// SPDX-License-Identifier: GPL-2.0-only /* * AD7887 SPI ADC driver * * Copyright 2010-2011 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AD7887_REF_DIS BIT(5) /* on-chip reference disable */ #define AD7887_DUAL BIT(4) /* dual-channel mode */ #define AD7887_CH_AIN1 BIT(3) /* convert on channel 1, DUAL=1 */ #define AD7887_CH_AIN0 0 /* convert on channel 0, DUAL=0,1 */ #define AD7887_PM_MODE1 0 /* CS based shutdown */ #define AD7887_PM_MODE2 1 /* full on */ #define AD7887_PM_MODE3 2 /* auto shutdown after conversion */ #define AD7887_PM_MODE4 3 /* standby mode */ enum ad7887_channels { AD7887_CH0, AD7887_CH0_CH1, AD7887_CH1, }; /** * struct ad7887_chip_info - chip specifc information * @int_vref_mv: the internal reference voltage * @channels: channels specification * @num_channels: number of channels * @dual_channels: channels specification in dual mode * @num_dual_channels: number of channels in dual mode */ struct ad7887_chip_info { u16 int_vref_mv; const struct iio_chan_spec *channels; unsigned int num_channels; const struct iio_chan_spec *dual_channels; unsigned int num_dual_channels; }; struct ad7887_state { struct spi_device *spi; const struct ad7887_chip_info *chip_info; struct regulator *reg; struct spi_transfer xfer[4]; struct spi_message msg[3]; struct spi_message *ring_msg; unsigned char tx_cmd_buf[4]; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers to live in their own cache lines. * Buffer needs to be large enough to hold two 16 bit samples and a * 64 bit aligned 64 bit timestamp. */ unsigned char data[ALIGN(4, sizeof(s64)) + sizeof(s64)] __aligned(IIO_DMA_MINALIGN); }; enum ad7887_supported_device_ids { ID_AD7887 }; static int ad7887_ring_preenable(struct iio_dev *indio_dev) { struct ad7887_state *st = iio_priv(indio_dev); /* We know this is a single long so can 'cheat' */ switch (*indio_dev->active_scan_mask) { case (1 << 0): st->ring_msg = &st->msg[AD7887_CH0]; break; case (1 << 1): st->ring_msg = &st->msg[AD7887_CH1]; /* Dummy read: push CH1 setting down to hardware */ spi_sync(st->spi, st->ring_msg); break; case ((1 << 1) | (1 << 0)): st->ring_msg = &st->msg[AD7887_CH0_CH1]; break; } return 0; } static int ad7887_ring_postdisable(struct iio_dev *indio_dev) { struct ad7887_state *st = iio_priv(indio_dev); /* dummy read: restore default CH0 settin */ return spi_sync(st->spi, &st->msg[AD7887_CH0]); } static irqreturn_t ad7887_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad7887_state *st = iio_priv(indio_dev); int b_sent; b_sent = spi_sync(st->spi, st->ring_msg); if (b_sent) goto done; iio_push_to_buffers_with_timestamp(indio_dev, st->data, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_buffer_setup_ops ad7887_ring_setup_ops = { .preenable = &ad7887_ring_preenable, .postdisable = &ad7887_ring_postdisable, }; static int ad7887_scan_direct(struct ad7887_state *st, unsigned ch) { int ret = spi_sync(st->spi, &st->msg[ch]); if (ret) return ret; return (st->data[(ch * 2)] << 8) | st->data[(ch * 2) + 1]; } static int ad7887_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { int ret; struct ad7887_state *st = iio_priv(indio_dev); switch (m) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = ad7887_scan_direct(st, chan->address); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = ret >> chan->scan_type.shift; *val &= GENMASK(chan->scan_type.realbits - 1, 0); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: if (st->reg) { *val = regulator_get_voltage(st->reg); if (*val < 0) return *val; *val /= 1000; } else { *val = st->chip_info->int_vref_mv; } *val2 = chan->scan_type.realbits; return IIO_VAL_FRACTIONAL_LOG2; } return -EINVAL; } #define AD7887_CHANNEL(x) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = (x), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = (x), \ .scan_index = (x), \ .scan_type = { \ .sign = 'u', \ .realbits = 12, \ .storagebits = 16, \ .shift = 0, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec ad7887_channels[] = { AD7887_CHANNEL(0), IIO_CHAN_SOFT_TIMESTAMP(1), }; static const struct iio_chan_spec ad7887_dual_channels[] = { AD7887_CHANNEL(0), AD7887_CHANNEL(1), IIO_CHAN_SOFT_TIMESTAMP(2), }; static const struct ad7887_chip_info ad7887_chip_info_tbl[] = { /* * More devices added in future */ [ID_AD7887] = { .channels = ad7887_channels, .num_channels = ARRAY_SIZE(ad7887_channels), .dual_channels = ad7887_dual_channels, .num_dual_channels = ARRAY_SIZE(ad7887_dual_channels), .int_vref_mv = 2500, }, }; static const struct iio_info ad7887_info = { .read_raw = &ad7887_read_raw, }; static void ad7887_reg_disable(void *data) { struct regulator *reg = data; regulator_disable(reg); } static int ad7887_probe(struct spi_device *spi) { struct ad7887_platform_data *pdata = spi->dev.platform_data; struct ad7887_state *st; struct iio_dev *indio_dev; uint8_t mode; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (indio_dev == NULL) return -ENOMEM; st = iio_priv(indio_dev); st->reg = devm_regulator_get_optional(&spi->dev, "vref"); if (IS_ERR(st->reg)) { if (PTR_ERR(st->reg) != -ENODEV) return PTR_ERR(st->reg); st->reg = NULL; } if (st->reg) { ret = regulator_enable(st->reg); if (ret) return ret; ret = devm_add_action_or_reset(&spi->dev, ad7887_reg_disable, st->reg); if (ret) return ret; } st->chip_info = &ad7887_chip_info_tbl[spi_get_device_id(spi)->driver_data]; st->spi = spi; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->info = &ad7887_info; indio_dev->modes = INDIO_DIRECT_MODE; /* Setup default message */ mode = AD7887_PM_MODE4; if (!st->reg) mode |= AD7887_REF_DIS; if (pdata && pdata->en_dual) mode |= AD7887_DUAL; st->tx_cmd_buf[0] = AD7887_CH_AIN0 | mode; st->xfer[0].rx_buf = &st->data[0]; st->xfer[0].tx_buf = &st->tx_cmd_buf[0]; st->xfer[0].len = 2; spi_message_init(&st->msg[AD7887_CH0]); spi_message_add_tail(&st->xfer[0], &st->msg[AD7887_CH0]); if (pdata && pdata->en_dual) { st->tx_cmd_buf[2] = AD7887_CH_AIN1 | mode; st->xfer[1].rx_buf = &st->data[0]; st->xfer[1].tx_buf = &st->tx_cmd_buf[2]; st->xfer[1].len = 2; st->xfer[2].rx_buf = &st->data[2]; st->xfer[2].tx_buf = &st->tx_cmd_buf[0]; st->xfer[2].len = 2; spi_message_init(&st->msg[AD7887_CH0_CH1]); spi_message_add_tail(&st->xfer[1], &st->msg[AD7887_CH0_CH1]); spi_message_add_tail(&st->xfer[2], &st->msg[AD7887_CH0_CH1]); st->xfer[3].rx_buf = &st->data[2]; st->xfer[3].tx_buf = &st->tx_cmd_buf[2]; st->xfer[3].len = 2; spi_message_init(&st->msg[AD7887_CH1]); spi_message_add_tail(&st->xfer[3], &st->msg[AD7887_CH1]); indio_dev->channels = st->chip_info->dual_channels; indio_dev->num_channels = st->chip_info->num_dual_channels; } else { indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = st->chip_info->num_channels; } ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, &iio_pollfunc_store_time, &ad7887_trigger_handler, &ad7887_ring_setup_ops); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id ad7887_id[] = { { "ad7887", ID_AD7887 }, { } }; MODULE_DEVICE_TABLE(spi, ad7887_id); static struct spi_driver ad7887_driver = { .driver = { .name = "ad7887", }, .probe = ad7887_probe, .id_table = ad7887_id, }; module_spi_driver(ad7887_driver); MODULE_AUTHOR("Michael Hennerich "); MODULE_DESCRIPTION("Analog Devices AD7887 ADC"); MODULE_LICENSE("GPL v2");