// SPDX-License-Identifier: GPL-2.0-only /* * vcnl4000.c - Support for Vishay VCNL4000/4010/4020/4040/4200 combined ambient * light and proximity sensor * * Copyright 2012 Peter Meerwald * Copyright 2019 Pursim SPC * Copyright 2020 Mathieu Othacehe * * IIO driver for: * VCNL4000/10/20 (7-bit I2C slave address 0x13) * VCNL4040 (7-bit I2C slave address 0x60) * VCNL4200 (7-bit I2C slave address 0x51) * * TODO: * allow to adjust IR current * interrupts (VCNL4040, VCNL4200) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VCNL4000_DRV_NAME "vcnl4000" #define VCNL4000_PROD_ID 0x01 #define VCNL4010_PROD_ID 0x02 /* for VCNL4020, VCNL4010 */ #define VCNL4040_PROD_ID 0x86 #define VCNL4200_PROD_ID 0x58 #define VCNL4000_COMMAND 0x80 /* Command register */ #define VCNL4000_PROD_REV 0x81 /* Product ID and Revision ID */ #define VCNL4010_PROX_RATE 0x82 /* Proximity rate */ #define VCNL4000_LED_CURRENT 0x83 /* IR LED current for proximity mode */ #define VCNL4000_AL_PARAM 0x84 /* Ambient light parameter register */ #define VCNL4010_ALS_PARAM 0x84 /* ALS rate */ #define VCNL4000_AL_RESULT_HI 0x85 /* Ambient light result register, MSB */ #define VCNL4000_AL_RESULT_LO 0x86 /* Ambient light result register, LSB */ #define VCNL4000_PS_RESULT_HI 0x87 /* Proximity result register, MSB */ #define VCNL4000_PS_RESULT_LO 0x88 /* Proximity result register, LSB */ #define VCNL4000_PS_MEAS_FREQ 0x89 /* Proximity test signal frequency */ #define VCNL4010_INT_CTRL 0x89 /* Interrupt control */ #define VCNL4000_PS_MOD_ADJ 0x8a /* Proximity modulator timing adjustment */ #define VCNL4010_LOW_THR_HI 0x8a /* Low threshold, MSB */ #define VCNL4010_LOW_THR_LO 0x8b /* Low threshold, LSB */ #define VCNL4010_HIGH_THR_HI 0x8c /* High threshold, MSB */ #define VCNL4010_HIGH_THR_LO 0x8d /* High threshold, LSB */ #define VCNL4010_ISR 0x8e /* Interrupt status */ #define VCNL4200_AL_CONF 0x00 /* Ambient light configuration */ #define VCNL4200_PS_CONF1 0x03 /* Proximity configuration */ #define VCNL4200_PS_CONF3 0x04 /* Proximity configuration */ #define VCNL4040_PS_THDL_LM 0x06 /* Proximity threshold low */ #define VCNL4040_PS_THDH_LM 0x07 /* Proximity threshold high */ #define VCNL4040_ALS_THDL_LM 0x02 /* Ambient light threshold low */ #define VCNL4040_ALS_THDH_LM 0x01 /* Ambient light threshold high */ #define VCNL4200_PS_DATA 0x08 /* Proximity data */ #define VCNL4200_AL_DATA 0x09 /* Ambient light data */ #define VCNL4040_INT_FLAGS 0x0b /* Interrupt register */ #define VCNL4200_INT_FLAGS 0x0d /* Interrupt register */ #define VCNL4200_DEV_ID 0x0e /* Device ID, slave address and version */ #define VCNL4040_DEV_ID 0x0c /* Device ID and version */ /* Bit masks for COMMAND register */ #define VCNL4000_AL_RDY BIT(6) /* ALS data ready? */ #define VCNL4000_PS_RDY BIT(5) /* proximity data ready? */ #define VCNL4000_AL_OD BIT(4) /* start on-demand ALS measurement */ #define VCNL4000_PS_OD BIT(3) /* start on-demand proximity measurement */ #define VCNL4000_ALS_EN BIT(2) /* start ALS measurement */ #define VCNL4000_PROX_EN BIT(1) /* start proximity measurement */ #define VCNL4000_SELF_TIMED_EN BIT(0) /* start self-timed measurement */ #define VCNL4040_ALS_CONF_ALS_SHUTDOWN BIT(0) #define VCNL4040_ALS_CONF_IT GENMASK(7, 6) /* Ambient integration time */ #define VCNL4040_ALS_CONF_INT_EN BIT(1) /* Ambient light Interrupt enable */ #define VCNL4040_ALS_CONF_PERS GENMASK(3, 2) /* Ambient interrupt persistence setting */ #define VCNL4040_PS_CONF1_PS_SHUTDOWN BIT(0) #define VCNL4040_PS_CONF2_PS_IT GENMASK(3, 1) /* Proximity integration time */ #define VCNL4040_CONF1_PS_PERS GENMASK(5, 4) /* Proximity interrupt persistence setting */ #define VCNL4040_PS_CONF2_PS_HD BIT(11) /* Proximity high definition */ #define VCNL4040_PS_CONF2_PS_INT GENMASK(9, 8) /* Proximity interrupt mode */ #define VCNL4040_PS_CONF3_MPS GENMASK(6, 5) /* Proximity multi pulse number */ #define VCNL4040_PS_MS_LED_I GENMASK(10, 8) /* Proximity current */ #define VCNL4040_PS_IF_AWAY BIT(8) /* Proximity event cross low threshold */ #define VCNL4040_PS_IF_CLOSE BIT(9) /* Proximity event cross high threshold */ #define VCNL4040_ALS_RISING BIT(12) /* Ambient Light cross high threshold */ #define VCNL4040_ALS_FALLING BIT(13) /* Ambient Light cross low threshold */ /* Bit masks for interrupt registers. */ #define VCNL4010_INT_THR_SEL BIT(0) /* Select threshold interrupt source */ #define VCNL4010_INT_THR_EN BIT(1) /* Threshold interrupt type */ #define VCNL4010_INT_ALS_EN BIT(2) /* Enable on ALS data ready */ #define VCNL4010_INT_PROX_EN BIT(3) /* Enable on proximity data ready */ #define VCNL4010_INT_THR_HIGH 0 /* High threshold exceeded */ #define VCNL4010_INT_THR_LOW 1 /* Low threshold exceeded */ #define VCNL4010_INT_ALS 2 /* ALS data ready */ #define VCNL4010_INT_PROXIMITY 3 /* Proximity data ready */ #define VCNL4010_INT_THR \ (BIT(VCNL4010_INT_THR_LOW) | BIT(VCNL4010_INT_THR_HIGH)) #define VCNL4010_INT_DRDY \ (BIT(VCNL4010_INT_PROXIMITY) | BIT(VCNL4010_INT_ALS)) #define VCNL4040_CONF3_PS_MPS_16BITS 3 /* 8 multi pulses */ #define VCNL4040_CONF3_PS_LED_I_16BITS 3 /* 120 mA */ #define VCNL4040_CONF3_PS_SAMPLE_16BITS \ (FIELD_PREP(VCNL4040_PS_CONF3_MPS, VCNL4040_CONF3_PS_MPS_16BITS) | \ FIELD_PREP(VCNL4040_PS_MS_LED_I, VCNL4040_CONF3_PS_LED_I_16BITS)) static const int vcnl4010_prox_sampling_frequency[][2] = { {1, 950000}, {3, 906250}, {7, 812500}, {16, 625000}, {31, 250000}, {62, 500000}, {125, 0}, {250, 0}, }; static const int vcnl4040_ps_it_times[][2] = { {0, 100}, {0, 150}, {0, 200}, {0, 250}, {0, 300}, {0, 350}, {0, 400}, {0, 800}, }; static const int vcnl4200_ps_it_times[][2] = { {0, 96}, {0, 144}, {0, 192}, {0, 384}, {0, 768}, {0, 864}, }; static const int vcnl4040_als_it_times[][2] = { {0, 80000}, {0, 160000}, {0, 320000}, {0, 640000}, }; static const int vcnl4200_als_it_times[][2] = { {0, 50000}, {0, 100000}, {0, 200000}, {0, 400000}, }; static const int vcnl4040_ps_calibbias_ua[][2] = { {0, 50000}, {0, 75000}, {0, 100000}, {0, 120000}, {0, 140000}, {0, 160000}, {0, 180000}, {0, 200000}, }; static const int vcnl4040_als_persistence[] = {1, 2, 4, 8}; static const int vcnl4040_ps_persistence[] = {1, 2, 3, 4}; static const int vcnl4040_ps_oversampling_ratio[] = {1, 2, 4, 8}; #define VCNL4000_SLEEP_DELAY_MS 2000 /* before we enter pm_runtime_suspend */ enum vcnl4000_device_ids { VCNL4000, VCNL4010, VCNL4040, VCNL4200, }; struct vcnl4200_channel { u8 reg; ktime_t last_measurement; ktime_t sampling_rate; struct mutex lock; }; struct vcnl4000_data { struct i2c_client *client; enum vcnl4000_device_ids id; int rev; int al_scale; int ps_scale; u8 ps_int; /* proximity interrupt mode */ u8 als_int; /* ambient light interrupt mode*/ const struct vcnl4000_chip_spec *chip_spec; struct mutex vcnl4000_lock; struct vcnl4200_channel vcnl4200_al; struct vcnl4200_channel vcnl4200_ps; uint32_t near_level; }; struct vcnl4000_chip_spec { const char *prod; struct iio_chan_spec const *channels; const int num_channels; const struct iio_info *info; const struct iio_buffer_setup_ops *buffer_setup_ops; int (*init)(struct vcnl4000_data *data); int (*measure_light)(struct vcnl4000_data *data, int *val); int (*measure_proximity)(struct vcnl4000_data *data, int *val); int (*set_power_state)(struct vcnl4000_data *data, bool on); irqreturn_t (*irq_thread)(int irq, void *priv); irqreturn_t (*trig_buffer_func)(int irq, void *priv); u8 int_reg; const int(*ps_it_times)[][2]; const int num_ps_it_times; const int(*als_it_times)[][2]; const int num_als_it_times; const unsigned int ulux_step; }; static const struct i2c_device_id vcnl4000_id[] = { { "vcnl4000", VCNL4000 }, { "vcnl4010", VCNL4010 }, { "vcnl4020", VCNL4010 }, { "vcnl4040", VCNL4040 }, { "vcnl4200", VCNL4200 }, { } }; MODULE_DEVICE_TABLE(i2c, vcnl4000_id); static int vcnl4000_set_power_state(struct vcnl4000_data *data, bool on) { /* no suspend op */ return 0; } static int vcnl4000_init(struct vcnl4000_data *data) { int ret, prod_id; ret = i2c_smbus_read_byte_data(data->client, VCNL4000_PROD_REV); if (ret < 0) return ret; prod_id = ret >> 4; switch (prod_id) { case VCNL4000_PROD_ID: if (data->id != VCNL4000) dev_warn(&data->client->dev, "wrong device id, use vcnl4000"); break; case VCNL4010_PROD_ID: if (data->id != VCNL4010) dev_warn(&data->client->dev, "wrong device id, use vcnl4010/4020"); break; default: return -ENODEV; } data->rev = ret & 0xf; data->al_scale = 250000; return data->chip_spec->set_power_state(data, true); }; static ssize_t vcnl4000_write_als_enable(struct vcnl4000_data *data, bool en) { int ret; mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) goto out; if (en) ret &= ~VCNL4040_ALS_CONF_ALS_SHUTDOWN; else ret |= VCNL4040_ALS_CONF_ALS_SHUTDOWN; ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF, ret); out: mutex_unlock(&data->vcnl4000_lock); return ret; } static ssize_t vcnl4000_write_ps_enable(struct vcnl4000_data *data, bool en) { int ret; mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) goto out; if (en) ret &= ~VCNL4040_PS_CONF1_PS_SHUTDOWN; else ret |= VCNL4040_PS_CONF1_PS_SHUTDOWN; ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, ret); out: mutex_unlock(&data->vcnl4000_lock); return ret; } static int vcnl4200_set_power_state(struct vcnl4000_data *data, bool on) { int ret; /* Do not power down if interrupts are enabled */ if (!on && (data->ps_int || data->als_int)) return 0; ret = vcnl4000_write_als_enable(data, on); if (ret < 0) return ret; ret = vcnl4000_write_ps_enable(data, on); if (ret < 0) return ret; if (on) { /* Wait at least one integration cycle before fetching data */ data->vcnl4200_al.last_measurement = ktime_get(); data->vcnl4200_ps.last_measurement = ktime_get(); } return 0; } static int vcnl4200_init(struct vcnl4000_data *data) { int ret, id; u16 regval; ret = i2c_smbus_read_word_data(data->client, VCNL4200_DEV_ID); if (ret < 0) return ret; id = ret & 0xff; if (id != VCNL4200_PROD_ID) { ret = i2c_smbus_read_word_data(data->client, VCNL4040_DEV_ID); if (ret < 0) return ret; id = ret & 0xff; if (id != VCNL4040_PROD_ID) return -ENODEV; } dev_dbg(&data->client->dev, "device id 0x%x", id); data->rev = (ret >> 8) & 0xf; data->ps_int = 0; data->als_int = 0; data->vcnl4200_al.reg = VCNL4200_AL_DATA; data->vcnl4200_ps.reg = VCNL4200_PS_DATA; switch (id) { case VCNL4200_PROD_ID: /* Default wait time is 50ms, add 20% tolerance. */ data->vcnl4200_al.sampling_rate = ktime_set(0, 60000 * 1000); /* Default wait time is 4.8ms, add 20% tolerance. */ data->vcnl4200_ps.sampling_rate = ktime_set(0, 5760 * 1000); break; case VCNL4040_PROD_ID: /* Default wait time is 80ms, add 20% tolerance. */ data->vcnl4200_al.sampling_rate = ktime_set(0, 96000 * 1000); /* Default wait time is 5ms, add 20% tolerance. */ data->vcnl4200_ps.sampling_rate = ktime_set(0, 6000 * 1000); break; } data->al_scale = data->chip_spec->ulux_step; data->ps_scale = 16; mutex_init(&data->vcnl4200_al.lock); mutex_init(&data->vcnl4200_ps.lock); /* Use 16 bits proximity sensor readings */ ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) return ret; regval = ret | VCNL4040_PS_CONF2_PS_HD; ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, regval); if (ret < 0) return ret; /* Align proximity sensor sample rate to 16 bits data width */ ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3); if (ret < 0) return ret; regval = ret | VCNL4040_CONF3_PS_SAMPLE_16BITS; ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3, regval); if (ret < 0) return ret; ret = data->chip_spec->set_power_state(data, true); if (ret < 0) return ret; return 0; }; static int vcnl4000_read_data(struct vcnl4000_data *data, u8 data_reg, int *val) { s32 ret; ret = i2c_smbus_read_word_swapped(data->client, data_reg); if (ret < 0) return ret; *val = ret; return 0; } static int vcnl4000_write_data(struct vcnl4000_data *data, u8 data_reg, int val) { if (val > U16_MAX) return -ERANGE; return i2c_smbus_write_word_swapped(data->client, data_reg, val); } static int vcnl4000_measure(struct vcnl4000_data *data, u8 req_mask, u8 rdy_mask, u8 data_reg, int *val) { int tries = 20; int ret; mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, req_mask); if (ret < 0) goto fail; /* wait for data to become ready */ while (tries--) { ret = i2c_smbus_read_byte_data(data->client, VCNL4000_COMMAND); if (ret < 0) goto fail; if (ret & rdy_mask) break; msleep(20); /* measurement takes up to 100 ms */ } if (tries < 0) { dev_err(&data->client->dev, "vcnl4000_measure() failed, data not ready\n"); ret = -EIO; goto fail; } ret = vcnl4000_read_data(data, data_reg, val); if (ret < 0) goto fail; mutex_unlock(&data->vcnl4000_lock); return 0; fail: mutex_unlock(&data->vcnl4000_lock); return ret; } static int vcnl4200_measure(struct vcnl4000_data *data, struct vcnl4200_channel *chan, int *val) { int ret; s64 delta; ktime_t next_measurement; mutex_lock(&chan->lock); next_measurement = ktime_add(chan->last_measurement, chan->sampling_rate); delta = ktime_us_delta(next_measurement, ktime_get()); if (delta > 0) usleep_range(delta, delta + 500); chan->last_measurement = ktime_get(); mutex_unlock(&chan->lock); ret = i2c_smbus_read_word_data(data->client, chan->reg); if (ret < 0) return ret; *val = ret; return 0; } static int vcnl4000_measure_light(struct vcnl4000_data *data, int *val) { return vcnl4000_measure(data, VCNL4000_AL_OD, VCNL4000_AL_RDY, VCNL4000_AL_RESULT_HI, val); } static int vcnl4200_measure_light(struct vcnl4000_data *data, int *val) { return vcnl4200_measure(data, &data->vcnl4200_al, val); } static int vcnl4000_measure_proximity(struct vcnl4000_data *data, int *val) { return vcnl4000_measure(data, VCNL4000_PS_OD, VCNL4000_PS_RDY, VCNL4000_PS_RESULT_HI, val); } static int vcnl4200_measure_proximity(struct vcnl4000_data *data, int *val) { return vcnl4200_measure(data, &data->vcnl4200_ps, val); } static int vcnl4010_read_proxy_samp_freq(struct vcnl4000_data *data, int *val, int *val2) { int ret; ret = i2c_smbus_read_byte_data(data->client, VCNL4010_PROX_RATE); if (ret < 0) return ret; if (ret >= ARRAY_SIZE(vcnl4010_prox_sampling_frequency)) return -EINVAL; *val = vcnl4010_prox_sampling_frequency[ret][0]; *val2 = vcnl4010_prox_sampling_frequency[ret][1]; return 0; } static bool vcnl4010_is_in_periodic_mode(struct vcnl4000_data *data) { int ret; ret = i2c_smbus_read_byte_data(data->client, VCNL4000_COMMAND); if (ret < 0) return false; return !!(ret & VCNL4000_SELF_TIMED_EN); } static int vcnl4000_set_pm_runtime_state(struct vcnl4000_data *data, bool on) { struct device *dev = &data->client->dev; int ret; if (on) { ret = pm_runtime_resume_and_get(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } return ret; } static int vcnl4040_read_als_it(struct vcnl4000_data *data, int *val, int *val2) { int ret; ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) return ret; ret = FIELD_GET(VCNL4040_ALS_CONF_IT, ret); if (ret >= data->chip_spec->num_als_it_times) return -EINVAL; *val = (*data->chip_spec->als_it_times)[ret][0]; *val2 = (*data->chip_spec->als_it_times)[ret][1]; return 0; } static ssize_t vcnl4040_write_als_it(struct vcnl4000_data *data, int val) { unsigned int i; int ret; u16 regval; for (i = 0; i < data->chip_spec->num_als_it_times; i++) { if (val == (*data->chip_spec->als_it_times)[i][1]) break; } if (i == data->chip_spec->num_als_it_times) return -EINVAL; data->vcnl4200_al.sampling_rate = ktime_set(0, val * 1200); data->al_scale = div_u64(mul_u32_u32(data->chip_spec->ulux_step, (*data->chip_spec->als_it_times)[0][1]), val); mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) goto out_unlock; regval = FIELD_PREP(VCNL4040_ALS_CONF_IT, i); regval |= (ret & ~VCNL4040_ALS_CONF_IT); ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF, regval); out_unlock: mutex_unlock(&data->vcnl4000_lock); return ret; } static int vcnl4040_read_ps_it(struct vcnl4000_data *data, int *val, int *val2) { int ret; ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) return ret; ret = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret); if (ret >= data->chip_spec->num_ps_it_times) return -EINVAL; *val = (*data->chip_spec->ps_it_times)[ret][0]; *val2 = (*data->chip_spec->ps_it_times)[ret][1]; return 0; } static ssize_t vcnl4040_write_ps_it(struct vcnl4000_data *data, int val) { unsigned int i; int ret, index = -1; u16 regval; for (i = 0; i < data->chip_spec->num_ps_it_times; i++) { if (val == (*data->chip_spec->ps_it_times)[i][1]) { index = i; break; } } if (index < 0) return -EINVAL; data->vcnl4200_ps.sampling_rate = ktime_set(0, val * 60 * NSEC_PER_USEC); mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) goto out; regval = (ret & ~VCNL4040_PS_CONF2_PS_IT) | FIELD_PREP(VCNL4040_PS_CONF2_PS_IT, index); ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, regval); out: mutex_unlock(&data->vcnl4000_lock); return ret; } static ssize_t vcnl4040_read_als_period(struct vcnl4000_data *data, int *val, int *val2) { int ret, ret_pers, it; int64_t val_c; ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) return ret; ret_pers = FIELD_GET(VCNL4040_ALS_CONF_PERS, ret); if (ret_pers >= ARRAY_SIZE(vcnl4040_als_persistence)) return -EINVAL; it = FIELD_GET(VCNL4040_ALS_CONF_IT, ret); if (it >= data->chip_spec->num_als_it_times) return -EINVAL; val_c = mul_u32_u32((*data->chip_spec->als_it_times)[it][1], vcnl4040_als_persistence[ret_pers]); *val = div_u64_rem(val_c, MICRO, val2); return IIO_VAL_INT_PLUS_MICRO; } static ssize_t vcnl4040_write_als_period(struct vcnl4000_data *data, int val, int val2) { unsigned int i; int ret, it; u16 regval; u64 val_n = mul_u32_u32(val, MICRO) + val2; ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) return ret; it = FIELD_GET(VCNL4040_ALS_CONF_IT, ret); if (it >= data->chip_spec->num_als_it_times) return -EINVAL; for (i = 0; i < ARRAY_SIZE(vcnl4040_als_persistence) - 1; i++) { if (val_n < mul_u32_u32(vcnl4040_als_persistence[i], (*data->chip_spec->als_it_times)[it][1])) break; } mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) goto out_unlock; regval = FIELD_PREP(VCNL4040_ALS_CONF_PERS, i); regval |= (ret & ~VCNL4040_ALS_CONF_PERS); ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF, regval); out_unlock: mutex_unlock(&data->vcnl4000_lock); return ret; } static ssize_t vcnl4040_read_ps_period(struct vcnl4000_data *data, int *val, int *val2) { int ret, ret_pers, it; ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) return ret; ret_pers = FIELD_GET(VCNL4040_CONF1_PS_PERS, ret); if (ret_pers >= ARRAY_SIZE(vcnl4040_ps_persistence)) return -EINVAL; it = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret); if (it >= data->chip_spec->num_ps_it_times) return -EINVAL; *val = (*data->chip_spec->ps_it_times)[it][0]; *val2 = (*data->chip_spec->ps_it_times)[it][1] * vcnl4040_ps_persistence[ret_pers]; return IIO_VAL_INT_PLUS_MICRO; } static ssize_t vcnl4040_write_ps_period(struct vcnl4000_data *data, int val, int val2) { int ret, it, i; u16 regval; ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) return ret; it = FIELD_GET(VCNL4040_PS_CONF2_PS_IT, ret); if (it >= data->chip_spec->num_ps_it_times) return -EINVAL; if (val > 0) i = ARRAY_SIZE(vcnl4040_ps_persistence) - 1; else { for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_persistence) - 1; i++) { if (val2 <= vcnl4040_ps_persistence[i] * (*data->chip_spec->ps_it_times)[it][1]) break; } } mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) goto out_unlock; regval = FIELD_PREP(VCNL4040_CONF1_PS_PERS, i); regval |= (ret & ~VCNL4040_CONF1_PS_PERS); ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, regval); out_unlock: mutex_unlock(&data->vcnl4000_lock); return ret; } static ssize_t vcnl4040_read_ps_oversampling_ratio(struct vcnl4000_data *data, int *val) { int ret; ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3); if (ret < 0) return ret; ret = FIELD_GET(VCNL4040_PS_CONF3_MPS, ret); if (ret >= ARRAY_SIZE(vcnl4040_ps_oversampling_ratio)) return -EINVAL; *val = vcnl4040_ps_oversampling_ratio[ret]; return ret; } static ssize_t vcnl4040_write_ps_oversampling_ratio(struct vcnl4000_data *data, int val) { unsigned int i; int ret; u16 regval; for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_oversampling_ratio); i++) { if (val == vcnl4040_ps_oversampling_ratio[i]) break; } if (i >= ARRAY_SIZE(vcnl4040_ps_oversampling_ratio)) return -EINVAL; mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3); if (ret < 0) goto out_unlock; regval = FIELD_PREP(VCNL4040_PS_CONF3_MPS, i); regval |= (ret & ~VCNL4040_PS_CONF3_MPS); ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3, regval); out_unlock: mutex_unlock(&data->vcnl4000_lock); return ret; } static ssize_t vcnl4040_read_ps_calibbias(struct vcnl4000_data *data, int *val, int *val2) { int ret; ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3); if (ret < 0) return ret; ret = FIELD_GET(VCNL4040_PS_MS_LED_I, ret); if (ret >= ARRAY_SIZE(vcnl4040_ps_calibbias_ua)) return -EINVAL; *val = vcnl4040_ps_calibbias_ua[ret][0]; *val2 = vcnl4040_ps_calibbias_ua[ret][1]; return ret; } static ssize_t vcnl4040_write_ps_calibbias(struct vcnl4000_data *data, int val) { unsigned int i; int ret; u16 regval; for (i = 0; i < ARRAY_SIZE(vcnl4040_ps_calibbias_ua); i++) { if (val == vcnl4040_ps_calibbias_ua[i][1]) break; } if (i >= ARRAY_SIZE(vcnl4040_ps_calibbias_ua)) return -EINVAL; mutex_lock(&data->vcnl4000_lock); ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF3); if (ret < 0) goto out_unlock; regval = (ret & ~VCNL4040_PS_MS_LED_I); regval |= FIELD_PREP(VCNL4040_PS_MS_LED_I, i); ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF3, regval); out_unlock: mutex_unlock(&data->vcnl4000_lock); return ret; } static int vcnl4000_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: ret = vcnl4000_set_pm_runtime_state(data, true); if (ret < 0) return ret; switch (chan->type) { case IIO_LIGHT: ret = data->chip_spec->measure_light(data, val); if (!ret) ret = IIO_VAL_INT; break; case IIO_PROXIMITY: ret = data->chip_spec->measure_proximity(data, val); *val2 = data->ps_scale; if (!ret) ret = IIO_VAL_FRACTIONAL; break; default: ret = -EINVAL; } vcnl4000_set_pm_runtime_state(data, false); return ret; case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_LIGHT) return -EINVAL; *val = 0; *val2 = data->al_scale; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_LIGHT: ret = vcnl4040_read_als_it(data, val, val2); break; case IIO_PROXIMITY: ret = vcnl4040_read_ps_it(data, val, val2); break; default: return -EINVAL; } if (ret < 0) return ret; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_PROXIMITY: ret = vcnl4040_read_ps_oversampling_ratio(data, val); if (ret < 0) return ret; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_PROXIMITY: ret = vcnl4040_read_ps_calibbias(data, val, val2); if (ret < 0) return ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4040_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct vcnl4000_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: if (val != 0) return -EINVAL; switch (chan->type) { case IIO_LIGHT: return vcnl4040_write_als_it(data, val2); case IIO_PROXIMITY: return vcnl4040_write_ps_it(data, val2); default: return -EINVAL; } case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_PROXIMITY: return vcnl4040_write_ps_oversampling_ratio(data, val); default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_PROXIMITY: return vcnl4040_write_ps_calibbias(data, val2); default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4040_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct vcnl4000_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: switch (chan->type) { case IIO_LIGHT: *vals = (int *)(*data->chip_spec->als_it_times); *length = 2 * data->chip_spec->num_als_it_times; break; case IIO_PROXIMITY: *vals = (int *)(*data->chip_spec->ps_it_times); *length = 2 * data->chip_spec->num_ps_it_times; break; default: return -EINVAL; } *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_PROXIMITY: *vals = (int *)vcnl4040_ps_oversampling_ratio; *length = ARRAY_SIZE(vcnl4040_ps_oversampling_ratio); *type = IIO_VAL_INT; return IIO_AVAIL_LIST; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_PROXIMITY: *vals = (int *)vcnl4040_ps_calibbias_ua; *length = 2 * ARRAY_SIZE(vcnl4040_ps_calibbias_ua); *type = IIO_VAL_INT_PLUS_MICRO; return IIO_AVAIL_LIST; default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4010_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_SCALE: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; /* Protect against event capture. */ if (vcnl4010_is_in_periodic_mode(data)) { ret = -EBUSY; } else { ret = vcnl4000_read_raw(indio_dev, chan, val, val2, mask); } iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_PROXIMITY: ret = vcnl4010_read_proxy_samp_freq(data, val, val2); if (ret < 0) return ret; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4010_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)vcnl4010_prox_sampling_frequency; *type = IIO_VAL_INT_PLUS_MICRO; *length = 2 * ARRAY_SIZE(vcnl4010_prox_sampling_frequency); return IIO_AVAIL_LIST; default: return -EINVAL; } } static int vcnl4010_write_proxy_samp_freq(struct vcnl4000_data *data, int val, int val2) { unsigned int i; int index = -1; for (i = 0; i < ARRAY_SIZE(vcnl4010_prox_sampling_frequency); i++) { if (val == vcnl4010_prox_sampling_frequency[i][0] && val2 == vcnl4010_prox_sampling_frequency[i][1]) { index = i; break; } } if (index < 0) return -EINVAL; return i2c_smbus_write_byte_data(data->client, VCNL4010_PROX_RATE, index); } static int vcnl4010_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; /* Protect against event capture. */ if (vcnl4010_is_in_periodic_mode(data)) { ret = -EBUSY; goto end; } switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_PROXIMITY: ret = vcnl4010_write_proxy_samp_freq(data, val, val2); goto end; default: ret = -EINVAL; goto end; } default: ret = -EINVAL; goto end; } end: iio_device_release_direct_mode(indio_dev); return ret; } static int vcnl4010_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = vcnl4000_read_data(data, VCNL4010_HIGH_THR_HI, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: ret = vcnl4000_read_data(data, VCNL4010_LOW_THR_HI, val); if (ret < 0) return ret; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4010_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (info) { case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = vcnl4000_write_data(data, VCNL4010_HIGH_THR_HI, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_EV_DIR_FALLING: ret = vcnl4000_write_data(data, VCNL4010_LOW_THR_HI, val); if (ret < 0) return ret; return IIO_VAL_INT; default: return -EINVAL; } default: return -EINVAL; } } static int vcnl4040_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_LIGHT: switch (info) { case IIO_EV_INFO_PERIOD: return vcnl4040_read_als_period(data, val, val2); case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = i2c_smbus_read_word_data(data->client, VCNL4040_ALS_THDH_LM); break; case IIO_EV_DIR_FALLING: ret = i2c_smbus_read_word_data(data->client, VCNL4040_ALS_THDL_LM); break; default: return -EINVAL; } break; default: return -EINVAL; } break; case IIO_PROXIMITY: switch (info) { case IIO_EV_INFO_PERIOD: return vcnl4040_read_ps_period(data, val, val2); case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = i2c_smbus_read_word_data(data->client, VCNL4040_PS_THDH_LM); break; case IIO_EV_DIR_FALLING: ret = i2c_smbus_read_word_data(data->client, VCNL4040_PS_THDL_LM); break; default: return -EINVAL; } break; default: return -EINVAL; } break; default: return -EINVAL; } if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; } static int vcnl4040_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_LIGHT: switch (info) { case IIO_EV_INFO_PERIOD: return vcnl4040_write_als_period(data, val, val2); case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = i2c_smbus_write_word_data(data->client, VCNL4040_ALS_THDH_LM, val); break; case IIO_EV_DIR_FALLING: ret = i2c_smbus_write_word_data(data->client, VCNL4040_ALS_THDL_LM, val); break; default: return -EINVAL; } break; default: return -EINVAL; } break; case IIO_PROXIMITY: switch (info) { case IIO_EV_INFO_PERIOD: return vcnl4040_write_ps_period(data, val, val2); case IIO_EV_INFO_VALUE: switch (dir) { case IIO_EV_DIR_RISING: ret = i2c_smbus_write_word_data(data->client, VCNL4040_PS_THDH_LM, val); break; case IIO_EV_DIR_FALLING: ret = i2c_smbus_write_word_data(data->client, VCNL4040_PS_THDL_LM, val); break; default: return -EINVAL; } break; default: return -EINVAL; } break; default: return -EINVAL; } if (ret < 0) return ret; return IIO_VAL_INT; } static bool vcnl4010_is_thr_enabled(struct vcnl4000_data *data) { int ret; ret = i2c_smbus_read_byte_data(data->client, VCNL4010_INT_CTRL); if (ret < 0) return false; return !!(ret & VCNL4010_INT_THR_EN); } static int vcnl4010_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct vcnl4000_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_PROXIMITY: return vcnl4010_is_thr_enabled(data); default: return -EINVAL; } } static int vcnl4010_config_threshold(struct iio_dev *indio_dev, bool state) { struct vcnl4000_data *data = iio_priv(indio_dev); int ret; int icr; int command; if (state) { ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; /* Enable periodic measurement of proximity data. */ command = VCNL4000_SELF_TIMED_EN | VCNL4000_PROX_EN; /* * Enable interrupts on threshold, for proximity data by * default. */ icr = VCNL4010_INT_THR_EN; } else { if (!vcnl4010_is_thr_enabled(data)) return 0; command = 0; icr = 0; } ret = i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, command); if (ret < 0) goto end; ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL, icr); end: if (state) iio_device_release_direct_mode(indio_dev); return ret; } static int vcnl4010_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { switch (chan->type) { case IIO_PROXIMITY: return vcnl4010_config_threshold(indio_dev, state); default: return -EINVAL; } } static int vcnl4040_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { int ret; struct vcnl4000_data *data = iio_priv(indio_dev); switch (chan->type) { case IIO_LIGHT: ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) return ret; data->als_int = FIELD_GET(VCNL4040_ALS_CONF_INT_EN, ret); return data->als_int; case IIO_PROXIMITY: ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) return ret; data->ps_int = FIELD_GET(VCNL4040_PS_CONF2_PS_INT, ret); return (dir == IIO_EV_DIR_RISING) ? FIELD_GET(VCNL4040_PS_IF_AWAY, ret) : FIELD_GET(VCNL4040_PS_IF_CLOSE, ret); default: return -EINVAL; } } static int vcnl4040_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, bool state) { int ret = -EINVAL; u16 val, mask; struct vcnl4000_data *data = iio_priv(indio_dev); mutex_lock(&data->vcnl4000_lock); switch (chan->type) { case IIO_LIGHT: ret = i2c_smbus_read_word_data(data->client, VCNL4200_AL_CONF); if (ret < 0) goto out; mask = VCNL4040_ALS_CONF_INT_EN; if (state) val = (ret | mask); else val = (ret & ~mask); data->als_int = FIELD_GET(VCNL4040_ALS_CONF_INT_EN, val); ret = i2c_smbus_write_word_data(data->client, VCNL4200_AL_CONF, val); break; case IIO_PROXIMITY: ret = i2c_smbus_read_word_data(data->client, VCNL4200_PS_CONF1); if (ret < 0) goto out; if (dir == IIO_EV_DIR_RISING) mask = VCNL4040_PS_IF_AWAY; else mask = VCNL4040_PS_IF_CLOSE; val = state ? (ret | mask) : (ret & ~mask); data->ps_int = FIELD_GET(VCNL4040_PS_CONF2_PS_INT, val); ret = i2c_smbus_write_word_data(data->client, VCNL4200_PS_CONF1, val); break; default: break; } out: mutex_unlock(&data->vcnl4000_lock); return ret; } static irqreturn_t vcnl4040_irq_thread(int irq, void *p) { struct iio_dev *indio_dev = p; struct vcnl4000_data *data = iio_priv(indio_dev); int ret; ret = i2c_smbus_read_word_data(data->client, data->chip_spec->int_reg); if (ret < 0) return IRQ_HANDLED; if (ret & VCNL4040_PS_IF_CLOSE) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } if (ret & VCNL4040_PS_IF_AWAY) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } if (ret & VCNL4040_ALS_FALLING) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } if (ret & VCNL4040_ALS_RISING) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } return IRQ_HANDLED; } static ssize_t vcnl4000_read_near_level(struct iio_dev *indio_dev, uintptr_t priv, const struct iio_chan_spec *chan, char *buf) { struct vcnl4000_data *data = iio_priv(indio_dev); return sprintf(buf, "%u\n", data->near_level); } static irqreturn_t vcnl4010_irq_thread(int irq, void *p) { struct iio_dev *indio_dev = p; struct vcnl4000_data *data = iio_priv(indio_dev); unsigned long isr; int ret; ret = i2c_smbus_read_byte_data(data->client, VCNL4010_ISR); if (ret < 0) goto end; isr = ret; if (isr & VCNL4010_INT_THR) { if (test_bit(VCNL4010_INT_THR_LOW, &isr)) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_PROXIMITY, 1, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), iio_get_time_ns(indio_dev)); } if (test_bit(VCNL4010_INT_THR_HIGH, &isr)) { iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE( IIO_PROXIMITY, 1, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } i2c_smbus_write_byte_data(data->client, VCNL4010_ISR, isr & VCNL4010_INT_THR); } if (isr & VCNL4010_INT_DRDY && iio_buffer_enabled(indio_dev)) iio_trigger_poll_nested(indio_dev->trig); end: return IRQ_HANDLED; } static irqreturn_t vcnl4010_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct vcnl4000_data *data = iio_priv(indio_dev); const unsigned long *active_scan_mask = indio_dev->active_scan_mask; u16 buffer[8] __aligned(8) = {0}; /* 1x16-bit + naturally aligned ts */ bool data_read = false; unsigned long isr; int val = 0; int ret; ret = i2c_smbus_read_byte_data(data->client, VCNL4010_ISR); if (ret < 0) goto end; isr = ret; if (test_bit(0, active_scan_mask)) { if (test_bit(VCNL4010_INT_PROXIMITY, &isr)) { ret = vcnl4000_read_data(data, VCNL4000_PS_RESULT_HI, &val); if (ret < 0) goto end; buffer[0] = val; data_read = true; } } ret = i2c_smbus_write_byte_data(data->client, VCNL4010_ISR, isr & VCNL4010_INT_DRDY); if (ret < 0) goto end; if (!data_read) goto end; iio_push_to_buffers_with_timestamp(indio_dev, buffer, iio_get_time_ns(indio_dev)); end: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int vcnl4010_buffer_postenable(struct iio_dev *indio_dev) { struct vcnl4000_data *data = iio_priv(indio_dev); int ret; int cmd; /* Do not enable the buffer if we are already capturing events. */ if (vcnl4010_is_in_periodic_mode(data)) return -EBUSY; ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL, VCNL4010_INT_PROX_EN); if (ret < 0) return ret; cmd = VCNL4000_SELF_TIMED_EN | VCNL4000_PROX_EN; return i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, cmd); } static int vcnl4010_buffer_predisable(struct iio_dev *indio_dev) { struct vcnl4000_data *data = iio_priv(indio_dev); int ret; ret = i2c_smbus_write_byte_data(data->client, VCNL4010_INT_CTRL, 0); if (ret < 0) return ret; return i2c_smbus_write_byte_data(data->client, VCNL4000_COMMAND, 0); } static const struct iio_buffer_setup_ops vcnl4010_buffer_ops = { .postenable = &vcnl4010_buffer_postenable, .predisable = &vcnl4010_buffer_predisable, }; static const struct iio_chan_spec_ext_info vcnl4000_ext_info[] = { { .name = "nearlevel", .shared = IIO_SEPARATE, .read = vcnl4000_read_near_level, }, { /* sentinel */ } }; static const struct iio_event_spec vcnl4000_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), } }; static const struct iio_event_spec vcnl4040_als_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }, }; static const struct iio_event_spec vcnl4040_event_spec[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_PERIOD), }, }; static const struct iio_chan_spec vcnl4000_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .ext_info = vcnl4000_ext_info, } }; static const struct iio_chan_spec vcnl4010_channels[] = { { .type = IIO_LIGHT, .scan_index = -1, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_PROXIMITY, .scan_index = 0, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), .event_spec = vcnl4000_event_spec, .num_event_specs = ARRAY_SIZE(vcnl4000_event_spec), .ext_info = vcnl4000_ext_info, .scan_type = { .sign = 'u', .realbits = 16, .storagebits = 16, .endianness = IIO_CPU, }, }, IIO_CHAN_SOFT_TIMESTAMP(1), }; static const struct iio_chan_spec vcnl4040_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_INT_TIME), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME), .event_spec = vcnl4040_als_event_spec, .num_event_specs = ARRAY_SIZE(vcnl4040_als_event_spec), }, { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) | BIT(IIO_CHAN_INFO_CALIBBIAS), .ext_info = vcnl4000_ext_info, .event_spec = vcnl4040_event_spec, .num_event_specs = ARRAY_SIZE(vcnl4040_event_spec), } }; static const struct iio_info vcnl4000_info = { .read_raw = vcnl4000_read_raw, }; static const struct iio_info vcnl4010_info = { .read_raw = vcnl4010_read_raw, .read_avail = vcnl4010_read_avail, .write_raw = vcnl4010_write_raw, .read_event_value = vcnl4010_read_event, .write_event_value = vcnl4010_write_event, .read_event_config = vcnl4010_read_event_config, .write_event_config = vcnl4010_write_event_config, }; static const struct iio_info vcnl4040_info = { .read_raw = vcnl4000_read_raw, .write_raw = vcnl4040_write_raw, .read_event_value = vcnl4040_read_event, .write_event_value = vcnl4040_write_event, .read_event_config = vcnl4040_read_event_config, .write_event_config = vcnl4040_write_event_config, .read_avail = vcnl4040_read_avail, }; static const struct vcnl4000_chip_spec vcnl4000_chip_spec_cfg[] = { [VCNL4000] = { .prod = "VCNL4000", .init = vcnl4000_init, .measure_light = vcnl4000_measure_light, .measure_proximity = vcnl4000_measure_proximity, .set_power_state = vcnl4000_set_power_state, .channels = vcnl4000_channels, .num_channels = ARRAY_SIZE(vcnl4000_channels), .info = &vcnl4000_info, }, [VCNL4010] = { .prod = "VCNL4010/4020", .init = vcnl4000_init, .measure_light = vcnl4000_measure_light, .measure_proximity = vcnl4000_measure_proximity, .set_power_state = vcnl4000_set_power_state, .channels = vcnl4010_channels, .num_channels = ARRAY_SIZE(vcnl4010_channels), .info = &vcnl4010_info, .irq_thread = vcnl4010_irq_thread, .trig_buffer_func = vcnl4010_trigger_handler, .buffer_setup_ops = &vcnl4010_buffer_ops, }, [VCNL4040] = { .prod = "VCNL4040", .init = vcnl4200_init, .measure_light = vcnl4200_measure_light, .measure_proximity = vcnl4200_measure_proximity, .set_power_state = vcnl4200_set_power_state, .channels = vcnl4040_channels, .num_channels = ARRAY_SIZE(vcnl4040_channels), .info = &vcnl4040_info, .irq_thread = vcnl4040_irq_thread, .int_reg = VCNL4040_INT_FLAGS, .ps_it_times = &vcnl4040_ps_it_times, .num_ps_it_times = ARRAY_SIZE(vcnl4040_ps_it_times), .als_it_times = &vcnl4040_als_it_times, .num_als_it_times = ARRAY_SIZE(vcnl4040_als_it_times), .ulux_step = 100000, }, [VCNL4200] = { .prod = "VCNL4200", .init = vcnl4200_init, .measure_light = vcnl4200_measure_light, .measure_proximity = vcnl4200_measure_proximity, .set_power_state = vcnl4200_set_power_state, .channels = vcnl4040_channels, .num_channels = ARRAY_SIZE(vcnl4000_channels), .info = &vcnl4040_info, .irq_thread = vcnl4040_irq_thread, .int_reg = VCNL4200_INT_FLAGS, .ps_it_times = &vcnl4200_ps_it_times, .num_ps_it_times = ARRAY_SIZE(vcnl4200_ps_it_times), .als_it_times = &vcnl4200_als_it_times, .num_als_it_times = ARRAY_SIZE(vcnl4200_als_it_times), .ulux_step = 24000, }, }; static const struct iio_trigger_ops vcnl4010_trigger_ops = { .validate_device = iio_trigger_validate_own_device, }; static int vcnl4010_probe_trigger(struct iio_dev *indio_dev) { struct vcnl4000_data *data = iio_priv(indio_dev); struct i2c_client *client = data->client; struct iio_trigger *trigger; trigger = devm_iio_trigger_alloc(&client->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trigger) return -ENOMEM; trigger->ops = &vcnl4010_trigger_ops; iio_trigger_set_drvdata(trigger, indio_dev); return devm_iio_trigger_register(&client->dev, trigger); } static int vcnl4000_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct vcnl4000_data *data; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; data->id = id->driver_data; data->chip_spec = &vcnl4000_chip_spec_cfg[data->id]; mutex_init(&data->vcnl4000_lock); ret = data->chip_spec->init(data); if (ret < 0) return ret; dev_dbg(&client->dev, "%s Ambient light/proximity sensor, Rev: %02x\n", data->chip_spec->prod, data->rev); if (device_property_read_u32(&client->dev, "proximity-near-level", &data->near_level)) data->near_level = 0; indio_dev->info = data->chip_spec->info; indio_dev->channels = data->chip_spec->channels; indio_dev->num_channels = data->chip_spec->num_channels; indio_dev->name = VCNL4000_DRV_NAME; indio_dev->modes = INDIO_DIRECT_MODE; if (data->chip_spec->trig_buffer_func && data->chip_spec->buffer_setup_ops) { ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL, data->chip_spec->trig_buffer_func, data->chip_spec->buffer_setup_ops); if (ret < 0) { dev_err(&client->dev, "unable to setup iio triggered buffer\n"); return ret; } } if (client->irq && data->chip_spec->irq_thread) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, data->chip_spec->irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "vcnl4000_irq", indio_dev); if (ret < 0) { dev_err(&client->dev, "irq request failed\n"); return ret; } ret = vcnl4010_probe_trigger(indio_dev); if (ret < 0) return ret; } ret = pm_runtime_set_active(&client->dev); if (ret < 0) goto fail_poweroff; ret = iio_device_register(indio_dev); if (ret < 0) goto fail_poweroff; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, VCNL4000_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); return 0; fail_poweroff: data->chip_spec->set_power_state(data, false); return ret; } static const struct of_device_id vcnl_4000_of_match[] = { { .compatible = "vishay,vcnl4000", .data = (void *)VCNL4000, }, { .compatible = "vishay,vcnl4010", .data = (void *)VCNL4010, }, { .compatible = "vishay,vcnl4020", .data = (void *)VCNL4010, }, { .compatible = "vishay,vcnl4040", .data = (void *)VCNL4040, }, { .compatible = "vishay,vcnl4200", .data = (void *)VCNL4200, }, {}, }; MODULE_DEVICE_TABLE(of, vcnl_4000_of_match); static void vcnl4000_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct vcnl4000_data *data = iio_priv(indio_dev); int ret; pm_runtime_dont_use_autosuspend(&client->dev); pm_runtime_disable(&client->dev); iio_device_unregister(indio_dev); pm_runtime_set_suspended(&client->dev); ret = data->chip_spec->set_power_state(data, false); if (ret) dev_warn(&client->dev, "Failed to power down (%pe)\n", ERR_PTR(ret)); } static int vcnl4000_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct vcnl4000_data *data = iio_priv(indio_dev); return data->chip_spec->set_power_state(data, false); } static int vcnl4000_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct vcnl4000_data *data = iio_priv(indio_dev); return data->chip_spec->set_power_state(data, true); } static DEFINE_RUNTIME_DEV_PM_OPS(vcnl4000_pm_ops, vcnl4000_runtime_suspend, vcnl4000_runtime_resume, NULL); static struct i2c_driver vcnl4000_driver = { .driver = { .name = VCNL4000_DRV_NAME, .pm = pm_ptr(&vcnl4000_pm_ops), .of_match_table = vcnl_4000_of_match, }, .probe = vcnl4000_probe, .id_table = vcnl4000_id, .remove = vcnl4000_remove, }; module_i2c_driver(vcnl4000_driver); MODULE_AUTHOR("Peter Meerwald "); MODULE_AUTHOR("Mathieu Othacehe "); MODULE_DESCRIPTION("Vishay VCNL4000 proximity/ambient light sensor driver"); MODULE_LICENSE("GPL");