit; } bytes -= sizeof(*buf); offset += sizeof(*buf); } exit: /* Restore chip config */ data->chip_info->chip_config(data); return ret; } static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, size_t bytes) { struct bmp280_data *data = priv; int ret; pm_runtime_get_sync(data->dev); ret = bmp580_nvmem_write_impl(priv, offset, val, bytes); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return ret; } static int bmp580_preinit(struct bmp280_data *data) { struct nvmem_config config = { .dev = data->dev, .priv = data, .name = "bmp580_nvmem", .word_size = sizeof(u16), .stride = sizeof(u16), .size = 3 * sizeof(u16), .reg_read = bmp580_nvmem_read, .reg_write = bmp580_nvmem_write, }; unsigned int reg; int ret; /* Issue soft-reset command */ ret = bmp580_soft_reset(data); if (ret) return ret; /* Post powerup sequence */ ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); if (ret) { dev_err(data->dev, "failed to establish comms with the chip\n"); return ret; } /* Print warn message if we don't know the chip id */ if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) dev_warn(data->dev, "unexpected chip_id\n"); ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); if (ret) { dev_err(data->dev, "failed to read nvm status\n"); return ret; } /* Check nvm status */ if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { dev_err(data->dev, "nvm error on powerup sequence\n"); return -EIO; } /* Register nvmem device */ return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); } static int bmp580_chip_config(struct bmp280_data *data) { bool change = false, aux; unsigned int tmp; u8 reg_val; int ret; /* Sets sensor in standby mode */ ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, BMP580_ODR_DEEPSLEEP_DIS | FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); if (ret) { dev_err(data->dev, "failed to change sensor to standby mode\n"); return ret; } /* From datasheet's table 4: electrical characteristics */ usleep_range(2500, 3000); /* Set default DSP mode settings */ reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, BMP580_DSP_COMP_MASK | BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); if (ret) { dev_err(data->dev, "failed to change DSP mode settings\n"); return ret; } /* Configure oversampling */ reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | BMP580_OSR_PRESS_EN; ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK | BMP580_OSR_PRESS_EN, reg_val, &aux); if (ret) { dev_err(data->dev, "failed to write oversampling register\n"); return ret; } change = change || aux; /* Configure output data rate */ ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), &aux); if (ret) { dev_err(data->dev, "failed to write ODR configuration register\n"); return ret; } change = change || aux; /* Set filter data */ reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR, BMP580_DSP_IIR_PRESS_MASK | BMP580_DSP_IIR_TEMP_MASK, reg_val, &aux); if (ret) { dev_err(data->dev, "failed to write config register\n"); return ret; } change = change || aux; /* Restore sensor to normal operation mode */ ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_MODE_MASK, FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); if (ret) { dev_err(data->dev, "failed to set normal mode\n"); return ret; } /* From datasheet's table 4: electrical characteristics */ usleep_range(3000, 3500); if (change) { /* * Check if ODR and OSR settings are valid or we are * operating in a degraded mode. */ ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); if (ret) { dev_err(data->dev, "error reading effective OSR register\n"); return ret; } if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); /* Set current OSR settings from data on effective OSR */ data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); return -EINVAL; } } return 0; } static irqreturn_t bmp580_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmp280_data *data = iio_priv(indio_dev); int ret; guard(mutex)(&data->lock); /* Burst read data registers */ ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf, BMP280_BURST_READ_BYTES); if (ret) { dev_err(data->dev, "failed to burst read sensor data\n"); goto out; } /* Temperature calculations */ memcpy(&data->sensor_data[1], &data->buf[0], 3); /* Pressure calculations */ memcpy(&data->sensor_data[0], &data->buf[3], 3); iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; /* Instead of { 1000, 16 } we do this, to avoid overflow issues */ static const int bmp580_temp_coeffs[] = { 125, 13 }; static const int bmp580_press_coeffs[] = { 1, 64000}; const struct bmp280_chip_info bmp580_chip_info = { .id_reg = BMP580_REG_CHIP_ID, .chip_id = bmp580_chip_ids, .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), .regmap_config = &bmp580_regmap_config, .start_up_time = 2000, .channels = bmp580_channels, .num_channels = ARRAY_SIZE(bmp580_channels), .avail_scan_masks = bmp280_avail_scan_masks, .oversampling_temp_avail = bmp580_oversampling_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), .oversampling_temp_default = ilog2(1), .oversampling_press_avail = bmp580_oversampling_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), .oversampling_press_default = ilog2(4), .sampling_freq_avail = bmp580_odr_table, .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, .sampling_freq_default = BMP580_ODR_50HZ, .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), .iir_filter_coeff_default = 2, .temp_coeffs = bmp580_temp_coeffs, .temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2, .press_coeffs = bmp580_press_coeffs, .press_coeffs_type = IIO_VAL_FRACTIONAL, .chip_config = bmp580_chip_config, .read_temp = bmp580_read_temp, .read_press = bmp580_read_press, .preinit = bmp580_preinit, .trigger_handler = bmp580_trigger_handler, }; EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas) { static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; unsigned int delay_us; unsigned int ctrl; int ret; if (data->use_eoc) reinit_completion(&data->done); ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); if (ret) { dev_err(data->dev, "failed to write crtl_meas register\n"); return ret; } if (data->use_eoc) { /* * If we have a completion interrupt, use it, wait up to * 100ms. The longest conversion time listed is 76.5 ms for * advanced resolution mode. */ ret = wait_for_completion_timeout(&data->done, 1 + msecs_to_jiffies(100)); if (!ret) dev_err(data->dev, "timeout waiting for completion\n"); } else { if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) delay_us = 4500; else delay_us = conversion_time_max[data->oversampling_press]; usleep_range(delay_us, delay_us + 1000); } ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); if (ret) { dev_err(data->dev, "failed to read ctrl_meas register\n"); return ret; } /* The value of this bit reset to "0" after conversion is complete */ if (ctrl & BMP180_MEAS_SCO) { dev_err(data->dev, "conversion didn't complete\n"); return -EIO; } return 0; } static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) { int ret; ret = bmp180_wait_for_eoc(data, FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | BMP180_MEAS_SCO); if (ret) return ret; ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, &data->be16, sizeof(data->be16)); if (ret) { dev_err(data->dev, "failed to read temperature\n"); return ret; } *adc_temp = be16_to_cpu(data->be16); return 0; } static int bmp180_read_calib(struct bmp280_data *data) { struct bmp180_calib *calib = &data->calib.bmp180; int ret; int i; ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); if (ret) { dev_err(data->dev, "failed to read calibration parameters\n"); return ret; } /* None of the words has the value 0 or 0xFFFF */ for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) return -EIO; } /* Toss the calibration data into the entropy pool */ add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); return 0; } /* * Returns temperature in DegC, resolution is 0.1 DegC. * t_fine carries fine temperature as global value. * * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". */ static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp) { struct bmp180_calib *calib = &data->calib.bmp180; s32 x1, x2; x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15; x2 = (calib->MC << 11) / (x1 + calib->MD); return x1 + x2; /* t_fine = x1 + x2; */ } static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine) { s32 adc_temp; int ret; ret = bmp180_read_temp_adc(data, &adc_temp); if (ret) return ret; *t_fine = bmp180_calc_t_fine(data, adc_temp); return 0; } static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp) { return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16; } static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp) { u32 adc_temp; int ret; ret = bmp180_read_temp_adc(data, &adc_temp); if (ret) return ret; *comp_temp = bmp180_compensate_temp(data, adc_temp); return 0; } static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press) { u8 oss = data->oversampling_press; int ret; ret = bmp180_wait_for_eoc(data, FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | BMP180_MEAS_SCO); if (ret) return ret; ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, data->buf, BMP280_NUM_PRESS_BYTES); if (ret) { dev_err(data->dev, "failed to read pressure\n"); return ret; } *adc_press = get_unaligned_be24(data->buf) >> (8 - oss); return 0; } /* * Returns pressure in Pa, resolution is 1 Pa. * * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". */ static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press, s32 t_fine) { struct bmp180_calib *calib = &data->calib.bmp180; s32 oss = data->oversampling_press; s32 x1, x2, x3, p; s32 b3, b6; u32 b4, b7; b6 = t_fine - 4000; x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; x2 = calib->AC2 * b6 >> 11; x3 = x1 + x2; b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; x1 = calib->AC3 * b6 >> 13; x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; x3 = (x1 + x2 + 2) >> 2; b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; b7 = (adc_press - b3) * (50000 >> oss); if (b7 < 0x80000000) p = (b7 * 2) / b4; else p = (b7 / b4) * 2; x1 = (p >> 8) * (p >> 8); x1 = (x1 * 3038) >> 16; x2 = (-7357 * p) >> 16; return p + ((x1 + x2 + 3791) >> 4); } static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press) { u32 adc_press; s32 t_fine; int ret; ret = bmp180_get_t_fine(data, &t_fine); if (ret) return ret; ret = bmp180_read_press_adc(data, &adc_press); if (ret) return ret; *comp_press = bmp180_compensate_press(data, adc_press, t_fine); return 0; } static int bmp180_chip_config(struct bmp280_data *data) { return 0; } static irqreturn_t bmp180_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmp280_data *data = iio_priv(indio_dev); int ret, chan_value; guard(mutex)(&data->lock); ret = bmp180_read_temp(data, &chan_value); if (ret) goto out; data->sensor_data[1] = chan_value; ret = bmp180_read_press(data, &chan_value); if (ret) goto out; data->sensor_data[0] = chan_value; iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const int bmp180_oversampling_temp_avail[] = { 1 }; static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; static const int bmp180_temp_coeffs[] = { 100, 1 }; static const int bmp180_press_coeffs[] = { 1, 1000 }; const struct bmp280_chip_info bmp180_chip_info = { .id_reg = BMP280_REG_ID, .chip_id = bmp180_chip_ids, .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), .regmap_config = &bmp180_regmap_config, .start_up_time = 2000, .channels = bmp280_channels, .num_channels = ARRAY_SIZE(bmp280_channels), .avail_scan_masks = bmp280_avail_scan_masks, .oversampling_temp_avail = bmp180_oversampling_temp_avail, .num_oversampling_temp_avail = ARRAY_SIZE(bmp180_oversampling_temp_avail), .oversampling_temp_default = 0, .oversampling_press_avail = bmp180_oversampling_press_avail, .num_oversampling_press_avail = ARRAY_SIZE(bmp180_oversampling_press_avail), .oversampling_press_default = BMP180_MEAS_PRESS_8X, .temp_coeffs = bmp180_temp_coeffs, .temp_coeffs_type = IIO_VAL_FRACTIONAL, .press_coeffs = bmp180_press_coeffs, .press_coeffs_type = IIO_VAL_FRACTIONAL, .chip_config = bmp180_chip_config, .read_temp = bmp180_read_temp, .read_press = bmp180_read_press, .read_calib = bmp180_read_calib, .trigger_handler = bmp180_trigger_handler, }; EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); static irqreturn_t bmp085_eoc_irq(int irq, void *d) { struct bmp280_data *data = d; complete(&data->done); return IRQ_HANDLED; } static int bmp085_fetch_eoc_irq(struct device *dev, const char *name, int irq, struct bmp280_data *data) { unsigned long irq_trig; int ret; irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); if (irq_trig != IRQF_TRIGGER_RISING) { dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); irq_trig = IRQF_TRIGGER_RISING; } init_completion(&data->done); ret = devm_request_threaded_irq(dev, irq, bmp085_eoc_irq, NULL, irq_trig, name, data); if (ret) { /* Bail out without IRQ but keep the driver in place */ dev_err(dev, "unable to request DRDY IRQ\n"); return 0; } data->use_eoc = true; return 0; } static int bmp280_buffer_preenable(struct iio_dev *indio_dev) { struct bmp280_data *data = iio_priv(indio_dev); pm_runtime_get_sync(data->dev); return 0; } static int bmp280_buffer_postdisable(struct iio_dev *indio_dev) { struct bmp280_data *data = iio_priv(indio_dev); pm_runtime_mark_last_busy(data->dev); pm_runtime_put_autosuspend(data->dev); return 0; } static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = { .preenable = bmp280_buffer_preenable, .postdisable = bmp280_buffer_postdisable, }; static void bmp280_pm_disable(void *data) { struct device *dev = data; pm_runtime_get_sync(dev); pm_runtime_put_noidle(dev); pm_runtime_disable(dev); } static void bmp280_regulators_disable(void *data) { struct regulator_bulk_data *supplies = data; regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); } int bmp280_common_probe(struct device *dev, struct regmap *regmap, const struct bmp280_chip_info *chip_info, const char *name, int irq) { struct iio_dev *indio_dev; struct bmp280_data *data; struct gpio_desc *gpiod; unsigned int chip_id; unsigned int i; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); mutex_init(&data->lock); data->dev = dev; indio_dev->name = name; indio_dev->info = &bmp280_info; indio_dev->modes = INDIO_DIRECT_MODE; data->chip_info = chip_info; /* Apply initial values from chip info structure */ indio_dev->channels = chip_info->channels; indio_dev->num_channels = chip_info->num_channels; indio_dev->available_scan_masks = chip_info->avail_scan_masks; data->oversampling_press = chip_info->oversampling_press_default; data->oversampling_humid = chip_info->oversampling_humid_default; data->oversampling_temp = chip_info->oversampling_temp_default; data->iir_filter_coeff = chip_info->iir_filter_coeff_default; data->sampling_freq = chip_info->sampling_freq_default; data->start_up_time = chip_info->start_up_time; /* Bring up regulators */ regulator_bulk_set_supply_names(data->supplies, bmp280_supply_names, BMP280_NUM_SUPPLIES); ret = devm_regulator_bulk_get(dev, BMP280_NUM_SUPPLIES, data->supplies); if (ret) { dev_err(dev, "failed to get regulators\n"); return ret; } ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); if (ret) { dev_err(dev, "failed to enable regulators\n"); return ret; } ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, data->supplies); if (ret) return ret; /* Wait to make sure we started up properly */ usleep_range(data->start_up_time, data->start_up_time + 100); /* Bring chip out of reset if there is an assigned GPIO line */ gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); /* Deassert the signal */ if (gpiod) { dev_info(dev, "release reset\n"); gpiod_set_value(gpiod, 0); } data->regmap = regmap; ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); if (ret) { dev_err(data->dev, "failed to read chip id\n"); return ret; } for (i = 0; i < data->chip_info->num_chip_id; i++) { if (chip_id == data->chip_info->chip_id[i]) { dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); break; } } if (i == data->chip_info->num_chip_id) dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); if (data->chip_info->preinit) { ret = data->chip_info->preinit(data); if (ret) return dev_err_probe(data->dev, ret, "error running preinit tasks\n"); } ret = data->chip_info->chip_config(data); if (ret) return ret; dev_set_drvdata(dev, indio_dev); /* * Some chips have calibration parameters "programmed into the devices' * non-volatile memory during production". Let's read them out at probe * time once. They will not change. */ if (data->chip_info->read_calib) { ret = data->chip_info->read_calib(data); if (ret) return dev_err_probe(data->dev, ret, "failed to read calibration coefficients\n"); } ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, iio_pollfunc_store_time, data->chip_info->trigger_handler, &bmp280_buffer_setup_ops); if (ret) return dev_err_probe(data->dev, ret, "iio triggered buffer setup failed\n"); /* * Attempt to grab an optional EOC IRQ - only the BMP085 has this * however as it happens, the BMP085 shares the chip ID of BMP180 * so we look for an IRQ if we have that. */ if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { ret = bmp085_fetch_eoc_irq(dev, name, irq, data); if (ret) return ret; } /* Enable runtime PM */ pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); /* * Set autosuspend to two orders of magnitude larger than the * start-up time. */ pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); if (ret) return ret; return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); static int bmp280_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmp280_data *data = iio_priv(indio_dev); return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); } static int bmp280_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct bmp280_data *data = iio_priv(indio_dev); int ret; ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); if (ret) return ret; usleep_range(data->start_up_time, data->start_up_time + 100); return data->chip_info->chip_config(data); } EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, bmp280_runtime_resume, NULL); MODULE_AUTHOR("Vlad Dogaru "); MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); MODULE_LICENSE("GPL v2");