// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_guc_pc.h" #include #include #include #include "abi/guc_actions_slpc_abi.h" #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_bo.h" #include "xe_device.h" #include "xe_force_wake.h" #include "xe_gt.h" #include "xe_gt_idle.h" #include "xe_gt_printk.h" #include "xe_gt_types.h" #include "xe_guc.h" #include "xe_guc_ct.h" #include "xe_map.h" #include "xe_mmio.h" #include "xe_pcode.h" #include "xe_pm.h" #include "xe_sriov.h" #include "xe_wa.h" #define MCHBAR_MIRROR_BASE_SNB 0x140000 #define RP_STATE_CAP XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5998) #define RP0_MASK REG_GENMASK(7, 0) #define RP1_MASK REG_GENMASK(15, 8) #define RPN_MASK REG_GENMASK(23, 16) #define FREQ_INFO_REC XE_REG(MCHBAR_MIRROR_BASE_SNB + 0x5ef0) #define RPE_MASK REG_GENMASK(15, 8) #define GT_PERF_STATUS XE_REG(0x1381b4) #define CAGF_MASK REG_GENMASK(19, 11) #define GT_FREQUENCY_MULTIPLIER 50 #define GT_FREQUENCY_SCALER 3 #define LNL_MERT_FREQ_CAP 800 #define BMG_MERT_FREQ_CAP 2133 /** * DOC: GuC Power Conservation (PC) * * GuC Power Conservation (PC) supports multiple features for the most * efficient and performing use of the GT when GuC submission is enabled, * including frequency management, Render-C states management, and various * algorithms for power balancing. * * Single Loop Power Conservation (SLPC) is the name given to the suite of * connected power conservation features in the GuC firmware. The firmware * exposes a programming interface to the host for the control of SLPC. * * Frequency management: * ===================== * * Xe driver enables SLPC with all of its defaults features and frequency * selection, which varies per platform. * * Render-C States: * ================ * * Render-C states is also a GuC PC feature that is now enabled in Xe for * all platforms. * */ static struct xe_guc *pc_to_guc(struct xe_guc_pc *pc) { return container_of(pc, struct xe_guc, pc); } static struct xe_guc_ct *pc_to_ct(struct xe_guc_pc *pc) { return &pc_to_guc(pc)->ct; } static struct xe_gt *pc_to_gt(struct xe_guc_pc *pc) { return guc_to_gt(pc_to_guc(pc)); } static struct xe_device *pc_to_xe(struct xe_guc_pc *pc) { return guc_to_xe(pc_to_guc(pc)); } static struct iosys_map *pc_to_maps(struct xe_guc_pc *pc) { return &pc->bo->vmap; } #define slpc_shared_data_read(pc_, field_) \ xe_map_rd_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \ struct slpc_shared_data, field_) #define slpc_shared_data_write(pc_, field_, val_) \ xe_map_wr_field(pc_to_xe(pc_), pc_to_maps(pc_), 0, \ struct slpc_shared_data, field_, val_) #define SLPC_EVENT(id, count) \ (FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ID, id) | \ FIELD_PREP(HOST2GUC_PC_SLPC_REQUEST_MSG_1_EVENT_ARGC, count)) static int wait_for_pc_state(struct xe_guc_pc *pc, enum slpc_global_state state) { int timeout_us = 5000; /* rought 5ms, but no need for precision */ int slept, wait = 10; xe_device_assert_mem_access(pc_to_xe(pc)); for (slept = 0; slept < timeout_us;) { if (slpc_shared_data_read(pc, header.global_state) == state) return 0; usleep_range(wait, wait << 1); slept += wait; wait <<= 1; if (slept + wait > timeout_us) wait = timeout_us - slept; } return -ETIMEDOUT; } static int pc_action_reset(struct xe_guc_pc *pc) { struct xe_guc_ct *ct = pc_to_ct(pc); u32 action[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_RESET, 2), xe_bo_ggtt_addr(pc->bo), 0, }; int ret; ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); if (ret) xe_gt_err(pc_to_gt(pc), "GuC PC reset failed: %pe\n", ERR_PTR(ret)); return ret; } static int pc_action_query_task_state(struct xe_guc_pc *pc) { struct xe_guc_ct *ct = pc_to_ct(pc); u32 action[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2), xe_bo_ggtt_addr(pc->bo), 0, }; int ret; if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) return -EAGAIN; /* Blocking here to ensure the results are ready before reading them */ ret = xe_guc_ct_send_block(ct, action, ARRAY_SIZE(action)); if (ret) xe_gt_err(pc_to_gt(pc), "GuC PC query task state failed: %pe\n", ERR_PTR(ret)); return ret; } static int pc_action_set_param(struct xe_guc_pc *pc, u8 id, u32 value) { struct xe_guc_ct *ct = pc_to_ct(pc); u32 action[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2), id, value, }; int ret; if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) return -EAGAIN; ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); if (ret) xe_gt_err(pc_to_gt(pc), "GuC PC set param[%u]=%u failed: %pe\n", id, value, ERR_PTR(ret)); return ret; } static int pc_action_unset_param(struct xe_guc_pc *pc, u8 id) { u32 action[] = { GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST, SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1), id, }; struct xe_guc_ct *ct = &pc_to_guc(pc)->ct; int ret; if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) return -EAGAIN; ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); if (ret) xe_gt_err(pc_to_gt(pc), "GuC PC unset param failed: %pe", ERR_PTR(ret)); return ret; } static int pc_action_setup_gucrc(struct xe_guc_pc *pc, u32 mode) { struct xe_guc_ct *ct = pc_to_ct(pc); u32 action[] = { GUC_ACTION_HOST2GUC_SETUP_PC_GUCRC, mode, }; int ret; ret = xe_guc_ct_send(ct, action, ARRAY_SIZE(action), 0, 0); if (ret) xe_gt_err(pc_to_gt(pc), "GuC RC enable mode=%u failed: %pe\n", mode, ERR_PTR(ret)); return ret; } static u32 decode_freq(u32 raw) { return DIV_ROUND_CLOSEST(raw * GT_FREQUENCY_MULTIPLIER, GT_FREQUENCY_SCALER); } static u32 encode_freq(u32 freq) { return DIV_ROUND_CLOSEST(freq * GT_FREQUENCY_SCALER, GT_FREQUENCY_MULTIPLIER); } static u32 pc_get_min_freq(struct xe_guc_pc *pc) { u32 freq; freq = FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK, slpc_shared_data_read(pc, task_state_data.freq)); return decode_freq(freq); } static void pc_set_manual_rp_ctrl(struct xe_guc_pc *pc, bool enable) { struct xe_gt *gt = pc_to_gt(pc); u32 state = enable ? RPSWCTL_ENABLE : RPSWCTL_DISABLE; /* Allow/Disallow punit to process software freq requests */ xe_mmio_write32(gt, RP_CONTROL, state); } static void pc_set_cur_freq(struct xe_guc_pc *pc, u32 freq) { struct xe_gt *gt = pc_to_gt(pc); u32 rpnswreq; pc_set_manual_rp_ctrl(pc, true); /* Req freq is in units of 16.66 Mhz */ rpnswreq = REG_FIELD_PREP(REQ_RATIO_MASK, encode_freq(freq)); xe_mmio_write32(gt, RPNSWREQ, rpnswreq); /* Sleep for a small time to allow pcode to respond */ usleep_range(100, 300); pc_set_manual_rp_ctrl(pc, false); } static int pc_set_min_freq(struct xe_guc_pc *pc, u32 freq) { /* * Let's only check for the rpn-rp0 range. If max < min, * min becomes a fixed request. */ if (freq < pc->rpn_freq || freq > pc->rp0_freq) return -EINVAL; /* * GuC policy is to elevate minimum frequency to the efficient levels * Our goal is to have the admin choices respected. */ pc_action_set_param(pc, SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY, freq < pc->rpe_freq); return pc_action_set_param(pc, SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ, freq); } static int pc_get_max_freq(struct xe_guc_pc *pc) { u32 freq; freq = FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK, slpc_shared_data_read(pc, task_state_data.freq)); return decode_freq(freq); } static int pc_set_max_freq(struct xe_guc_pc *pc, u32 freq) { /* * Let's only check for the rpn-rp0 range. If max < min, * min becomes a fixed request. * Also, overclocking is not supported. */ if (freq < pc->rpn_freq || freq > pc->rp0_freq) return -EINVAL; return pc_action_set_param(pc, SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ, freq); } static void mtl_update_rpe_value(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); u32 reg; if (xe_gt_is_media_type(gt)) reg = xe_mmio_read32(gt, MTL_MPE_FREQUENCY); else reg = xe_mmio_read32(gt, MTL_GT_RPE_FREQUENCY); pc->rpe_freq = decode_freq(REG_FIELD_GET(MTL_RPE_MASK, reg)); } static void tgl_update_rpe_value(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_device *xe = gt_to_xe(gt); u32 reg; /* * For PVC we still need to use fused RP1 as the approximation for RPe * For other platforms than PVC we get the resolved RPe directly from * PCODE at a different register */ if (xe->info.platform == XE_PVC) reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP); else reg = xe_mmio_read32(gt, FREQ_INFO_REC); pc->rpe_freq = REG_FIELD_GET(RPE_MASK, reg) * GT_FREQUENCY_MULTIPLIER; } static void pc_update_rp_values(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_device *xe = gt_to_xe(gt); if (GRAPHICS_VERx100(xe) >= 1270) mtl_update_rpe_value(pc); else tgl_update_rpe_value(pc); /* * RPe is decided at runtime by PCODE. In the rare case where that's * smaller than the fused min, we will trust the PCODE and use that * as our minimum one. */ pc->rpn_freq = min(pc->rpn_freq, pc->rpe_freq); } /** * xe_guc_pc_get_act_freq - Get Actual running frequency * @pc: The GuC PC * * Returns: The Actual running frequency. Which might be 0 if GT is in Render-C sleep state (RC6). */ u32 xe_guc_pc_get_act_freq(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_device *xe = gt_to_xe(gt); u32 freq; /* When in RC6, actual frequency reported will be 0. */ if (GRAPHICS_VERx100(xe) >= 1270) { freq = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1); freq = REG_FIELD_GET(MTL_CAGF_MASK, freq); } else { freq = xe_mmio_read32(gt, GT_PERF_STATUS); freq = REG_FIELD_GET(CAGF_MASK, freq); } freq = decode_freq(freq); return freq; } /** * xe_guc_pc_get_cur_freq - Get Current requested frequency * @pc: The GuC PC * @freq: A pointer to a u32 where the freq value will be returned * * Returns: 0 on success, * -EAGAIN if GuC PC not ready (likely in middle of a reset). */ int xe_guc_pc_get_cur_freq(struct xe_guc_pc *pc, u32 *freq) { struct xe_gt *gt = pc_to_gt(pc); int ret; /* * GuC SLPC plays with cur freq request when GuCRC is enabled * Block RC6 for a more reliable read. */ ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); if (ret) return ret; *freq = xe_mmio_read32(gt, RPNSWREQ); *freq = REG_FIELD_GET(REQ_RATIO_MASK, *freq); *freq = decode_freq(*freq); XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); return 0; } /** * xe_guc_pc_get_rp0_freq - Get the RP0 freq * @pc: The GuC PC * * Returns: RP0 freq. */ u32 xe_guc_pc_get_rp0_freq(struct xe_guc_pc *pc) { return pc->rp0_freq; } /** * xe_guc_pc_get_rpe_freq - Get the RPe freq * @pc: The GuC PC * * Returns: RPe freq. */ u32 xe_guc_pc_get_rpe_freq(struct xe_guc_pc *pc) { pc_update_rp_values(pc); return pc->rpe_freq; } /** * xe_guc_pc_get_rpn_freq - Get the RPn freq * @pc: The GuC PC * * Returns: RPn freq. */ u32 xe_guc_pc_get_rpn_freq(struct xe_guc_pc *pc) { return pc->rpn_freq; } /** * xe_guc_pc_get_min_freq - Get the min operational frequency * @pc: The GuC PC * @freq: A pointer to a u32 where the freq value will be returned * * Returns: 0 on success, * -EAGAIN if GuC PC not ready (likely in middle of a reset). */ int xe_guc_pc_get_min_freq(struct xe_guc_pc *pc, u32 *freq) { struct xe_gt *gt = pc_to_gt(pc); int ret; mutex_lock(&pc->freq_lock); if (!pc->freq_ready) { /* Might be in the middle of a gt reset */ ret = -EAGAIN; goto out; } /* * GuC SLPC plays with min freq request when GuCRC is enabled * Block RC6 for a more reliable read. */ ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); if (ret) goto out; ret = pc_action_query_task_state(pc); if (ret) goto fw; *freq = pc_get_min_freq(pc); fw: XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); out: mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_set_min_freq - Set the minimal operational frequency * @pc: The GuC PC * @freq: The selected minimal frequency * * Returns: 0 on success, * -EAGAIN if GuC PC not ready (likely in middle of a reset), * -EINVAL if value out of bounds. */ int xe_guc_pc_set_min_freq(struct xe_guc_pc *pc, u32 freq) { int ret; mutex_lock(&pc->freq_lock); if (!pc->freq_ready) { /* Might be in the middle of a gt reset */ ret = -EAGAIN; goto out; } ret = pc_set_min_freq(pc, freq); if (ret) goto out; pc->user_requested_min = freq; out: mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_get_max_freq - Get Maximum operational frequency * @pc: The GuC PC * @freq: A pointer to a u32 where the freq value will be returned * * Returns: 0 on success, * -EAGAIN if GuC PC not ready (likely in middle of a reset). */ int xe_guc_pc_get_max_freq(struct xe_guc_pc *pc, u32 *freq) { int ret; mutex_lock(&pc->freq_lock); if (!pc->freq_ready) { /* Might be in the middle of a gt reset */ ret = -EAGAIN; goto out; } ret = pc_action_query_task_state(pc); if (ret) goto out; *freq = pc_get_max_freq(pc); out: mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_set_max_freq - Set the maximum operational frequency * @pc: The GuC PC * @freq: The selected maximum frequency value * * Returns: 0 on success, * -EAGAIN if GuC PC not ready (likely in middle of a reset), * -EINVAL if value out of bounds. */ int xe_guc_pc_set_max_freq(struct xe_guc_pc *pc, u32 freq) { int ret; mutex_lock(&pc->freq_lock); if (!pc->freq_ready) { /* Might be in the middle of a gt reset */ ret = -EAGAIN; goto out; } ret = pc_set_max_freq(pc, freq); if (ret) goto out; pc->user_requested_max = freq; out: mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_c_status - get the current GT C state * @pc: XE_GuC_PC instance */ enum xe_gt_idle_state xe_guc_pc_c_status(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); u32 reg, gt_c_state; if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { reg = xe_mmio_read32(gt, MTL_MIRROR_TARGET_WP1); gt_c_state = REG_FIELD_GET(MTL_CC_MASK, reg); } else { reg = xe_mmio_read32(gt, GT_CORE_STATUS); gt_c_state = REG_FIELD_GET(RCN_MASK, reg); } switch (gt_c_state) { case GT_C6: return GT_IDLE_C6; case GT_C0: return GT_IDLE_C0; default: return GT_IDLE_UNKNOWN; } } /** * xe_guc_pc_rc6_residency - rc6 residency counter * @pc: Xe_GuC_PC instance */ u64 xe_guc_pc_rc6_residency(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); u32 reg; reg = xe_mmio_read32(gt, GT_GFX_RC6); return reg; } /** * xe_guc_pc_mc6_residency - mc6 residency counter * @pc: Xe_GuC_PC instance */ u64 xe_guc_pc_mc6_residency(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); u64 reg; reg = xe_mmio_read32(gt, MTL_MEDIA_MC6); return reg; } static void mtl_init_fused_rp_values(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); u32 reg; xe_device_assert_mem_access(pc_to_xe(pc)); if (xe_gt_is_media_type(gt)) reg = xe_mmio_read32(gt, MTL_MEDIAP_STATE_CAP); else reg = xe_mmio_read32(gt, MTL_RP_STATE_CAP); pc->rp0_freq = decode_freq(REG_FIELD_GET(MTL_RP0_CAP_MASK, reg)); pc->rpn_freq = decode_freq(REG_FIELD_GET(MTL_RPN_CAP_MASK, reg)); } static void tgl_init_fused_rp_values(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_device *xe = gt_to_xe(gt); u32 reg; xe_device_assert_mem_access(pc_to_xe(pc)); if (xe->info.platform == XE_PVC) reg = xe_mmio_read32(gt, PVC_RP_STATE_CAP); else reg = xe_mmio_read32(gt, RP_STATE_CAP); pc->rp0_freq = REG_FIELD_GET(RP0_MASK, reg) * GT_FREQUENCY_MULTIPLIER; pc->rpn_freq = REG_FIELD_GET(RPN_MASK, reg) * GT_FREQUENCY_MULTIPLIER; } static void pc_init_fused_rp_values(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_device *xe = gt_to_xe(gt); if (GRAPHICS_VERx100(xe) >= 1270) mtl_init_fused_rp_values(pc); else tgl_init_fused_rp_values(pc); } static u32 pc_max_freq_cap(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); if (XE_WA(gt, 22019338487)) { if (xe_gt_is_media_type(gt)) return min(LNL_MERT_FREQ_CAP, pc->rp0_freq); else return min(BMG_MERT_FREQ_CAP, pc->rp0_freq); } else { return pc->rp0_freq; } } /** * xe_guc_pc_raise_unslice - Initialize RPx values and request a higher GT * frequency to allow faster GuC load times * @pc: Xe_GuC_PC instance */ void xe_guc_pc_raise_unslice(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); pc_set_cur_freq(pc, pc_max_freq_cap(pc)); } /** * xe_guc_pc_init_early - Initialize RPx values * @pc: Xe_GuC_PC instance */ void xe_guc_pc_init_early(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); pc_init_fused_rp_values(pc); } static int pc_adjust_freq_bounds(struct xe_guc_pc *pc) { int ret; lockdep_assert_held(&pc->freq_lock); ret = pc_action_query_task_state(pc); if (ret) goto out; /* * GuC defaults to some RPmax that is not actually achievable without * overclocking. Let's adjust it to the Hardware RP0, which is the * regular maximum */ if (pc_get_max_freq(pc) > pc->rp0_freq) { ret = pc_set_max_freq(pc, pc->rp0_freq); if (ret) goto out; } /* * Same thing happens for Server platforms where min is listed as * RPMax */ if (pc_get_min_freq(pc) > pc->rp0_freq) ret = pc_set_min_freq(pc, pc->rp0_freq); out: return ret; } static int pc_adjust_requested_freq(struct xe_guc_pc *pc) { int ret = 0; lockdep_assert_held(&pc->freq_lock); if (pc->user_requested_min != 0) { ret = pc_set_min_freq(pc, pc->user_requested_min); if (ret) return ret; } if (pc->user_requested_max != 0) { ret = pc_set_max_freq(pc, pc->user_requested_max); if (ret) return ret; } return ret; } static int pc_set_mert_freq_cap(struct xe_guc_pc *pc) { int ret = 0; if (XE_WA(pc_to_gt(pc), 22019338487)) { /* * Get updated min/max and stash them. */ ret = xe_guc_pc_get_min_freq(pc, &pc->stashed_min_freq); if (!ret) ret = xe_guc_pc_get_max_freq(pc, &pc->stashed_max_freq); if (ret) return ret; /* * Ensure min and max are bound by MERT_FREQ_CAP until driver loads. */ mutex_lock(&pc->freq_lock); ret = pc_set_min_freq(pc, min(pc->rpe_freq, pc_max_freq_cap(pc))); if (!ret) ret = pc_set_max_freq(pc, min(pc->rp0_freq, pc_max_freq_cap(pc))); mutex_unlock(&pc->freq_lock); } return ret; } /** * xe_guc_pc_restore_stashed_freq - Set min/max back to stashed values * @pc: The GuC PC * * Returns: 0 on success, * error code on failure */ int xe_guc_pc_restore_stashed_freq(struct xe_guc_pc *pc) { int ret = 0; if (IS_SRIOV_VF(pc_to_xe(pc)) || pc_to_xe(pc)->info.skip_guc_pc) return 0; mutex_lock(&pc->freq_lock); ret = pc_set_max_freq(pc, pc->stashed_max_freq); if (!ret) ret = pc_set_min_freq(pc, pc->stashed_min_freq); mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_gucrc_disable - Disable GuC RC * @pc: Xe_GuC_PC instance * * Disables GuC RC by taking control of RC6 back from GuC. * * Return: 0 on success, negative error code on error. */ int xe_guc_pc_gucrc_disable(struct xe_guc_pc *pc) { struct xe_device *xe = pc_to_xe(pc); struct xe_gt *gt = pc_to_gt(pc); int ret = 0; if (xe->info.skip_guc_pc) return 0; ret = pc_action_setup_gucrc(pc, GUCRC_HOST_CONTROL); if (ret) return ret; ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); if (ret) return ret; xe_gt_idle_disable_c6(gt); XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); return 0; } /** * xe_guc_pc_override_gucrc_mode - override GUCRC mode * @pc: Xe_GuC_PC instance * @mode: new value of the mode. * * Return: 0 on success, negative error code on error */ int xe_guc_pc_override_gucrc_mode(struct xe_guc_pc *pc, enum slpc_gucrc_mode mode) { int ret; xe_pm_runtime_get(pc_to_xe(pc)); ret = pc_action_set_param(pc, SLPC_PARAM_PWRGATE_RC_MODE, mode); xe_pm_runtime_put(pc_to_xe(pc)); return ret; } /** * xe_guc_pc_unset_gucrc_mode - unset GUCRC mode override * @pc: Xe_GuC_PC instance * * Return: 0 on success, negative error code on error */ int xe_guc_pc_unset_gucrc_mode(struct xe_guc_pc *pc) { int ret; xe_pm_runtime_get(pc_to_xe(pc)); ret = pc_action_unset_param(pc, SLPC_PARAM_PWRGATE_RC_MODE); xe_pm_runtime_put(pc_to_xe(pc)); return ret; } static void pc_init_pcode_freq(struct xe_guc_pc *pc) { u32 min = DIV_ROUND_CLOSEST(pc->rpn_freq, GT_FREQUENCY_MULTIPLIER); u32 max = DIV_ROUND_CLOSEST(pc->rp0_freq, GT_FREQUENCY_MULTIPLIER); XE_WARN_ON(xe_pcode_init_min_freq_table(pc_to_gt(pc), min, max)); } static int pc_init_freqs(struct xe_guc_pc *pc) { int ret; mutex_lock(&pc->freq_lock); ret = pc_adjust_freq_bounds(pc); if (ret) goto out; ret = pc_adjust_requested_freq(pc); if (ret) goto out; pc_update_rp_values(pc); pc_init_pcode_freq(pc); /* * The frequencies are really ready for use only after the user * requested ones got restored. */ pc->freq_ready = true; out: mutex_unlock(&pc->freq_lock); return ret; } /** * xe_guc_pc_start - Start GuC's Power Conservation component * @pc: Xe_GuC_PC instance */ int xe_guc_pc_start(struct xe_guc_pc *pc) { struct xe_device *xe = pc_to_xe(pc); struct xe_gt *gt = pc_to_gt(pc); u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); int ret; xe_gt_assert(gt, xe_device_uc_enabled(xe)); ret = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); if (ret) return ret; if (xe->info.skip_guc_pc) { if (xe->info.platform != XE_PVC) xe_gt_idle_enable_c6(gt); /* Request max possible since dynamic freq mgmt is not enabled */ pc_set_cur_freq(pc, UINT_MAX); ret = 0; goto out; } memset(pc->bo->vmap.vaddr, 0, size); slpc_shared_data_write(pc, header.size, size); ret = pc_action_reset(pc); if (ret) goto out; if (wait_for_pc_state(pc, SLPC_GLOBAL_STATE_RUNNING)) { xe_gt_err(gt, "GuC PC Start failed\n"); ret = -EIO; goto out; } ret = pc_init_freqs(pc); if (ret) goto out; ret = pc_set_mert_freq_cap(pc); if (ret) goto out; if (xe->info.platform == XE_PVC) { xe_guc_pc_gucrc_disable(pc); ret = 0; goto out; } ret = pc_action_setup_gucrc(pc, GUCRC_FIRMWARE_CONTROL); out: XE_WARN_ON(xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL)); return ret; } /** * xe_guc_pc_stop - Stop GuC's Power Conservation component * @pc: Xe_GuC_PC instance */ int xe_guc_pc_stop(struct xe_guc_pc *pc) { struct xe_device *xe = pc_to_xe(pc); if (xe->info.skip_guc_pc) { xe_gt_idle_disable_c6(pc_to_gt(pc)); return 0; } mutex_lock(&pc->freq_lock); pc->freq_ready = false; mutex_unlock(&pc->freq_lock); return 0; } /** * xe_guc_pc_fini_hw - Finalize GuC's Power Conservation component * @arg: opaque pointer that should point to Xe_GuC_PC instance */ static void xe_guc_pc_fini_hw(void *arg) { struct xe_guc_pc *pc = arg; struct xe_device *xe = pc_to_xe(pc); if (xe_device_wedged(xe)) return; XE_WARN_ON(xe_force_wake_get(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL)); XE_WARN_ON(xe_guc_pc_gucrc_disable(pc)); XE_WARN_ON(xe_guc_pc_stop(pc)); /* Bind requested freq to mert_freq_cap before unload */ pc_set_cur_freq(pc, min(pc_max_freq_cap(pc), pc->rpe_freq)); xe_force_wake_put(gt_to_fw(pc_to_gt(pc)), XE_FORCEWAKE_ALL); } /** * xe_guc_pc_init - Initialize GuC's Power Conservation component * @pc: Xe_GuC_PC instance */ int xe_guc_pc_init(struct xe_guc_pc *pc) { struct xe_gt *gt = pc_to_gt(pc); struct xe_tile *tile = gt_to_tile(gt); struct xe_device *xe = gt_to_xe(gt); struct xe_bo *bo; u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data)); int err; if (xe->info.skip_guc_pc) return 0; err = drmm_mutex_init(&xe->drm, &pc->freq_lock); if (err) return err; bo = xe_managed_bo_create_pin_map(xe, tile, size, XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT | XE_BO_FLAG_GGTT_INVALIDATE); if (IS_ERR(bo)) return PTR_ERR(bo); pc->bo = bo; return devm_add_action_or_reset(xe->drm.dev, xe_guc_pc_fini_hw, pc); }