// SPDX-License-Identifier: GPL-2.0-only /* * AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters * * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/ * Andrew F. Davis */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "afe440x.h" #define AFE4404_DRIVER_NAME "afe4404" /* AFE4404 registers */ #define AFE4404_TIA_GAIN_SEP 0x20 #define AFE4404_TIA_GAIN 0x21 #define AFE4404_PROG_TG_STC 0x34 #define AFE4404_PROG_TG_ENDC 0x35 #define AFE4404_LED3LEDSTC 0x36 #define AFE4404_LED3LEDENDC 0x37 #define AFE4404_CLKDIV_PRF 0x39 #define AFE4404_OFFDAC 0x3a #define AFE4404_DEC 0x3d #define AFE4404_AVG_LED2_ALED2VAL 0x3f #define AFE4404_AVG_LED1_ALED1VAL 0x40 /* AFE4404 CONTROL2 register fields */ #define AFE440X_CONTROL2_OSC_ENABLE BIT(9) enum afe4404_fields { /* Gains */ F_TIA_GAIN_SEP, F_TIA_CF_SEP, F_TIA_GAIN, TIA_CF, /* LED Current */ F_ILED1, F_ILED2, F_ILED3, /* Offset DAC */ F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2, /* sentinel */ F_MAX_FIELDS }; static const struct reg_field afe4404_reg_fields[] = { /* Gains */ [F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2), [F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5), [F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2), [TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5), /* LED Current */ [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5), [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11), [F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17), /* Offset DAC */ [F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4), [F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9), [F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14), [F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19), }; /** * struct afe4404_data - AFE4404 device instance data * @dev: Device structure * @regmap: Register map of the device * @fields: Register fields of the device * @regulator: Pointer to the regulator for the IC * @trig: IIO trigger for this device * @irq: ADC_RDY line interrupt number * @buffer: Used to construct a scan to push to the iio buffer. */ struct afe4404_data { struct device *dev; struct regmap *regmap; struct regmap_field *fields[F_MAX_FIELDS]; struct regulator *regulator; struct iio_trigger *trig; int irq; s32 buffer[10] __aligned(8); }; enum afe4404_chan_id { LED2 = 1, ALED2, LED1, ALED1, LED2_ALED2, LED1_ALED1, }; static const unsigned int afe4404_channel_values[] = { [LED2] = AFE440X_LED2VAL, [ALED2] = AFE440X_ALED2VAL, [LED1] = AFE440X_LED1VAL, [ALED1] = AFE440X_ALED1VAL, [LED2_ALED2] = AFE440X_LED2_ALED2VAL, [LED1_ALED1] = AFE440X_LED1_ALED1VAL, }; static const unsigned int afe4404_channel_leds[] = { [LED2] = F_ILED2, [ALED2] = F_ILED3, [LED1] = F_ILED1, }; static const unsigned int afe4404_channel_offdacs[] = { [LED2] = F_OFFDAC_LED2, [ALED2] = F_OFFDAC_AMB2, [LED1] = F_OFFDAC_LED1, [ALED1] = F_OFFDAC_AMB1, }; static const struct iio_chan_spec afe4404_channels[] = { /* ADC values */ AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)), AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)), AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)), AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)), AFE440X_INTENSITY_CHAN(LED2_ALED2, 0), AFE440X_INTENSITY_CHAN(LED1_ALED1, 0), /* LED current */ AFE440X_CURRENT_CHAN(LED2), AFE440X_CURRENT_CHAN(ALED2), AFE440X_CURRENT_CHAN(LED1), }; static const struct afe440x_val_table afe4404_res_table[] = { { .integer = 500000, .fract = 0 }, { .integer = 250000, .fract = 0 }, { .integer = 100000, .fract = 0 }, { .integer = 50000, .fract = 0 }, { .integer = 25000, .fract = 0 }, { .integer = 10000, .fract = 0 }, { .integer = 1000000, .fract = 0 }, { .integer = 2000000, .fract = 0 }, }; AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table); static const struct afe440x_val_table afe4404_cap_table[] = { { .integer = 0, .fract = 5000 }, { .integer = 0, .fract = 2500 }, { .integer = 0, .fract = 10000 }, { .integer = 0, .fract = 7500 }, { .integer = 0, .fract = 20000 }, { .integer = 0, .fract = 17500 }, { .integer = 0, .fract = 25000 }, { .integer = 0, .fract = 22500 }, }; AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table); static ssize_t afe440x_show_register(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct afe4404_data *afe = iio_priv(indio_dev); struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); unsigned int reg_val; int vals[2]; int ret; ret = regmap_field_read(afe->fields[afe440x_attr->field], ®_val); if (ret) return ret; if (reg_val >= afe440x_attr->table_size) return -EINVAL; vals[0] = afe440x_attr->val_table[reg_val].integer; vals[1] = afe440x_attr->val_table[reg_val].fract; return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals); } static ssize_t afe440x_store_register(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct afe4404_data *afe = iio_priv(indio_dev); struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); int val, integer, fract, ret; ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); if (ret) return ret; for (val = 0; val < afe440x_attr->table_size; val++) if (afe440x_attr->val_table[val].integer == integer && afe440x_attr->val_table[val].fract == fract) break; if (val == afe440x_attr->table_size) return -EINVAL; ret = regmap_field_write(afe->fields[afe440x_attr->field], val); if (ret) return ret; return count; } static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table); static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table); static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table); static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table); static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table); static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table); static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table); static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table); static struct attribute *afe440x_attributes[] = { &dev_attr_in_intensity_resistance_available.attr, &dev_attr_in_intensity_capacitance_available.attr, &afe440x_attr_in_intensity1_resistance.dev_attr.attr, &afe440x_attr_in_intensity1_capacitance.dev_attr.attr, &afe440x_attr_in_intensity2_resistance.dev_attr.attr, &afe440x_attr_in_intensity2_capacitance.dev_attr.attr, &afe440x_attr_in_intensity3_resistance.dev_attr.attr, &afe440x_attr_in_intensity3_capacitance.dev_attr.attr, &afe440x_attr_in_intensity4_resistance.dev_attr.attr, &afe440x_attr_in_intensity4_capacitance.dev_attr.attr, NULL }; static const struct attribute_group afe440x_attribute_group = { .attrs = afe440x_attributes }; static int afe4404_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct afe4404_data *afe = iio_priv(indio_dev); unsigned int value_reg, led_field, offdac_field; int ret; switch (chan->type) { case IIO_INTENSITY: switch (mask) { case IIO_CHAN_INFO_RAW: value_reg = afe4404_channel_values[chan->address]; ret = regmap_read(afe->regmap, value_reg, val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_OFFSET: offdac_field = afe4404_channel_offdacs[chan->address]; ret = regmap_field_read(afe->fields[offdac_field], val); if (ret) return ret; return IIO_VAL_INT; } break; case IIO_CURRENT: switch (mask) { case IIO_CHAN_INFO_RAW: led_field = afe4404_channel_leds[chan->address]; ret = regmap_field_read(afe->fields[led_field], val); if (ret) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = 800000; return IIO_VAL_INT_PLUS_MICRO; } break; default: break; } return -EINVAL; } static int afe4404_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct afe4404_data *afe = iio_priv(indio_dev); unsigned int led_field, offdac_field; switch (chan->type) { case IIO_INTENSITY: switch (mask) { case IIO_CHAN_INFO_OFFSET: offdac_field = afe4404_channel_offdacs[chan->address]; return regmap_field_write(afe->fields[offdac_field], val); } break; case IIO_CURRENT: switch (mask) { case IIO_CHAN_INFO_RAW: led_field = afe4404_channel_leds[chan->address]; return regmap_field_write(afe->fields[led_field], val); } break; default: break; } return -EINVAL; } static const struct iio_info afe4404_iio_info = { .attrs = &afe440x_attribute_group, .read_raw = afe4404_read_raw, .write_raw = afe4404_write_raw, }; static irqreturn_t afe4404_trigger_handler(int irq, void *private) { struct iio_poll_func *pf = private; struct iio_dev *indio_dev = pf->indio_dev; struct afe4404_data *afe = iio_priv(indio_dev); int ret, bit, i = 0; iio_for_each_active_channel(indio_dev, bit) { ret = regmap_read(afe->regmap, afe4404_channel_values[bit], &afe->buffer[i++]); if (ret) goto err; } iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer, pf->timestamp); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static void afe4404_regulator_disable(void *data) { struct regulator *regulator = data; regulator_disable(regulator); } /* Default timings from data-sheet */ #define AFE4404_TIMING_PAIRS \ { AFE440X_PRPCOUNT, 39999 }, \ { AFE440X_LED2LEDSTC, 0 }, \ { AFE440X_LED2LEDENDC, 398 }, \ { AFE440X_LED2STC, 80 }, \ { AFE440X_LED2ENDC, 398 }, \ { AFE440X_ADCRSTSTCT0, 5600 }, \ { AFE440X_ADCRSTENDCT0, 5606 }, \ { AFE440X_LED2CONVST, 5607 }, \ { AFE440X_LED2CONVEND, 6066 }, \ { AFE4404_LED3LEDSTC, 400 }, \ { AFE4404_LED3LEDENDC, 798 }, \ { AFE440X_ALED2STC, 480 }, \ { AFE440X_ALED2ENDC, 798 }, \ { AFE440X_ADCRSTSTCT1, 6068 }, \ { AFE440X_ADCRSTENDCT1, 6074 }, \ { AFE440X_ALED2CONVST, 6075 }, \ { AFE440X_ALED2CONVEND, 6534 }, \ { AFE440X_LED1LEDSTC, 800 }, \ { AFE440X_LED1LEDENDC, 1198 }, \ { AFE440X_LED1STC, 880 }, \ { AFE440X_LED1ENDC, 1198 }, \ { AFE440X_ADCRSTSTCT2, 6536 }, \ { AFE440X_ADCRSTENDCT2, 6542 }, \ { AFE440X_LED1CONVST, 6543 }, \ { AFE440X_LED1CONVEND, 7003 }, \ { AFE440X_ALED1STC, 1280 }, \ { AFE440X_ALED1ENDC, 1598 }, \ { AFE440X_ADCRSTSTCT3, 7005 }, \ { AFE440X_ADCRSTENDCT3, 7011 }, \ { AFE440X_ALED1CONVST, 7012 }, \ { AFE440X_ALED1CONVEND, 7471 }, \ { AFE440X_PDNCYCLESTC, 7671 }, \ { AFE440X_PDNCYCLEENDC, 39199 } static const struct reg_sequence afe4404_reg_sequences[] = { AFE4404_TIMING_PAIRS, { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN }, { AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN }, { AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE }, }; static const struct regmap_range afe4404_yes_ranges[] = { regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL), regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL), }; static const struct regmap_access_table afe4404_volatile_table = { .yes_ranges = afe4404_yes_ranges, .n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges), }; static const struct regmap_config afe4404_regmap_config = { .reg_bits = 8, .val_bits = 24, .max_register = AFE4404_AVG_LED1_ALED1VAL, .cache_type = REGCACHE_RBTREE, .volatile_table = &afe4404_volatile_table, }; static const struct of_device_id afe4404_of_match[] = { { .compatible = "ti,afe4404", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, afe4404_of_match); static int afe4404_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct afe4404_data *afe = iio_priv(indio_dev); int ret; ret = regmap_set_bits(afe->regmap, AFE440X_CONTROL2, AFE440X_CONTROL2_PDN_AFE); if (ret) return ret; ret = regulator_disable(afe->regulator); if (ret) { dev_err(dev, "Unable to disable regulator\n"); return ret; } return 0; } static int afe4404_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct afe4404_data *afe = iio_priv(indio_dev); int ret; ret = regulator_enable(afe->regulator); if (ret) { dev_err(dev, "Unable to enable regulator\n"); return ret; } ret = regmap_clear_bits(afe->regmap, AFE440X_CONTROL2, AFE440X_CONTROL2_PDN_AFE); if (ret) return ret; return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend, afe4404_resume); static int afe4404_probe(struct i2c_client *client) { struct iio_dev *indio_dev; struct afe4404_data *afe; int i, ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe)); if (!indio_dev) return -ENOMEM; afe = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); afe->dev = &client->dev; afe->irq = client->irq; afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config); if (IS_ERR(afe->regmap)) { dev_err(afe->dev, "Unable to allocate register map\n"); return PTR_ERR(afe->regmap); } for (i = 0; i < F_MAX_FIELDS; i++) { afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap, afe4404_reg_fields[i]); if (IS_ERR(afe->fields[i])) { dev_err(afe->dev, "Unable to allocate regmap fields\n"); return PTR_ERR(afe->fields[i]); } } afe->regulator = devm_regulator_get(afe->dev, "tx_sup"); if (IS_ERR(afe->regulator)) return dev_err_probe(afe->dev, PTR_ERR(afe->regulator), "Unable to get regulator\n"); ret = regulator_enable(afe->regulator); if (ret) { dev_err(afe->dev, "Unable to enable regulator\n"); return ret; } ret = devm_add_action_or_reset(afe->dev, afe4404_regulator_disable, afe->regulator); if (ret) { dev_err(afe->dev, "Unable to enable regulator\n"); return ret; } ret = regmap_write(afe->regmap, AFE440X_CONTROL0, AFE440X_CONTROL0_SW_RESET); if (ret) { dev_err(afe->dev, "Unable to reset device\n"); return ret; } ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences, ARRAY_SIZE(afe4404_reg_sequences)); if (ret) { dev_err(afe->dev, "Unable to set register defaults\n"); return ret; } indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = afe4404_channels; indio_dev->num_channels = ARRAY_SIZE(afe4404_channels); indio_dev->name = AFE4404_DRIVER_NAME; indio_dev->info = &afe4404_iio_info; if (afe->irq > 0) { afe->trig = devm_iio_trigger_alloc(afe->dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!afe->trig) { dev_err(afe->dev, "Unable to allocate IIO trigger\n"); return -ENOMEM; } iio_trigger_set_drvdata(afe->trig, indio_dev); ret = devm_iio_trigger_register(afe->dev, afe->trig); if (ret) { dev_err(afe->dev, "Unable to register IIO trigger\n"); return ret; } ret = devm_request_threaded_irq(afe->dev, afe->irq, iio_trigger_generic_data_rdy_poll, NULL, IRQF_ONESHOT, AFE4404_DRIVER_NAME, afe->trig); if (ret) { dev_err(afe->dev, "Unable to request IRQ\n"); return ret; } } ret = devm_iio_triggered_buffer_setup(afe->dev, indio_dev, &iio_pollfunc_store_time, afe4404_trigger_handler, NULL); if (ret) { dev_err(afe->dev, "Unable to setup buffer\n"); return ret; } ret = devm_iio_device_register(afe->dev, indio_dev); if (ret) { dev_err(afe->dev, "Unable to register IIO device\n"); return ret; } return 0; } static const struct i2c_device_id afe4404_ids[] = { { "afe4404" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, afe4404_ids); static struct i2c_driver afe4404_i2c_driver = { .driver = { .name = AFE4404_DRIVER_NAME, .of_match_table = afe4404_of_match, .pm = pm_sleep_ptr(&afe4404_pm_ops), }, .probe = afe4404_probe, .id_table = afe4404_ids, }; module_i2c_driver(afe4404_i2c_driver); MODULE_AUTHOR("Andrew F. Davis "); MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE"); MODULE_LICENSE("GPL v2");