// SPDX-License-Identifier: GPL-2.0-only /* * ADC12130/ADC12132/ADC12138 12-bit plus sign ADC driver * * Copyright (c) 2016 Akinobu Mita <akinobu.mita@gmail.com> * * Datasheet: http://www.ti.com/lit/ds/symlink/adc12138.pdf */ #include <linux/module.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/clk.h> #include <linux/property.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include <linux/regulator/consumer.h> #define ADC12138_MODE_AUTO_CAL 0x08 #define ADC12138_MODE_READ_STATUS 0x0c #define ADC12138_MODE_ACQUISITION_TIME_6 0x0e #define ADC12138_MODE_ACQUISITION_TIME_10 0x4e #define ADC12138_MODE_ACQUISITION_TIME_18 0x8e #define ADC12138_MODE_ACQUISITION_TIME_34 0xce #define ADC12138_STATUS_CAL BIT(6) enum { adc12130, adc12132, adc12138, }; struct adc12138 { struct spi_device *spi; unsigned int id; /* conversion clock */ struct clk *cclk; /* positive analog voltage reference */ struct regulator *vref_p; /* negative analog voltage reference */ struct regulator *vref_n; struct mutex lock; struct completion complete; /* The number of cclk periods for the S/H's acquisition time */ unsigned int acquisition_time; /* * Maximum size needed: 16x 2 bytes ADC data + 8 bytes timestamp. * Less may be need if not all channels are enabled, as long as * the 8 byte alignment of the timestamp is maintained. */ __be16 data[20] __aligned(8); u8 tx_buf[2] __aligned(IIO_DMA_MINALIGN); u8 rx_buf[2]; }; #define ADC12138_VOLTAGE_CHANNEL(chan) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = chan, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) \ | BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = chan, \ .scan_type = { \ .sign = 's', \ .realbits = 13, \ .storagebits = 16, \ .shift = 3, \ .endianness = IIO_BE, \ }, \ } #define ADC12138_VOLTAGE_CHANNEL_DIFF(chan1, chan2, si) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (chan1), \ .channel2 = (chan2), \ .differential = 1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) \ | BIT(IIO_CHAN_INFO_OFFSET), \ .scan_index = si, \ .scan_type = { \ .sign = 's', \ .realbits = 13, \ .storagebits = 16, \ .shift = 3, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec adc12132_channels[] = { ADC12138_VOLTAGE_CHANNEL(0), ADC12138_VOLTAGE_CHANNEL(1), ADC12138_VOLTAGE_CHANNEL_DIFF(0, 1, 2), ADC12138_VOLTAGE_CHANNEL_DIFF(1, 0, 3), IIO_CHAN_SOFT_TIMESTAMP(4), }; static const struct iio_chan_spec adc12138_channels[] = { ADC12138_VOLTAGE_CHANNEL(0), ADC12138_VOLTAGE_CHANNEL(1), ADC12138_VOLTAGE_CHANNEL(2), ADC12138_VOLTAGE_CHANNEL(3), ADC12138_VOLTAGE_CHANNEL(4), ADC12138_VOLTAGE_CHANNEL(5), ADC12138_VOLTAGE_CHANNEL(6), ADC12138_VOLTAGE_CHANNEL(7), ADC12138_VOLTAGE_CHANNEL_DIFF(0, 1, 8), ADC12138_VOLTAGE_CHANNEL_DIFF(1, 0, 9), ADC12138_VOLTAGE_CHANNEL_DIFF(2, 3, 10), ADC12138_VOLTAGE_CHANNEL_DIFF(3, 2, 11), ADC12138_VOLTAGE_CHANNEL_DIFF(4, 5, 12), ADC12138_VOLTAGE_CHANNEL_DIFF(5, 4, 13), ADC12138_VOLTAGE_CHANNEL_DIFF(6, 7, 14), ADC12138_VOLTAGE_CHANNEL_DIFF(7, 6, 15), IIO_CHAN_SOFT_TIMESTAMP(16), }; static int adc12138_mode_programming(struct adc12138 *adc, u8 mode, void *rx_buf, int len) { struct spi_transfer xfer = { .tx_buf = adc->tx_buf, .rx_buf = adc->rx_buf, .len = len, }; int ret; /* Skip unused bits for ADC12130 and ADC12132 */ if (adc->id != adc12138) mode = (mode & 0xc0) | ((mode & 0x0f) << 2); adc->tx_buf[0] = mode; ret = spi_sync_transfer(adc->spi, &xfer, 1); if (ret) return ret; memcpy(rx_buf, adc->rx_buf, len); return 0; } static int adc12138_read_status(struct adc12138 *adc) { u8 rx_buf[2]; int ret; ret = adc12138_mode_programming(adc, ADC12138_MODE_READ_STATUS, rx_buf, 2); if (ret) return ret; return (rx_buf[0] << 1) | (rx_buf[1] >> 7); } static int __adc12138_start_conv(struct adc12138 *adc, struct iio_chan_spec const *channel, void *data, int len) { static const u8 ch_to_mux[] = { 0, 4, 1, 5, 2, 6, 3, 7 }; u8 mode = (ch_to_mux[channel->channel] << 4) | (channel->differential ? 0 : 0x80); return adc12138_mode_programming(adc, mode, data, len); } static int adc12138_start_conv(struct adc12138 *adc, struct iio_chan_spec const *channel) { u8 trash; return __adc12138_start_conv(adc, channel, &trash, 1); } static int adc12138_start_and_read_conv(struct adc12138 *adc, struct iio_chan_spec const *channel, __be16 *data) { return __adc12138_start_conv(adc, channel, data, 2); } static int adc12138_read_conv_data(struct adc12138 *adc, __be16 *value) { /* Issue a read status instruction and read previous conversion data */ return adc12138_mode_programming(adc, ADC12138_MODE_READ_STATUS, value, sizeof(*value)); } static int adc12138_wait_eoc(struct adc12138 *adc, unsigned long timeout) { if (!wait_for_completion_timeout(&adc->complete, timeout)) return -ETIMEDOUT; return 0; } static int adc12138_adc_conversion(struct adc12138 *adc, struct iio_chan_spec const *channel, __be16 *value) { int ret; reinit_completion(&adc->complete); ret = adc12138_start_conv(adc, channel); if (ret) return ret; ret = adc12138_wait_eoc(adc, msecs_to_jiffies(100)); if (ret) return ret; return adc12138_read_conv_data(adc, value); } static int adc12138_read_raw(struct iio_dev *iio, struct iio_chan_spec const *channel, int *value, int *shift, long mask) { struct adc12138 *adc = iio_priv(iio); int ret; __be16 data; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&adc->lock); ret = adc12138_adc_conversion(adc, channel, &data); mutex_unlock(&adc->lock); if (ret) return ret; *value = sign_extend32(be16_to_cpu(data) >> channel->scan_type.shift, channel->scan_type.realbits - 1); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = regulator_get_voltage(adc->vref_p); if (ret < 0) return ret; *value = ret; if (!IS_ERR(adc->vref_n)) { ret = regulator_get_voltage(adc->vref_n); if (ret < 0) return ret; *value -= ret; } /* convert regulator output voltage to mV */ *value /= 1000; *shift = channel->scan_type.realbits - 1; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_OFFSET: if (!IS_ERR(adc->vref_n)) { *value = regulator_get_voltage(adc->vref_n); if (*value < 0) return *value; } else { *value = 0; } /* convert regulator output voltage to mV */ *value /= 1000; return IIO_VAL_INT; } return -EINVAL; } static const struct iio_info adc12138_info = { .read_raw = adc12138_read_raw, }; static int adc12138_init(struct adc12138 *adc) { int ret; int status; u8 mode; u8 trash; reinit_completion(&adc->complete); ret = adc12138_mode_programming(adc, ADC12138_MODE_AUTO_CAL, &trash, 1); if (ret) return ret; /* data output at this time has no significance */ status = adc12138_read_status(adc); if (status < 0) return status; adc12138_wait_eoc(adc, msecs_to_jiffies(100)); status = adc12138_read_status(adc); if (status & ADC12138_STATUS_CAL) { dev_warn(&adc->spi->dev, "Auto Cal sequence is still in progress: %#x\n", status); return -EIO; } switch (adc->acquisition_time) { case 6: mode = ADC12138_MODE_ACQUISITION_TIME_6; break; case 10: mode = ADC12138_MODE_ACQUISITION_TIME_10; break; case 18: mode = ADC12138_MODE_ACQUISITION_TIME_18; break; case 34: mode = ADC12138_MODE_ACQUISITION_TIME_34; break; default: return -EINVAL; } return adc12138_mode_programming(adc, mode, &trash, 1); } static irqreturn_t adc12138_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adc12138 *adc = iio_priv(indio_dev); __be16 trash; int ret; int scan_index; int i = 0; mutex_lock(&adc->lock); iio_for_each_active_channel(indio_dev, scan_index) { const struct iio_chan_spec *scan_chan = &indio_dev->channels[scan_index]; reinit_completion(&adc->complete); ret = adc12138_start_and_read_conv(adc, scan_chan, i ? &adc->data[i - 1] : &trash); if (ret) { dev_warn(&adc->spi->dev, "failed to start conversion\n"); goto out; } ret = adc12138_wait_eoc(adc, msecs_to_jiffies(100)); if (ret) { dev_warn(&adc->spi->dev, "wait eoc timeout\n"); goto out; } i++; } if (i) { ret = adc12138_read_conv_data(adc, &adc->data[i - 1]); if (ret) { dev_warn(&adc->spi->dev, "failed to get conversion data\n"); goto out; } } iio_push_to_buffers_with_timestamp(indio_dev, adc->data, iio_get_time_ns(indio_dev)); out: mutex_unlock(&adc->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static irqreturn_t adc12138_eoc_handler(int irq, void *p) { struct iio_dev *indio_dev = p; struct adc12138 *adc = iio_priv(indio_dev); complete(&adc->complete); return IRQ_HANDLED; } static int adc12138_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct adc12138 *adc; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*adc)); if (!indio_dev) return -ENOMEM; adc = iio_priv(indio_dev); adc->spi = spi; adc->id = spi_get_device_id(spi)->driver_data; mutex_init(&adc->lock); init_completion(&adc->complete); indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &adc12138_info; indio_dev->modes = INDIO_DIRECT_MODE; switch (adc->id) { case adc12130: case adc12132: indio_dev->channels = adc12132_channels; indio_dev->num_channels = ARRAY_SIZE(adc12132_channels); break; case adc12138: indio_dev->channels = adc12138_channels; indio_dev->num_channels = ARRAY_SIZE(adc12138_channels); break; default: return -EINVAL; } ret = device_property_read_u32(&spi->dev, "ti,acquisition-time", &adc->acquisition_time); if (ret) adc->acquisition_time = 10; adc->cclk = devm_clk_get(&spi->dev, NULL); if (IS_ERR(adc->cclk)) return PTR_ERR(adc->cclk); adc->vref_p = devm_regulator_get(&spi->dev, "vref-p"); if (IS_ERR(adc->vref_p)) return PTR_ERR(adc->vref_p); adc->vref_n = devm_regulator_get_optional(&spi->dev, "vref-n"); if (IS_ERR(adc->vref_n)) { /* * Assume vref_n is 0V if an optional regulator is not * specified, otherwise return the error code. */ ret = PTR_ERR(adc->vref_n); if (ret != -ENODEV) return ret; } ret = devm_request_irq(&spi->dev, spi->irq, adc12138_eoc_handler, IRQF_TRIGGER_RISING, indio_dev->name, indio_dev); if (ret) return ret; ret = clk_prepare_enable(adc->cclk); if (ret) return ret; ret = regulator_enable(adc->vref_p); if (ret) goto err_clk_disable; if (!IS_ERR(adc->vref_n)) { ret = regulator_enable(adc->vref_n); if (ret) goto err_vref_p_disable; } ret = adc12138_init(adc); if (ret) goto err_vref_n_disable; spi_set_drvdata(spi, indio_dev); ret = iio_triggered_buffer_setup(indio_dev, NULL, adc12138_trigger_handler, NULL); if (ret) goto err_vref_n_disable; ret = iio_device_register(indio_dev); if (ret) goto err_buffer_cleanup; return 0; err_buffer_cleanup: iio_triggered_buffer_cleanup(indio_dev); err_vref_n_disable: if (!IS_ERR(adc->vref_n)) regulator_disable(adc->vref_n); err_vref_p_disable: regulator_disable(adc->vref_p); err_clk_disable: clk_disable_unprepare(adc->cclk); return ret; } static void adc12138_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct adc12138 *adc = iio_priv(indio_dev); iio_device_unregister(indio_dev); iio_triggered_buffer_cleanup(indio_dev); if (!IS_ERR(adc->vref_n)) regulator_disable(adc->vref_n); regulator_disable(adc->vref_p); clk_disable_unprepare(adc->cclk); } static const struct of_device_id adc12138_dt_ids[] = { { .compatible = "ti,adc12130", }, { .compatible = "ti,adc12132", }, { .compatible = "ti,adc12138", }, { } }; MODULE_DEVICE_TABLE(of, adc12138_dt_ids); static const struct spi_device_id adc12138_id[] = { { "adc12130", adc12130 }, { "adc12132", adc12132 }, { "adc12138", adc12138 }, { } }; MODULE_DEVICE_TABLE(spi, adc12138_id); static struct spi_driver adc12138_driver = { .driver = { .name = "adc12138", .of_match_table = adc12138_dt_ids, }, .probe = adc12138_probe, .remove = adc12138_remove, .id_table = adc12138_id, }; module_spi_driver(adc12138_driver); MODULE_AUTHOR("Akinobu Mita <akinobu.mita@gmail.com>"); MODULE_DESCRIPTION("ADC12130/ADC12132/ADC12138 driver"); MODULE_LICENSE("GPL v2");