// SPDX-License-Identifier: GPL-2.0-only /* * I2C bus driver for Amlogic Meson SoCs * * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/types.h> /* Meson I2C register map */ #define REG_CTRL 0x00 #define REG_SLAVE_ADDR 0x04 #define REG_TOK_LIST0 0x08 #define REG_TOK_LIST1 0x0c #define REG_TOK_WDATA0 0x10 #define REG_TOK_WDATA1 0x14 #define REG_TOK_RDATA0 0x18 #define REG_TOK_RDATA1 0x1c /* Control register fields */ #define REG_CTRL_START BIT(0) #define REG_CTRL_ACK_IGNORE BIT(1) #define REG_CTRL_STATUS BIT(2) #define REG_CTRL_ERROR BIT(3) #define REG_CTRL_CLKDIV_SHIFT 12 #define REG_CTRL_CLKDIV_MASK GENMASK(21, REG_CTRL_CLKDIV_SHIFT) #define REG_CTRL_CLKDIVEXT_SHIFT 28 #define REG_CTRL_CLKDIVEXT_MASK GENMASK(29, REG_CTRL_CLKDIVEXT_SHIFT) #define REG_SLV_ADDR_MASK GENMASK(7, 0) #define REG_SLV_SDA_FILTER_MASK GENMASK(10, 8) #define REG_SLV_SCL_FILTER_MASK GENMASK(13, 11) #define REG_SLV_SCL_LOW_SHIFT 16 #define REG_SLV_SCL_LOW_MASK GENMASK(27, REG_SLV_SCL_LOW_SHIFT) #define REG_SLV_SCL_LOW_EN BIT(28) #define I2C_TIMEOUT_MS 500 #define FILTER_DELAY 15 enum { TOKEN_END = 0, TOKEN_START, TOKEN_SLAVE_ADDR_WRITE, TOKEN_SLAVE_ADDR_READ, TOKEN_DATA, TOKEN_DATA_LAST, TOKEN_STOP, }; enum { STATE_IDLE, STATE_READ, STATE_WRITE, }; /** * struct meson_i2c - Meson I2C device private data * * @adap: I2C adapter instance * @dev: Pointer to device structure * @regs: Base address of the device memory mapped registers * @clk: Pointer to clock structure * @msg: Pointer to the current I2C message * @state: Current state in the driver state machine * @last: Flag set for the last message in the transfer * @count: Number of bytes to be sent/received in current transfer * @pos: Current position in the send/receive buffer * @error: Flag set when an error is received * @lock: To avoid race conditions between irq handler and xfer code * @done: Completion used to wait for transfer termination * @tokens: Sequence of tokens to be written to the device * @num_tokens: Number of tokens * @data: Pointer to the controller's platform data */ struct meson_i2c { struct i2c_adapter adap; struct device *dev; void __iomem *regs; struct clk *clk; struct i2c_msg *msg; int state; bool last; int count; int pos; int error; spinlock_t lock; struct completion done; u32 tokens[2]; int num_tokens; const struct meson_i2c_data *data; }; struct meson_i2c_data { void (*set_clk_div)(struct meson_i2c *i2c, unsigned int freq); }; static void meson_i2c_set_mask(struct meson_i2c *i2c, int reg, u32 mask, u32 val) { u32 data; data = readl(i2c->regs + reg); data &= ~mask; data |= val & mask; writel(data, i2c->regs + reg); } static void meson_i2c_reset_tokens(struct meson_i2c *i2c) { i2c->tokens[0] = 0; i2c->tokens[1] = 0; i2c->num_tokens = 0; } static void meson_i2c_add_token(struct meson_i2c *i2c, int token) { if (i2c->num_tokens < 8) i2c->tokens[0] |= (token & 0xf) << (i2c->num_tokens * 4); else i2c->tokens[1] |= (token & 0xf) << ((i2c->num_tokens % 8) * 4); i2c->num_tokens++; } static void meson_gxbb_axg_i2c_set_clk_div(struct meson_i2c *i2c, unsigned int freq) { unsigned long clk_rate = clk_get_rate(i2c->clk); unsigned int div_h, div_l; /* According to I2C-BUS Spec 2.1, in FAST-MODE, the minimum LOW period is 1.3uS, and * minimum HIGH is least 0.6us. * For 400000 freq, the period is 2.5us. To keep within the specs, give 40% of period to * HIGH and 60% to LOW. This means HIGH at 1.0us and LOW 1.5us. * The same applies for Fast-mode plus, where LOW is 0.5us and HIGH is 0.26us. * Duty = H/(H + L) = 2/5 */ if (freq <= I2C_MAX_STANDARD_MODE_FREQ) { div_h = DIV_ROUND_UP(clk_rate, freq); div_l = DIV_ROUND_UP(div_h, 4); div_h = DIV_ROUND_UP(div_h, 2) - FILTER_DELAY; } else { div_h = DIV_ROUND_UP(clk_rate * 2, freq * 5) - FILTER_DELAY; div_l = DIV_ROUND_UP(clk_rate * 3, freq * 5 * 2); } /* clock divider has 12 bits */ if (div_h > GENMASK(11, 0)) { dev_err(i2c->dev, "requested bus frequency too low\n"); div_h = GENMASK(11, 0); } if (div_l > GENMASK(11, 0)) { dev_err(i2c->dev, "requested bus frequency too low\n"); div_l = GENMASK(11, 0); } meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIV_MASK, FIELD_PREP(REG_CTRL_CLKDIV_MASK, div_h & GENMASK(9, 0))); meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIVEXT_MASK, FIELD_PREP(REG_CTRL_CLKDIVEXT_MASK, div_h >> 10)); /* set SCL low delay */ meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_MASK, FIELD_PREP(REG_SLV_SCL_LOW_MASK, div_l)); /* Enable HIGH/LOW mode */ meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_EN, REG_SLV_SCL_LOW_EN); dev_dbg(i2c->dev, "%s: clk %lu, freq %u, divh %u, divl %u\n", __func__, clk_rate, freq, div_h, div_l); } static void meson6_i2c_set_clk_div(struct meson_i2c *i2c, unsigned int freq) { unsigned long clk_rate = clk_get_rate(i2c->clk); unsigned int div; div = DIV_ROUND_UP(clk_rate, freq); div -= FILTER_DELAY; div = DIV_ROUND_UP(div, 4); /* clock divider has 12 bits */ if (div > GENMASK(11, 0)) { dev_err(i2c->dev, "requested bus frequency too low\n"); div = GENMASK(11, 0); } meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIV_MASK, FIELD_PREP(REG_CTRL_CLKDIV_MASK, div & GENMASK(9, 0))); meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_CLKDIVEXT_MASK, FIELD_PREP(REG_CTRL_CLKDIVEXT_MASK, div >> 10)); /* Disable HIGH/LOW mode */ meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SCL_LOW_EN, 0); dev_dbg(i2c->dev, "%s: clk %lu, freq %u, div %u\n", __func__, clk_rate, freq, div); } static void meson_i2c_get_data(struct meson_i2c *i2c, char *buf, int len) { u32 rdata0, rdata1; int i; rdata0 = readl(i2c->regs + REG_TOK_RDATA0); rdata1 = readl(i2c->regs + REG_TOK_RDATA1); dev_dbg(i2c->dev, "%s: data %08x %08x len %d\n", __func__, rdata0, rdata1, len); for (i = 0; i < min(4, len); i++) *buf++ = (rdata0 >> i * 8) & 0xff; for (i = 4; i < min(8, len); i++) *buf++ = (rdata1 >> (i - 4) * 8) & 0xff; } static void meson_i2c_put_data(struct meson_i2c *i2c, char *buf, int len) { u32 wdata0 = 0, wdata1 = 0; int i; for (i = 0; i < min(4, len); i++) wdata0 |= *buf++ << (i * 8); for (i = 4; i < min(8, len); i++) wdata1 |= *buf++ << ((i - 4) * 8); writel(wdata0, i2c->regs + REG_TOK_WDATA0); writel(wdata1, i2c->regs + REG_TOK_WDATA1); dev_dbg(i2c->dev, "%s: data %08x %08x len %d\n", __func__, wdata0, wdata1, len); } static void meson_i2c_prepare_xfer(struct meson_i2c *i2c) { bool write = !(i2c->msg->flags & I2C_M_RD); int i; i2c->count = min(i2c->msg->len - i2c->pos, 8); for (i = 0; i < i2c->count - 1; i++) meson_i2c_add_token(i2c, TOKEN_DATA); if (i2c->count) { if (write || i2c->pos + i2c->count < i2c->msg->len) meson_i2c_add_token(i2c, TOKEN_DATA); else meson_i2c_add_token(i2c, TOKEN_DATA_LAST); } if (write) meson_i2c_put_data(i2c, i2c->msg->buf + i2c->pos, i2c->count); if (i2c->last && i2c->pos + i2c->count >= i2c->msg->len) meson_i2c_add_token(i2c, TOKEN_STOP); writel(i2c->tokens[0], i2c->regs + REG_TOK_LIST0); writel(i2c->tokens[1], i2c->regs + REG_TOK_LIST1); } static void meson_i2c_transfer_complete(struct meson_i2c *i2c, u32 ctrl) { if (ctrl & REG_CTRL_ERROR) { /* * The bit is set when the IGNORE_NAK bit is cleared * and the device didn't respond. In this case, the * I2C controller automatically generates a STOP * condition. */ dev_dbg(i2c->dev, "error bit set\n"); i2c->error = -ENXIO; i2c->state = STATE_IDLE; } else { if (i2c->state == STATE_READ && i2c->count) meson_i2c_get_data(i2c, i2c->msg->buf + i2c->pos, i2c->count); i2c->pos += i2c->count; if (i2c->pos >= i2c->msg->len) i2c->state = STATE_IDLE; } } static irqreturn_t meson_i2c_irq(int irqno, void *dev_id) { struct meson_i2c *i2c = dev_id; unsigned int ctrl; spin_lock(&i2c->lock); meson_i2c_reset_tokens(i2c); meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0); ctrl = readl(i2c->regs + REG_CTRL); dev_dbg(i2c->dev, "irq: state %d, pos %d, count %d, ctrl %08x\n", i2c->state, i2c->pos, i2c->count, ctrl); if (i2c->state == STATE_IDLE) { spin_unlock(&i2c->lock); return IRQ_NONE; } meson_i2c_transfer_complete(i2c, ctrl); if (i2c->state == STATE_IDLE) { complete(&i2c->done); goto out; } /* Restart the processing */ meson_i2c_prepare_xfer(i2c); meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, REG_CTRL_START); out: spin_unlock(&i2c->lock); return IRQ_HANDLED; } static void meson_i2c_do_start(struct meson_i2c *i2c, struct i2c_msg *msg) { int token; token = (msg->flags & I2C_M_RD) ? TOKEN_SLAVE_ADDR_READ : TOKEN_SLAVE_ADDR_WRITE; meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_ADDR_MASK, FIELD_PREP(REG_SLV_ADDR_MASK, msg->addr << 1)); meson_i2c_add_token(i2c, TOKEN_START); meson_i2c_add_token(i2c, token); } static int meson_i2c_xfer_msg(struct meson_i2c *i2c, struct i2c_msg *msg, int last, bool atomic) { unsigned long time_left, flags; int ret = 0; u32 ctrl; i2c->msg = msg; i2c->last = last; i2c->pos = 0; i2c->count = 0; i2c->error = 0; meson_i2c_reset_tokens(i2c); flags = (msg->flags & I2C_M_IGNORE_NAK) ? REG_CTRL_ACK_IGNORE : 0; meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_ACK_IGNORE, flags); if (!(msg->flags & I2C_M_NOSTART)) meson_i2c_do_start(i2c, msg); i2c->state = (msg->flags & I2C_M_RD) ? STATE_READ : STATE_WRITE; meson_i2c_prepare_xfer(i2c); if (!atomic) reinit_completion(&i2c->done); /* Start the transfer */ meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, REG_CTRL_START); if (atomic) { ret = readl_poll_timeout_atomic(i2c->regs + REG_CTRL, ctrl, !(ctrl & REG_CTRL_STATUS), 10, I2C_TIMEOUT_MS * 1000); } else { time_left = msecs_to_jiffies(I2C_TIMEOUT_MS); time_left = wait_for_completion_timeout(&i2c->done, time_left); if (!time_left) ret = -ETIMEDOUT; } /* * Protect access to i2c struct and registers from interrupt * handlers triggered by a transfer terminated after the * timeout period */ spin_lock_irqsave(&i2c->lock, flags); if (atomic && !ret) meson_i2c_transfer_complete(i2c, ctrl); /* Abort any active operation */ meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0); if (ret) i2c->state = STATE_IDLE; if (i2c->error) ret = i2c->error; spin_unlock_irqrestore(&i2c->lock, flags); return ret; } static int meson_i2c_xfer_messages(struct i2c_adapter *adap, struct i2c_msg *msgs, int num, bool atomic) { struct meson_i2c *i2c = adap->algo_data; int i, ret = 0; for (i = 0; i < num; i++) { ret = meson_i2c_xfer_msg(i2c, msgs + i, i == num - 1, atomic); if (ret) break; } return ret ?: i; } static int meson_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { return meson_i2c_xfer_messages(adap, msgs, num, false); } static int meson_i2c_xfer_atomic(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { return meson_i2c_xfer_messages(adap, msgs, num, true); } static u32 meson_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm meson_i2c_algorithm = { .master_xfer = meson_i2c_xfer, .master_xfer_atomic = meson_i2c_xfer_atomic, .functionality = meson_i2c_func, }; static int meson_i2c_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct meson_i2c *i2c; struct i2c_timings timings; int irq, ret = 0; i2c = devm_kzalloc(&pdev->dev, sizeof(struct meson_i2c), GFP_KERNEL); if (!i2c) return -ENOMEM; i2c_parse_fw_timings(&pdev->dev, &timings, true); i2c->dev = &pdev->dev; platform_set_drvdata(pdev, i2c); spin_lock_init(&i2c->lock); init_completion(&i2c->done); i2c->data = (const struct meson_i2c_data *) of_device_get_match_data(&pdev->dev); i2c->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(i2c->clk)) { dev_err(&pdev->dev, "can't get device clock\n"); return PTR_ERR(i2c->clk); } i2c->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(i2c->regs)) return PTR_ERR(i2c->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, meson_i2c_irq, 0, NULL, i2c); if (ret < 0) { dev_err(&pdev->dev, "can't request IRQ\n"); return ret; } ret = clk_prepare_enable(i2c->clk); if (ret < 0) { dev_err(&pdev->dev, "can't prepare clock\n"); return ret; } strscpy(i2c->adap.name, "Meson I2C adapter", sizeof(i2c->adap.name)); i2c->adap.owner = THIS_MODULE; i2c->adap.algo = &meson_i2c_algorithm; i2c->adap.dev.parent = &pdev->dev; i2c->adap.dev.of_node = np; i2c->adap.algo_data = i2c; /* * A transfer is triggered when START bit changes from 0 to 1. * Ensure that the bit is set to 0 after probe */ meson_i2c_set_mask(i2c, REG_CTRL, REG_CTRL_START, 0); /* Disable filtering */ meson_i2c_set_mask(i2c, REG_SLAVE_ADDR, REG_SLV_SDA_FILTER_MASK | REG_SLV_SCL_FILTER_MASK, 0); if (!i2c->data->set_clk_div) { clk_disable_unprepare(i2c->clk); return -EINVAL; } i2c->data->set_clk_div(i2c, timings.bus_freq_hz); ret = i2c_add_adapter(&i2c->adap); if (ret < 0) { clk_disable_unprepare(i2c->clk); return ret; } return 0; } static void meson_i2c_remove(struct platform_device *pdev) { struct meson_i2c *i2c = platform_get_drvdata(pdev); i2c_del_adapter(&i2c->adap); clk_disable_unprepare(i2c->clk); } static const struct meson_i2c_data i2c_meson6_data = { .set_clk_div = meson6_i2c_set_clk_div, }; static const struct meson_i2c_data i2c_gxbb_data = { .set_clk_div = meson_gxbb_axg_i2c_set_clk_div, }; static const struct meson_i2c_data i2c_axg_data = { .set_clk_div = meson_gxbb_axg_i2c_set_clk_div, }; static const struct of_device_id meson_i2c_match[] = { { .compatible = "amlogic,meson6-i2c", .data = &i2c_meson6_data }, { .compatible = "amlogic,meson-gxbb-i2c", .data = &i2c_gxbb_data }, { .compatible = "amlogic,meson-axg-i2c", .data = &i2c_axg_data }, {}, }; MODULE_DEVICE_TABLE(of, meson_i2c_match); static struct platform_driver meson_i2c_driver = { .probe = meson_i2c_probe, .remove = meson_i2c_remove, .driver = { .name = "meson-i2c", .of_match_table = meson_i2c_match, }, }; module_platform_driver(meson_i2c_driver); MODULE_DESCRIPTION("Amlogic Meson I2C Bus driver"); MODULE_AUTHOR("Beniamino Galvani <b.galvani@gmail.com>"); MODULE_LICENSE("GPL v2");