// SPDX-License-Identifier: GPL-2.0+ /* * AD4000 SPI ADC driver * * Copyright 2024 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AD4000_READ_COMMAND 0x54 #define AD4000_WRITE_COMMAND 0x14 #define AD4000_CONFIG_REG_DEFAULT 0xE1 /* AD4000 Configuration Register programmable bits */ #define AD4000_CFG_SPAN_COMP BIT(3) /* Input span compression */ #define AD4000_CFG_HIGHZ BIT(2) /* High impedance mode */ #define AD4000_SCALE_OPTIONS 2 #define AD4000_TQUIET1_NS 190 #define AD4000_TQUIET2_NS 60 #define AD4000_TCONV_NS 320 #define __AD4000_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .differential = 1, \ .channel = 0, \ .channel2 = 1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ .scan_type = { \ .sign = _sign, \ .realbits = _real_bits, \ .storagebits = _storage_bits, \ .shift = _storage_bits - _real_bits, \ .endianness = IIO_BE, \ }, \ } #define AD4000_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ __AD4000_DIFF_CHANNEL((_sign), (_real_bits), \ ((_real_bits) > 16 ? 32 : 16), (_reg_access)) #define __AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _storage_bits, _reg_access)\ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_separate_available = _reg_access ? BIT(IIO_CHAN_INFO_SCALE) : 0,\ .scan_type = { \ .sign = _sign, \ .realbits = _real_bits, \ .storagebits = _storage_bits, \ .shift = _storage_bits - _real_bits, \ .endianness = IIO_BE, \ }, \ } #define AD4000_PSEUDO_DIFF_CHANNEL(_sign, _real_bits, _reg_access) \ __AD4000_PSEUDO_DIFF_CHANNEL((_sign), (_real_bits), \ ((_real_bits) > 16 ? 32 : 16), (_reg_access)) static const char * const ad4000_power_supplies[] = { "vdd", "vio" }; enum ad4000_sdi { AD4000_SDI_MOSI, AD4000_SDI_VIO, AD4000_SDI_CS, AD4000_SDI_GND, }; /* maps adi,sdi-pin property value to enum */ static const char * const ad4000_sdi_pin[] = { [AD4000_SDI_MOSI] = "sdi", [AD4000_SDI_VIO] = "high", [AD4000_SDI_CS] = "cs", [AD4000_SDI_GND] = "low", }; /* Gains stored as fractions of 1000 so they can be expressed by integers. */ static const int ad4000_gains[] = { 454, 909, 1000, 1900, }; struct ad4000_chip_info { const char *dev_name; struct iio_chan_spec chan_spec; struct iio_chan_spec reg_access_chan_spec; bool has_hardware_gain; }; static const struct ad4000_chip_info ad4000_chip_info = { .dev_name = "ad4000", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), }; static const struct ad4000_chip_info ad4001_chip_info = { .dev_name = "ad4001", .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), }; static const struct ad4000_chip_info ad4002_chip_info = { .dev_name = "ad4002", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), }; static const struct ad4000_chip_info ad4003_chip_info = { .dev_name = "ad4003", .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), }; static const struct ad4000_chip_info ad4004_chip_info = { .dev_name = "ad4004", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), }; static const struct ad4000_chip_info ad4005_chip_info = { .dev_name = "ad4005", .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), }; static const struct ad4000_chip_info ad4006_chip_info = { .dev_name = "ad4006", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), }; static const struct ad4000_chip_info ad4007_chip_info = { .dev_name = "ad4007", .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), }; static const struct ad4000_chip_info ad4008_chip_info = { .dev_name = "ad4008", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 16, 1), }; static const struct ad4000_chip_info ad4010_chip_info = { .dev_name = "ad4010", .chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 0), .reg_access_chan_spec = AD4000_PSEUDO_DIFF_CHANNEL('u', 18, 1), }; static const struct ad4000_chip_info ad4011_chip_info = { .dev_name = "ad4011", .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), }; static const struct ad4000_chip_info ad4020_chip_info = { .dev_name = "ad4020", .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), }; static const struct ad4000_chip_info ad4021_chip_info = { .dev_name = "ad4021", .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), }; static const struct ad4000_chip_info ad4022_chip_info = { .dev_name = "ad4022", .chan_spec = AD4000_DIFF_CHANNEL('s', 20, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 20, 1), }; static const struct ad4000_chip_info adaq4001_chip_info = { .dev_name = "adaq4001", .chan_spec = AD4000_DIFF_CHANNEL('s', 16, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 16, 1), .has_hardware_gain = true, }; static const struct ad4000_chip_info adaq4003_chip_info = { .dev_name = "adaq4003", .chan_spec = AD4000_DIFF_CHANNEL('s', 18, 0), .reg_access_chan_spec = AD4000_DIFF_CHANNEL('s', 18, 1), .has_hardware_gain = true, }; struct ad4000_state { struct spi_device *spi; struct gpio_desc *cnv_gpio; struct spi_transfer xfers[2]; struct spi_message msg; struct mutex lock; /* Protect read modify write cycle */ int vref_mv; enum ad4000_sdi sdi_pin; bool span_comp; u16 gain_milli; int scale_tbl[AD4000_SCALE_OPTIONS][2]; /* * DMA (thus cache coherency maintenance) requires the transfer buffers * to live in their own cache lines. */ struct { union { __be16 sample_buf16; __be32 sample_buf32; } data; s64 timestamp __aligned(8); } scan __aligned(IIO_DMA_MINALIGN); u8 tx_buf[2]; u8 rx_buf[2]; }; static void ad4000_fill_scale_tbl(struct ad4000_state *st, struct iio_chan_spec const *chan) { int val, tmp0, tmp1; int scale_bits; u64 tmp2; /* * ADCs that output two's complement code have one less bit to express * voltage magnitude. */ if (chan->scan_type.sign == 's') scale_bits = chan->scan_type.realbits - 1; else scale_bits = chan->scan_type.realbits; /* * The gain is stored as a fraction of 1000 and, as we need to * divide vref_mv by the gain, we invert the gain/1000 fraction. * Also multiply by an extra MILLI to preserve precision. * Thus, we have MILLI * MILLI equals MICRO as fraction numerator. */ val = mult_frac(st->vref_mv, MICRO, st->gain_milli); /* Would multiply by NANO here but we multiplied by extra MILLI */ tmp2 = shift_right((u64)val * MICRO, scale_bits); tmp0 = div_s64_rem(tmp2, NANO, &tmp1); /* Store scale for when span compression is disabled */ st->scale_tbl[0][0] = tmp0; /* Integer part */ st->scale_tbl[0][1] = abs(tmp1); /* Fractional part */ /* Store scale for when span compression is enabled */ st->scale_tbl[1][0] = tmp0; /* The integer part is always zero so don't bother to divide it. */ if (chan->differential) st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 4, 5); else st->scale_tbl[1][1] = DIV_ROUND_CLOSEST(abs(tmp1) * 9, 10); } static int ad4000_write_reg(struct ad4000_state *st, uint8_t val) { st->tx_buf[0] = AD4000_WRITE_COMMAND; st->tx_buf[1] = val; return spi_write(st->spi, st->tx_buf, ARRAY_SIZE(st->tx_buf)); } static int ad4000_read_reg(struct ad4000_state *st, unsigned int *val) { struct spi_transfer t = { .tx_buf = st->tx_buf, .rx_buf = st->rx_buf, .len = 2, }; int ret; st->tx_buf[0] = AD4000_READ_COMMAND; ret = spi_sync_transfer(st->spi, &t, 1); if (ret < 0) return ret; *val = st->rx_buf[1]; return ret; } static int ad4000_convert_and_acquire(struct ad4000_state *st) { int ret; /* * In 4-wire mode, the CNV line is held high for the entire conversion * and acquisition process. In other modes, the CNV GPIO is optional * and, if provided, replaces controller CS. If CNV GPIO is not defined * gpiod_set_value_cansleep() has no effect. */ gpiod_set_value_cansleep(st->cnv_gpio, 1); ret = spi_sync(st->spi, &st->msg); gpiod_set_value_cansleep(st->cnv_gpio, 0); return ret; } static int ad4000_single_conversion(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val) { struct ad4000_state *st = iio_priv(indio_dev); u32 sample; int ret; ret = ad4000_convert_and_acquire(st); if (ret < 0) return ret; if (chan->scan_type.storagebits > 16) sample = be32_to_cpu(st->scan.data.sample_buf32); else sample = be16_to_cpu(st->scan.data.sample_buf16); sample >>= chan->scan_type.shift; if (chan->scan_type.sign == 's') *val = sign_extend32(sample, chan->scan_type.realbits - 1); return IIO_VAL_INT; } static int ad4000_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long info) { struct ad4000_state *st = iio_priv(indio_dev); switch (info) { case IIO_CHAN_INFO_RAW: iio_device_claim_direct_scoped(return -EBUSY, indio_dev) return ad4000_single_conversion(indio_dev, chan, val); unreachable(); case IIO_CHAN_INFO_SCALE: *val = st->scale_tbl[st->span_comp][0]; *val2 = st->scale_tbl[st->span_comp][1]; return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_OFFSET: *val = 0; if (st->span_comp) *val = mult_frac(st->vref_mv, 1, 10); return IIO_VAL_INT; default: return -EINVAL; } } static int ad4000_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long info) { struct ad4000_state *st = iio_priv(indio_dev); switch (info) { case IIO_CHAN_INFO_SCALE: *vals = (int *)st->scale_tbl; *length = AD4000_SCALE_OPTIONS * 2; *type = IIO_VAL_INT_PLUS_NANO; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ad4000_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } } static int ad4000_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad4000_state *st = iio_priv(indio_dev); unsigned int reg_val; bool span_comp_en; int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { guard(mutex)(&st->lock); ret = ad4000_read_reg(st, ®_val); if (ret < 0) return ret; span_comp_en = val2 == st->scale_tbl[1][1]; reg_val &= ~AD4000_CFG_SPAN_COMP; reg_val |= FIELD_PREP(AD4000_CFG_SPAN_COMP, span_comp_en); ret = ad4000_write_reg(st, reg_val); if (ret < 0) return ret; st->span_comp = span_comp_en; return 0; } unreachable(); default: return -EINVAL; } } static irqreturn_t ad4000_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad4000_state *st = iio_priv(indio_dev); int ret; ret = ad4000_convert_and_acquire(st); if (ret < 0) goto err_out; iio_push_to_buffers_with_timestamp(indio_dev, &st->scan, pf->timestamp); err_out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const struct iio_info ad4000_reg_access_info = { .read_raw = &ad4000_read_raw, .read_avail = &ad4000_read_avail, .write_raw = &ad4000_write_raw, .write_raw_get_fmt = &ad4000_write_raw_get_fmt, }; static const struct iio_info ad4000_info = { .read_raw = &ad4000_read_raw, }; /* * This executes a data sample transfer for when the device connections are * in "3-wire" mode, selected when the adi,sdi-pin device tree property is * absent or set to "high". In this connection mode, the ADC SDI pin is * connected to MOSI or to VIO and ADC CNV pin is connected either to a SPI * controller CS or to a GPIO. * AD4000 series of devices initiate conversions on the rising edge of CNV pin. * * If the CNV pin is connected to an SPI controller CS line (which is by default * active low), the ADC readings would have a latency (delay) of one read. * Moreover, since we also do ADC sampling for filling the buffer on triggered * buffer mode, the timestamps of buffer readings would be disarranged. * To prevent the read latency and reduce the time discrepancy between the * sample read request and the time of actual sampling by the ADC, do a * preparatory transfer to pulse the CS/CNV line. */ static int ad4000_prepare_3wire_mode_message(struct ad4000_state *st, const struct iio_chan_spec *chan) { unsigned int cnv_pulse_time = AD4000_TCONV_NS; struct spi_transfer *xfers = st->xfers; xfers[0].cs_change = 1; xfers[0].cs_change_delay.value = cnv_pulse_time; xfers[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; xfers[1].rx_buf = &st->scan.data; xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); xfers[1].delay.value = AD4000_TQUIET2_NS; xfers[1].delay.unit = SPI_DELAY_UNIT_NSECS; spi_message_init_with_transfers(&st->msg, st->xfers, 2); return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); } /* * This executes a data sample transfer for when the device connections are * in "4-wire" mode, selected when the adi,sdi-pin device tree property is * set to "cs". In this connection mode, the controller CS pin is connected to * ADC SDI pin and a GPIO is connected to ADC CNV pin. * The GPIO connected to ADC CNV pin is set outside of the SPI transfer. */ static int ad4000_prepare_4wire_mode_message(struct ad4000_state *st, const struct iio_chan_spec *chan) { unsigned int cnv_to_sdi_time = AD4000_TCONV_NS; struct spi_transfer *xfers = st->xfers; /* * Dummy transfer to cause enough delay between CNV going high and SDI * going low. */ xfers[0].cs_off = 1; xfers[0].delay.value = cnv_to_sdi_time; xfers[0].delay.unit = SPI_DELAY_UNIT_NSECS; xfers[1].rx_buf = &st->scan.data; xfers[1].len = BITS_TO_BYTES(chan->scan_type.storagebits); spi_message_init_with_transfers(&st->msg, st->xfers, 2); return devm_spi_optimize_message(&st->spi->dev, st->spi, &st->msg); } static int ad4000_config(struct ad4000_state *st) { unsigned int reg_val = AD4000_CONFIG_REG_DEFAULT; if (device_property_present(&st->spi->dev, "adi,high-z-input")) reg_val |= FIELD_PREP(AD4000_CFG_HIGHZ, 1); return ad4000_write_reg(st, reg_val); } static int ad4000_probe(struct spi_device *spi) { const struct ad4000_chip_info *chip; struct device *dev = &spi->dev; struct iio_dev *indio_dev; struct ad4000_state *st; int gain_idx, ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; chip = spi_get_device_match_data(spi); if (!chip) return -EINVAL; st = iio_priv(indio_dev); st->spi = spi; ret = devm_regulator_bulk_get_enable(dev, ARRAY_SIZE(ad4000_power_supplies), ad4000_power_supplies); if (ret) return dev_err_probe(dev, ret, "Failed to enable power supplies\n"); ret = devm_regulator_get_enable_read_voltage(dev, "ref"); if (ret < 0) return dev_err_probe(dev, ret, "Failed to get ref regulator reference\n"); st->vref_mv = ret / 1000; st->cnv_gpio = devm_gpiod_get_optional(dev, "cnv", GPIOD_OUT_HIGH); if (IS_ERR(st->cnv_gpio)) return dev_err_probe(dev, PTR_ERR(st->cnv_gpio), "Failed to get CNV GPIO"); ret = device_property_match_property_string(dev, "adi,sdi-pin", ad4000_sdi_pin, ARRAY_SIZE(ad4000_sdi_pin)); if (ret < 0 && ret != -EINVAL) return dev_err_probe(dev, ret, "getting adi,sdi-pin property failed\n"); /* Default to usual SPI connections if pin properties are not present */ st->sdi_pin = ret == -EINVAL ? AD4000_SDI_MOSI : ret; switch (st->sdi_pin) { case AD4000_SDI_MOSI: indio_dev->info = &ad4000_reg_access_info; indio_dev->channels = &chip->reg_access_chan_spec; /* * In "3-wire mode", the ADC SDI line must be kept high when * data is not being clocked out of the controller. * Request the SPI controller to make MOSI idle high. */ spi->mode |= SPI_MOSI_IDLE_HIGH; ret = spi_setup(spi); if (ret < 0) return ret; ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); if (ret) return ret; ret = ad4000_config(st); if (ret < 0) return dev_err_probe(dev, ret, "Failed to config device\n"); break; case AD4000_SDI_VIO: indio_dev->info = &ad4000_info; indio_dev->channels = &chip->chan_spec; ret = ad4000_prepare_3wire_mode_message(st, indio_dev->channels); if (ret) return ret; break; case AD4000_SDI_CS: indio_dev->info = &ad4000_info; indio_dev->channels = &chip->chan_spec; ret = ad4000_prepare_4wire_mode_message(st, indio_dev->channels); if (ret) return ret; break; case AD4000_SDI_GND: return dev_err_probe(dev, -EPROTONOSUPPORT, "Unsupported connection mode\n"); default: return dev_err_probe(dev, -EINVAL, "Unrecognized connection mode\n"); } indio_dev->name = chip->dev_name; indio_dev->num_channels = 1; devm_mutex_init(dev, &st->lock); st->gain_milli = 1000; if (chip->has_hardware_gain) { ret = device_property_read_u16(dev, "adi,gain-milli", &st->gain_milli); if (!ret) { /* Match gain value from dt to one of supported gains */ gain_idx = find_closest(st->gain_milli, ad4000_gains, ARRAY_SIZE(ad4000_gains)); st->gain_milli = ad4000_gains[gain_idx]; } else { return dev_err_probe(dev, ret, "Failed to read gain property\n"); } } ad4000_fill_scale_tbl(st, indio_dev->channels); ret = devm_iio_triggered_buffer_setup(dev, indio_dev, &iio_pollfunc_store_time, &ad4000_trigger_handler, NULL); if (ret) return ret; return devm_iio_device_register(dev, indio_dev); } static const struct spi_device_id ad4000_id[] = { { "ad4000", (kernel_ulong_t)&ad4000_chip_info }, { "ad4001", (kernel_ulong_t)&ad4001_chip_info }, { "ad4002", (kernel_ulong_t)&ad4002_chip_info }, { "ad4003", (kernel_ulong_t)&ad4003_chip_info }, { "ad4004", (kernel_ulong_t)&ad4004_chip_info }, { "ad4005", (kernel_ulong_t)&ad4005_chip_info }, { "ad4006", (kernel_ulong_t)&ad4006_chip_info }, { "ad4007", (kernel_ulong_t)&ad4007_chip_info }, { "ad4008", (kernel_ulong_t)&ad4008_chip_info }, { "ad4010", (kernel_ulong_t)&ad4010_chip_info }, { "ad4011", (kernel_ulong_t)&ad4011_chip_info }, { "ad4020", (kernel_ulong_t)&ad4020_chip_info }, { "ad4021", (kernel_ulong_t)&ad4021_chip_info }, { "ad4022", (kernel_ulong_t)&ad4022_chip_info }, { "adaq4001", (kernel_ulong_t)&adaq4001_chip_info }, { "adaq4003", (kernel_ulong_t)&adaq4003_chip_info }, { } }; MODULE_DEVICE_TABLE(spi, ad4000_id); static const struct of_device_id ad4000_of_match[] = { { .compatible = "adi,ad4000", .data = &ad4000_chip_info }, { .compatible = "adi,ad4001", .data = &ad4001_chip_info }, { .compatible = "adi,ad4002", .data = &ad4002_chip_info }, { .compatible = "adi,ad4003", .data = &ad4003_chip_info }, { .compatible = "adi,ad4004", .data = &ad4004_chip_info }, { .compatible = "adi,ad4005", .data = &ad4005_chip_info }, { .compatible = "adi,ad4006", .data = &ad4006_chip_info }, { .compatible = "adi,ad4007", .data = &ad4007_chip_info }, { .compatible = "adi,ad4008", .data = &ad4008_chip_info }, { .compatible = "adi,ad4010", .data = &ad4010_chip_info }, { .compatible = "adi,ad4011", .data = &ad4011_chip_info }, { .compatible = "adi,ad4020", .data = &ad4020_chip_info }, { .compatible = "adi,ad4021", .data = &ad4021_chip_info }, { .compatible = "adi,ad4022", .data = &ad4022_chip_info }, { .compatible = "adi,adaq4001", .data = &adaq4001_chip_info }, { .compatible = "adi,adaq4003", .data = &adaq4003_chip_info }, { } }; MODULE_DEVICE_TABLE(of, ad4000_of_match); static struct spi_driver ad4000_driver = { .driver = { .name = "ad4000", .of_match_table = ad4000_of_match, }, .probe = ad4000_probe, .id_table = ad4000_id, }; module_spi_driver(ad4000_driver); MODULE_AUTHOR("Marcelo Schmitt "); MODULE_DESCRIPTION("Analog Devices AD4000 ADC driver"); MODULE_LICENSE("GPL");