// SPDX-License-Identifier: GPL-2.0 /* ad7949.c - Analog Devices ADC driver 14/16 bits 4/8 channels * * Copyright (C) 2018 CMC NV * * http://www.analog.com/media/en/technical-documentation/data-sheets/AD7949.pdf */ #include <linux/delay.h> #include <linux/iio/iio.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/spi/spi.h> #define AD7949_MASK_CHANNEL_SEL GENMASK(9, 7) #define AD7949_MASK_TOTAL GENMASK(13, 0) #define AD7949_OFFSET_CHANNEL_SEL 7 #define AD7949_CFG_READ_BACK 0x1 #define AD7949_CFG_REG_SIZE_BITS 14 enum { ID_AD7949 = 0, ID_AD7682, ID_AD7689, }; struct ad7949_adc_spec { u8 num_channels; u8 resolution; }; static const struct ad7949_adc_spec ad7949_adc_spec[] = { [ID_AD7949] = { .num_channels = 8, .resolution = 14 }, [ID_AD7682] = { .num_channels = 4, .resolution = 16 }, [ID_AD7689] = { .num_channels = 8, .resolution = 16 }, }; /** * struct ad7949_adc_chip - AD ADC chip * @lock: protects write sequences * @vref: regulator generating Vref * @iio_dev: reference to iio structure * @spi: reference to spi structure * @resolution: resolution of the chip * @cfg: copy of the configuration register * @current_channel: current channel in use * @buffer: buffer to send / receive data to / from device */ struct ad7949_adc_chip { struct mutex lock; struct regulator *vref; struct iio_dev *indio_dev; struct spi_device *spi; u8 resolution; u16 cfg; unsigned int current_channel; u16 buffer ____cacheline_aligned; }; static int ad7949_spi_write_cfg(struct ad7949_adc_chip *ad7949_adc, u16 val, u16 mask) { int ret; int bits_per_word = ad7949_adc->resolution; int shift = bits_per_word - AD7949_CFG_REG_SIZE_BITS; struct spi_message msg; struct spi_transfer tx[] = { { .tx_buf = &ad7949_adc->buffer, .len = 2, .bits_per_word = bits_per_word, }, }; ad7949_adc->cfg = (val & mask) | (ad7949_adc->cfg & ~mask); ad7949_adc->buffer = ad7949_adc->cfg << shift; spi_message_init_with_transfers(&msg, tx, 1); ret = spi_sync(ad7949_adc->spi, &msg); /* * This delay is to avoid a new request before the required time to * send a new command to the device */ udelay(2); return ret; } static int ad7949_spi_read_channel(struct ad7949_adc_chip *ad7949_adc, int *val, unsigned int channel) { int ret; int i; int bits_per_word = ad7949_adc->resolution; int mask = GENMASK(ad7949_adc->resolution, 0); struct spi_message msg; struct spi_transfer tx[] = { { .rx_buf = &ad7949_adc->buffer, .len = 2, .bits_per_word = bits_per_word, }, }; /* * 1: write CFG for sample N and read old data (sample N-2) * 2: if CFG was not changed since sample N-1 then we'll get good data * at the next xfer, so we bail out now, otherwise we write something * and we read garbage (sample N-1 configuration). */ for (i = 0; i < 2; i++) { ret = ad7949_spi_write_cfg(ad7949_adc, channel << AD7949_OFFSET_CHANNEL_SEL, AD7949_MASK_CHANNEL_SEL); if (ret) return ret; if (channel == ad7949_adc->current_channel) break; } /* 3: write something and read actual data */ ad7949_adc->buffer = 0; spi_message_init_with_transfers(&msg, tx, 1); ret = spi_sync(ad7949_adc->spi, &msg); if (ret) return ret; /* * This delay is to avoid a new request before the required time to * send a new command to the device */ udelay(2); ad7949_adc->current_channel = channel; *val = ad7949_adc->buffer & mask; return 0; } #define AD7949_ADC_CHANNEL(chan) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (chan), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ } static const struct iio_chan_spec ad7949_adc_channels[] = { AD7949_ADC_CHANNEL(0), AD7949_ADC_CHANNEL(1), AD7949_ADC_CHANNEL(2), AD7949_ADC_CHANNEL(3), AD7949_ADC_CHANNEL(4), AD7949_ADC_CHANNEL(5), AD7949_ADC_CHANNEL(6), AD7949_ADC_CHANNEL(7), }; static int ad7949_spi_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev); int ret; if (!val) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&ad7949_adc->lock); ret = ad7949_spi_read_channel(ad7949_adc, val, chan->channel); mutex_unlock(&ad7949_adc->lock); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: ret = regulator_get_voltage(ad7949_adc->vref); if (ret < 0) return ret; *val = ret / 5000; return IIO_VAL_INT; } return -EINVAL; } static int ad7949_spi_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev); int ret = 0; if (readval) *readval = ad7949_adc->cfg; else ret = ad7949_spi_write_cfg(ad7949_adc, writeval & AD7949_MASK_TOTAL, AD7949_MASK_TOTAL); return ret; } static const struct iio_info ad7949_spi_info = { .read_raw = ad7949_spi_read_raw, .debugfs_reg_access = ad7949_spi_reg_access, }; static int ad7949_spi_init(struct ad7949_adc_chip *ad7949_adc) { int ret; int val; /* Sequencer disabled, CFG readback disabled, IN0 as default channel */ ad7949_adc->current_channel = 0; ret = ad7949_spi_write_cfg(ad7949_adc, 0x3C79, AD7949_MASK_TOTAL); /* * Do two dummy conversions to apply the first configuration setting. * Required only after the start up of the device. */ ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel); ad7949_spi_read_channel(ad7949_adc, &val, ad7949_adc->current_channel); return ret; } static int ad7949_spi_probe(struct spi_device *spi) { struct device *dev = &spi->dev; const struct ad7949_adc_spec *spec; struct ad7949_adc_chip *ad7949_adc; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*ad7949_adc)); if (!indio_dev) { dev_err(dev, "can not allocate iio device\n"); return -ENOMEM; } indio_dev->dev.parent = dev; indio_dev->dev.of_node = dev->of_node; indio_dev->info = &ad7949_spi_info; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = ad7949_adc_channels; spi_set_drvdata(spi, indio_dev); ad7949_adc = iio_priv(indio_dev); ad7949_adc->indio_dev = indio_dev; ad7949_adc->spi = spi; spec = &ad7949_adc_spec[spi_get_device_id(spi)->driver_data]; indio_dev->num_channels = spec->num_channels; ad7949_adc->resolution = spec->resolution; ad7949_adc->vref = devm_regulator_get(dev, "vref"); if (IS_ERR(ad7949_adc->vref)) { dev_err(dev, "fail to request regulator\n"); return PTR_ERR(ad7949_adc->vref); } ret = regulator_enable(ad7949_adc->vref); if (ret < 0) { dev_err(dev, "fail to enable regulator\n"); return ret; } mutex_init(&ad7949_adc->lock); ret = ad7949_spi_init(ad7949_adc); if (ret) { dev_err(dev, "enable to init this device: %d\n", ret); goto err; } ret = iio_device_register(indio_dev); if (ret) { dev_err(dev, "fail to register iio device: %d\n", ret); goto err; } return 0; err: mutex_destroy(&ad7949_adc->lock); regulator_disable(ad7949_adc->vref); return ret; } static int ad7949_spi_remove(struct spi_device *spi) { struct iio_dev *indio_dev = spi_get_drvdata(spi); struct ad7949_adc_chip *ad7949_adc = iio_priv(indio_dev); iio_device_unregister(indio_dev); mutex_destroy(&ad7949_adc->lock); regulator_disable(ad7949_adc->vref); return 0; } static const struct of_device_id ad7949_spi_of_id[] = { { .compatible = "adi,ad7949" }, { .compatible = "adi,ad7682" }, { .compatible = "adi,ad7689" }, { } }; MODULE_DEVICE_TABLE(of, ad7949_spi_of_id); static const struct spi_device_id ad7949_spi_id[] = { { "ad7949", ID_AD7949 }, { "ad7682", ID_AD7682 }, { "ad7689", ID_AD7689 }, { } }; MODULE_DEVICE_TABLE(spi, ad7949_spi_id); static struct spi_driver ad7949_spi_driver = { .driver = { .name = "ad7949", .of_match_table = ad7949_spi_of_id, }, .probe = ad7949_spi_probe, .remove = ad7949_spi_remove, .id_table = ad7949_spi_id, }; module_spi_driver(ad7949_spi_driver); MODULE_AUTHOR("Charles-Antoine Couret <charles-antoine.couret@essensium.com>"); MODULE_DESCRIPTION("Analog Devices 14/16-bit 8-channel ADC driver"); MODULE_LICENSE("GPL v2");