// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale i.MX7D ADC driver * * Copyright (C) 2015 Freescale Semiconductor, Inc. */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/driver.h> #include <linux/iio/sysfs.h> /* ADC register */ #define IMX7D_REG_ADC_CH_A_CFG1 0x00 #define IMX7D_REG_ADC_CH_A_CFG2 0x10 #define IMX7D_REG_ADC_CH_B_CFG1 0x20 #define IMX7D_REG_ADC_CH_B_CFG2 0x30 #define IMX7D_REG_ADC_CH_C_CFG1 0x40 #define IMX7D_REG_ADC_CH_C_CFG2 0x50 #define IMX7D_REG_ADC_CH_D_CFG1 0x60 #define IMX7D_REG_ADC_CH_D_CFG2 0x70 #define IMX7D_REG_ADC_CH_SW_CFG 0x80 #define IMX7D_REG_ADC_TIMER_UNIT 0x90 #define IMX7D_REG_ADC_DMA_FIFO 0xa0 #define IMX7D_REG_ADC_FIFO_STATUS 0xb0 #define IMX7D_REG_ADC_INT_SIG_EN 0xc0 #define IMX7D_REG_ADC_INT_EN 0xd0 #define IMX7D_REG_ADC_INT_STATUS 0xe0 #define IMX7D_REG_ADC_CHA_B_CNV_RSLT 0xf0 #define IMX7D_REG_ADC_CHC_D_CNV_RSLT 0x100 #define IMX7D_REG_ADC_CH_SW_CNV_RSLT 0x110 #define IMX7D_REG_ADC_DMA_FIFO_DAT 0x120 #define IMX7D_REG_ADC_ADC_CFG 0x130 #define IMX7D_REG_ADC_CHANNEL_CFG2_BASE 0x10 #define IMX7D_EACH_CHANNEL_REG_OFFSET 0x20 #define IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN (0x1 << 31) #define IMX7D_REG_ADC_CH_CFG1_CHANNEL_SINGLE BIT(30) #define IMX7D_REG_ADC_CH_CFG1_CHANNEL_AVG_EN BIT(29) #define IMX7D_REG_ADC_CH_CFG1_CHANNEL_SEL(x) ((x) << 24) #define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_4 (0x0 << 12) #define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_8 (0x1 << 12) #define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_16 (0x2 << 12) #define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_32 (0x3 << 12) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_4 (0x0 << 29) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_8 (0x1 << 29) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_16 (0x2 << 29) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_32 (0x3 << 29) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_64 (0x4 << 29) #define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_128 (0x5 << 29) #define IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN BIT(31) #define IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN BIT(1) #define IMX7D_REG_ADC_ADC_CFG_ADC_EN BIT(0) #define IMX7D_REG_ADC_INT_CHA_COV_INT_EN BIT(8) #define IMX7D_REG_ADC_INT_CHB_COV_INT_EN BIT(9) #define IMX7D_REG_ADC_INT_CHC_COV_INT_EN BIT(10) #define IMX7D_REG_ADC_INT_CHD_COV_INT_EN BIT(11) #define IMX7D_REG_ADC_INT_CHANNEL_INT_EN \ (IMX7D_REG_ADC_INT_CHA_COV_INT_EN | \ IMX7D_REG_ADC_INT_CHB_COV_INT_EN | \ IMX7D_REG_ADC_INT_CHC_COV_INT_EN | \ IMX7D_REG_ADC_INT_CHD_COV_INT_EN) #define IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS 0xf00 #define IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT 0xf0000 #define IMX7D_ADC_TIMEOUT msecs_to_jiffies(100) #define IMX7D_ADC_INPUT_CLK 24000000 enum imx7d_adc_clk_pre_div { IMX7D_ADC_ANALOG_CLK_PRE_DIV_4, IMX7D_ADC_ANALOG_CLK_PRE_DIV_8, IMX7D_ADC_ANALOG_CLK_PRE_DIV_16, IMX7D_ADC_ANALOG_CLK_PRE_DIV_32, IMX7D_ADC_ANALOG_CLK_PRE_DIV_64, IMX7D_ADC_ANALOG_CLK_PRE_DIV_128, }; enum imx7d_adc_average_num { IMX7D_ADC_AVERAGE_NUM_4, IMX7D_ADC_AVERAGE_NUM_8, IMX7D_ADC_AVERAGE_NUM_16, IMX7D_ADC_AVERAGE_NUM_32, }; struct imx7d_adc_feature { enum imx7d_adc_clk_pre_div clk_pre_div; enum imx7d_adc_average_num avg_num; u32 core_time_unit; /* impact the sample rate */ }; struct imx7d_adc { struct device *dev; void __iomem *regs; struct clk *clk; /* lock to protect against multiple access to the device */ struct mutex lock; u32 vref_uv; u32 value; u32 channel; u32 pre_div_num; struct regulator *vref; struct imx7d_adc_feature adc_feature; struct completion completion; }; struct imx7d_adc_analogue_core_clk { u32 pre_div; u32 reg_config; }; #define IMX7D_ADC_ANALOGUE_CLK_CONFIG(_pre_div, _reg_conf) { \ .pre_div = (_pre_div), \ .reg_config = (_reg_conf), \ } static const struct imx7d_adc_analogue_core_clk imx7d_adc_analogue_clk[] = { IMX7D_ADC_ANALOGUE_CLK_CONFIG(4, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_4), IMX7D_ADC_ANALOGUE_CLK_CONFIG(8, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_8), IMX7D_ADC_ANALOGUE_CLK_CONFIG(16, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_16), IMX7D_ADC_ANALOGUE_CLK_CONFIG(32, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_32), IMX7D_ADC_ANALOGUE_CLK_CONFIG(64, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_64), IMX7D_ADC_ANALOGUE_CLK_CONFIG(128, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_128), }; #define IMX7D_ADC_CHAN(_idx) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (_idx), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ } static const struct iio_chan_spec imx7d_adc_iio_channels[] = { IMX7D_ADC_CHAN(0), IMX7D_ADC_CHAN(1), IMX7D_ADC_CHAN(2), IMX7D_ADC_CHAN(3), IMX7D_ADC_CHAN(4), IMX7D_ADC_CHAN(5), IMX7D_ADC_CHAN(6), IMX7D_ADC_CHAN(7), IMX7D_ADC_CHAN(8), IMX7D_ADC_CHAN(9), IMX7D_ADC_CHAN(10), IMX7D_ADC_CHAN(11), IMX7D_ADC_CHAN(12), IMX7D_ADC_CHAN(13), IMX7D_ADC_CHAN(14), IMX7D_ADC_CHAN(15), }; static const u32 imx7d_adc_average_num[] = { IMX7D_REG_ADC_CH_CFG2_AVG_NUM_4, IMX7D_REG_ADC_CH_CFG2_AVG_NUM_8, IMX7D_REG_ADC_CH_CFG2_AVG_NUM_16, IMX7D_REG_ADC_CH_CFG2_AVG_NUM_32, }; static void imx7d_adc_feature_config(struct imx7d_adc *info) { info->adc_feature.clk_pre_div = IMX7D_ADC_ANALOG_CLK_PRE_DIV_4; info->adc_feature.avg_num = IMX7D_ADC_AVERAGE_NUM_32; info->adc_feature.core_time_unit = 1; } static void imx7d_adc_sample_rate_set(struct imx7d_adc *info) { struct imx7d_adc_feature *adc_feature = &info->adc_feature; struct imx7d_adc_analogue_core_clk adc_analogure_clk; u32 i; u32 tmp_cfg1; u32 sample_rate = 0; /* * Before sample set, disable channel A,B,C,D. Here we * clear the bit 31 of register REG_ADC_CH_A\B\C\D_CFG1. */ for (i = 0; i < 4; i++) { tmp_cfg1 = readl(info->regs + i * IMX7D_EACH_CHANNEL_REG_OFFSET); tmp_cfg1 &= ~IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN; writel(tmp_cfg1, info->regs + i * IMX7D_EACH_CHANNEL_REG_OFFSET); } adc_analogure_clk = imx7d_adc_analogue_clk[adc_feature->clk_pre_div]; sample_rate |= adc_analogure_clk.reg_config; info->pre_div_num = adc_analogure_clk.pre_div; sample_rate |= adc_feature->core_time_unit; writel(sample_rate, info->regs + IMX7D_REG_ADC_TIMER_UNIT); } static void imx7d_adc_hw_init(struct imx7d_adc *info) { u32 cfg; /* power up and enable adc analogue core */ cfg = readl(info->regs + IMX7D_REG_ADC_ADC_CFG); cfg &= ~(IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN | IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN); cfg |= IMX7D_REG_ADC_ADC_CFG_ADC_EN; writel(cfg, info->regs + IMX7D_REG_ADC_ADC_CFG); /* enable channel A,B,C,D interrupt */ writel(IMX7D_REG_ADC_INT_CHANNEL_INT_EN, info->regs + IMX7D_REG_ADC_INT_SIG_EN); writel(IMX7D_REG_ADC_INT_CHANNEL_INT_EN, info->regs + IMX7D_REG_ADC_INT_EN); imx7d_adc_sample_rate_set(info); } static void imx7d_adc_channel_set(struct imx7d_adc *info) { u32 cfg1 = 0; u32 cfg2; u32 channel; channel = info->channel; /* the channel choose single conversion, and enable average mode */ cfg1 |= (IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN | IMX7D_REG_ADC_CH_CFG1_CHANNEL_SINGLE | IMX7D_REG_ADC_CH_CFG1_CHANNEL_AVG_EN); /* * physical channel 0 chose logical channel A * physical channel 1 chose logical channel B * physical channel 2 chose logical channel C * physical channel 3 chose logical channel D */ cfg1 |= IMX7D_REG_ADC_CH_CFG1_CHANNEL_SEL(channel); /* * read register REG_ADC_CH_A\B\C\D_CFG2, according to the * channel chosen */ cfg2 = readl(info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel + IMX7D_REG_ADC_CHANNEL_CFG2_BASE); cfg2 |= imx7d_adc_average_num[info->adc_feature.avg_num]; /* * write the register REG_ADC_CH_A\B\C\D_CFG2, according to * the channel chosen */ writel(cfg2, info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel + IMX7D_REG_ADC_CHANNEL_CFG2_BASE); writel(cfg1, info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel); } static u32 imx7d_adc_get_sample_rate(struct imx7d_adc *info) { u32 analogue_core_clk; u32 core_time_unit = info->adc_feature.core_time_unit; u32 tmp; analogue_core_clk = IMX7D_ADC_INPUT_CLK / info->pre_div_num; tmp = (core_time_unit + 1) * 6; return analogue_core_clk / tmp; } static int imx7d_adc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct imx7d_adc *info = iio_priv(indio_dev); u32 channel; long ret; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&info->lock); reinit_completion(&info->completion); channel = chan->channel & 0x03; info->channel = channel; imx7d_adc_channel_set(info); ret = wait_for_completion_interruptible_timeout (&info->completion, IMX7D_ADC_TIMEOUT); if (ret == 0) { mutex_unlock(&info->lock); return -ETIMEDOUT; } if (ret < 0) { mutex_unlock(&info->lock); return ret; } *val = info->value; mutex_unlock(&info->lock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: info->vref_uv = regulator_get_voltage(info->vref); *val = info->vref_uv / 1000; *val2 = 12; return IIO_VAL_FRACTIONAL_LOG2; case IIO_CHAN_INFO_SAMP_FREQ: *val = imx7d_adc_get_sample_rate(info); return IIO_VAL_INT; default: return -EINVAL; } } static int imx7d_adc_read_data(struct imx7d_adc *info) { u32 channel; u32 value; channel = info->channel & 0x03; /* * channel A and B conversion result share one register, * bit[27~16] is the channel B conversion result, * bit[11~0] is the channel A conversion result. * channel C and D is the same. */ if (channel < 2) value = readl(info->regs + IMX7D_REG_ADC_CHA_B_CNV_RSLT); else value = readl(info->regs + IMX7D_REG_ADC_CHC_D_CNV_RSLT); if (channel & 0x1) /* channel B or D */ value = (value >> 16) & 0xFFF; else /* channel A or C */ value &= 0xFFF; return value; } static irqreturn_t imx7d_adc_isr(int irq, void *dev_id) { struct imx7d_adc *info = dev_id; int status; status = readl(info->regs + IMX7D_REG_ADC_INT_STATUS); if (status & IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS) { info->value = imx7d_adc_read_data(info); complete(&info->completion); /* * The register IMX7D_REG_ADC_INT_STATUS can't clear * itself after read operation, need software to write * 0 to the related bit. Here we clear the channel A/B/C/D * conversion finished flag. */ status &= ~IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS; writel(status, info->regs + IMX7D_REG_ADC_INT_STATUS); } /* * If the channel A/B/C/D conversion timeout, report it and clear these * timeout flags. */ if (status & IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT) { dev_err(info->dev, "ADC got conversion time out interrupt: 0x%08x\n", status); status &= ~IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT; writel(status, info->regs + IMX7D_REG_ADC_INT_STATUS); } return IRQ_HANDLED; } static int imx7d_adc_reg_access(struct iio_dev *indio_dev, unsigned reg, unsigned writeval, unsigned *readval) { struct imx7d_adc *info = iio_priv(indio_dev); if (!readval || reg % 4 || reg > IMX7D_REG_ADC_ADC_CFG) return -EINVAL; *readval = readl(info->regs + reg); return 0; } static const struct iio_info imx7d_adc_iio_info = { .read_raw = &imx7d_adc_read_raw, .debugfs_reg_access = &imx7d_adc_reg_access, }; static const struct of_device_id imx7d_adc_match[] = { { .compatible = "fsl,imx7d-adc", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx7d_adc_match); static void imx7d_adc_power_down(struct imx7d_adc *info) { u32 adc_cfg; adc_cfg = readl(info->regs + IMX7D_REG_ADC_ADC_CFG); adc_cfg |= IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN | IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN; adc_cfg &= ~IMX7D_REG_ADC_ADC_CFG_ADC_EN; writel(adc_cfg, info->regs + IMX7D_REG_ADC_ADC_CFG); } static int imx7d_adc_enable(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct imx7d_adc *info = iio_priv(indio_dev); int ret; ret = regulator_enable(info->vref); if (ret) { dev_err(info->dev, "Can't enable adc reference top voltage, err = %d\n", ret); return ret; } ret = clk_prepare_enable(info->clk); if (ret) { dev_err(info->dev, "Could not prepare or enable clock.\n"); regulator_disable(info->vref); return ret; } imx7d_adc_hw_init(info); return 0; } static int imx7d_adc_disable(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct imx7d_adc *info = iio_priv(indio_dev); imx7d_adc_power_down(info); clk_disable_unprepare(info->clk); regulator_disable(info->vref); return 0; } static void __imx7d_adc_disable(void *data) { imx7d_adc_disable(data); } static int imx7d_adc_probe(struct platform_device *pdev) { struct imx7d_adc *info; struct iio_dev *indio_dev; struct device *dev = &pdev->dev; int irq; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*info)); if (!indio_dev) { dev_err(&pdev->dev, "Failed allocating iio device\n"); return -ENOMEM; } info = iio_priv(indio_dev); info->dev = dev; info->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(info->regs)) return PTR_ERR(info->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; info->clk = devm_clk_get(dev, "adc"); if (IS_ERR(info->clk)) return dev_err_probe(dev, PTR_ERR(info->clk), "Failed getting clock\n"); info->vref = devm_regulator_get(dev, "vref"); if (IS_ERR(info->vref)) return dev_err_probe(dev, PTR_ERR(info->vref), "Failed getting reference voltage\n"); platform_set_drvdata(pdev, indio_dev); init_completion(&info->completion); indio_dev->name = dev_name(dev); indio_dev->info = &imx7d_adc_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = imx7d_adc_iio_channels; indio_dev->num_channels = ARRAY_SIZE(imx7d_adc_iio_channels); ret = devm_request_irq(dev, irq, imx7d_adc_isr, 0, dev_name(dev), info); if (ret < 0) { dev_err(dev, "Failed requesting irq, irq = %d\n", irq); return ret; } imx7d_adc_feature_config(info); ret = imx7d_adc_enable(dev); if (ret) return ret; ret = devm_add_action_or_reset(dev, __imx7d_adc_disable, dev); if (ret) return ret; mutex_init(&info->lock); ret = devm_iio_device_register(dev, indio_dev); if (ret) { dev_err(&pdev->dev, "Couldn't register the device.\n"); return ret; } return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(imx7d_adc_pm_ops, imx7d_adc_disable, imx7d_adc_enable); static struct platform_driver imx7d_adc_driver = { .probe = imx7d_adc_probe, .driver = { .name = "imx7d_adc", .of_match_table = imx7d_adc_match, .pm = pm_sleep_ptr(&imx7d_adc_pm_ops), }, }; module_platform_driver(imx7d_adc_driver); MODULE_AUTHOR("Haibo Chen <haibo.chen@freescale.com>"); MODULE_DESCRIPTION("Freescale IMX7D ADC driver"); MODULE_LICENSE("GPL v2");