// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_exec_queue.h" #include #include #include #include #include "xe_device.h" #include "xe_gt.h" #include "xe_hw_engine_class_sysfs.h" #include "xe_hw_fence.h" #include "xe_lrc.h" #include "xe_macros.h" #include "xe_migrate.h" #include "xe_pm.h" #include "xe_ring_ops_types.h" #include "xe_trace.h" #include "xe_vm.h" enum xe_exec_queue_sched_prop { XE_EXEC_QUEUE_JOB_TIMEOUT = 0, XE_EXEC_QUEUE_TIMESLICE = 1, XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2, XE_EXEC_QUEUE_SCHED_PROP_MAX = 3, }; static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, u64 extensions, int ext_number, bool create); static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe, struct xe_vm *vm, u32 logical_mask, u16 width, struct xe_hw_engine *hwe, u32 flags, u64 extensions) { struct xe_exec_queue *q; struct xe_gt *gt = hwe->gt; int err; /* only kernel queues can be permanent */ XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL)); q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL); if (!q) return ERR_PTR(-ENOMEM); kref_init(&q->refcount); q->flags = flags; q->hwe = hwe; q->gt = gt; q->class = hwe->class; q->width = width; q->logical_mask = logical_mask; q->fence_irq = >->fence_irq[hwe->class]; q->ring_ops = gt->ring_ops[hwe->class]; q->ops = gt->exec_queue_ops; INIT_LIST_HEAD(&q->compute.link); INIT_LIST_HEAD(&q->multi_gt_link); q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us; q->sched_props.preempt_timeout_us = hwe->eclass->sched_props.preempt_timeout_us; q->sched_props.job_timeout_ms = hwe->eclass->sched_props.job_timeout_ms; if (q->flags & EXEC_QUEUE_FLAG_KERNEL && q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY) q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL; else q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL; if (extensions) { /* * may set q->usm, must come before xe_lrc_init(), * may overwrite q->sched_props, must come before q->ops->init() */ err = exec_queue_user_extensions(xe, q, extensions, 0, true); if (err) { kfree(q); return ERR_PTR(err); } } if (vm) q->vm = xe_vm_get(vm); if (xe_exec_queue_is_parallel(q)) { q->parallel.composite_fence_ctx = dma_fence_context_alloc(1); q->parallel.composite_fence_seqno = XE_FENCE_INITIAL_SEQNO; } return q; } static void __xe_exec_queue_free(struct xe_exec_queue *q) { if (q->vm) xe_vm_put(q->vm); kfree(q); } static int __xe_exec_queue_init(struct xe_exec_queue *q) { struct xe_device *xe = gt_to_xe(q->gt); int i, err; for (i = 0; i < q->width; ++i) { err = xe_lrc_init(q->lrc + i, q->hwe, q, q->vm, SZ_16K); if (err) goto err_lrc; } err = q->ops->init(q); if (err) goto err_lrc; /* * Normally the user vm holds an rpm ref to keep the device * awake, and the context holds a ref for the vm, however for * some engines we use the kernels migrate vm underneath which offers no * such rpm ref, or we lack a vm. Make sure we keep a ref here, so we * can perform GuC CT actions when needed. Caller is expected to have * already grabbed the rpm ref outside any sensitive locks. */ if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && (q->flags & EXEC_QUEUE_FLAG_VM || !q->vm)) drm_WARN_ON(&xe->drm, !xe_device_mem_access_get_if_ongoing(xe)); return 0; err_lrc: for (i = i - 1; i >= 0; --i) xe_lrc_finish(q->lrc + i); return err; } struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm, u32 logical_mask, u16 width, struct xe_hw_engine *hwe, u32 flags, u64 extensions) { struct xe_exec_queue *q; int err; q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags, extensions); if (IS_ERR(q)) return q; if (vm) { err = xe_vm_lock(vm, true); if (err) goto err_post_alloc; } err = __xe_exec_queue_init(q); if (vm) xe_vm_unlock(vm); if (err) goto err_post_alloc; return q; err_post_alloc: __xe_exec_queue_free(q); return ERR_PTR(err); } struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt, struct xe_vm *vm, enum xe_engine_class class, u32 flags) { struct xe_hw_engine *hwe, *hwe0 = NULL; enum xe_hw_engine_id id; u32 logical_mask = 0; for_each_hw_engine(hwe, gt, id) { if (xe_hw_engine_is_reserved(hwe)) continue; if (hwe->class == class) { logical_mask |= BIT(hwe->logical_instance); if (!hwe0) hwe0 = hwe; } } if (!logical_mask) return ERR_PTR(-ENODEV); return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, 0); } void xe_exec_queue_destroy(struct kref *ref) { struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount); struct xe_exec_queue *eq, *next; xe_exec_queue_last_fence_put_unlocked(q); if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) { list_for_each_entry_safe(eq, next, &q->multi_gt_list, multi_gt_link) xe_exec_queue_put(eq); } q->ops->fini(q); } void xe_exec_queue_fini(struct xe_exec_queue *q) { int i; for (i = 0; i < q->width; ++i) xe_lrc_finish(q->lrc + i); if (!(q->flags & EXEC_QUEUE_FLAG_PERMANENT) && (q->flags & EXEC_QUEUE_FLAG_VM || !q->vm)) xe_device_mem_access_put(gt_to_xe(q->gt)); __xe_exec_queue_free(q); } void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance) { switch (q->class) { case XE_ENGINE_CLASS_RENDER: sprintf(q->name, "rcs%d", instance); break; case XE_ENGINE_CLASS_VIDEO_DECODE: sprintf(q->name, "vcs%d", instance); break; case XE_ENGINE_CLASS_VIDEO_ENHANCE: sprintf(q->name, "vecs%d", instance); break; case XE_ENGINE_CLASS_COPY: sprintf(q->name, "bcs%d", instance); break; case XE_ENGINE_CLASS_COMPUTE: sprintf(q->name, "ccs%d", instance); break; case XE_ENGINE_CLASS_OTHER: sprintf(q->name, "gsccs%d", instance); break; default: XE_WARN_ON(q->class); } } struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id) { struct xe_exec_queue *q; mutex_lock(&xef->exec_queue.lock); q = xa_load(&xef->exec_queue.xa, id); if (q) xe_exec_queue_get(q); mutex_unlock(&xef->exec_queue.lock); return q; } enum xe_exec_queue_priority xe_exec_queue_device_get_max_priority(struct xe_device *xe) { return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH : XE_EXEC_QUEUE_PRIORITY_NORMAL; } static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH)) return -EINVAL; if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe))) return -EPERM; if (!create) return q->ops->set_priority(q, value); q->sched_props.priority = value; return 0; } static bool xe_exec_queue_enforce_schedule_limit(void) { #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) return true; #else return !capable(CAP_SYS_NICE); #endif } static void xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass, enum xe_exec_queue_sched_prop prop, u32 *min, u32 *max) { switch (prop) { case XE_EXEC_QUEUE_JOB_TIMEOUT: *min = eclass->sched_props.job_timeout_min; *max = eclass->sched_props.job_timeout_max; break; case XE_EXEC_QUEUE_TIMESLICE: *min = eclass->sched_props.timeslice_min; *max = eclass->sched_props.timeslice_max; break; case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: *min = eclass->sched_props.preempt_timeout_min; *max = eclass->sched_props.preempt_timeout_max; break; default: break; } #if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT) if (capable(CAP_SYS_NICE)) { switch (prop) { case XE_EXEC_QUEUE_JOB_TIMEOUT: *min = XE_HW_ENGINE_JOB_TIMEOUT_MIN; *max = XE_HW_ENGINE_JOB_TIMEOUT_MAX; break; case XE_EXEC_QUEUE_TIMESLICE: *min = XE_HW_ENGINE_TIMESLICE_MIN; *max = XE_HW_ENGINE_TIMESLICE_MAX; break; case XE_EXEC_QUEUE_PREEMPT_TIMEOUT: *min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN; *max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX; break; default: break; } } #endif } static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { u32 min = 0, max = 0; xe_exec_queue_get_prop_minmax(q->hwe->eclass, XE_EXEC_QUEUE_TIMESLICE, &min, &max); if (xe_exec_queue_enforce_schedule_limit() && !xe_hw_engine_timeout_in_range(value, min, max)) return -EINVAL; if (!create) return q->ops->set_timeslice(q, value); q->sched_props.timeslice_us = value; return 0; } static int exec_queue_set_preemption_timeout(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { u32 min = 0, max = 0; xe_exec_queue_get_prop_minmax(q->hwe->eclass, XE_EXEC_QUEUE_PREEMPT_TIMEOUT, &min, &max); if (xe_exec_queue_enforce_schedule_limit() && !xe_hw_engine_timeout_in_range(value, min, max)) return -EINVAL; if (!create) return q->ops->set_preempt_timeout(q, value); q->sched_props.preempt_timeout_us = value; return 0; } static int exec_queue_set_job_timeout(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { u32 min = 0, max = 0; if (XE_IOCTL_DBG(xe, !create)) return -EINVAL; xe_exec_queue_get_prop_minmax(q->hwe->eclass, XE_EXEC_QUEUE_JOB_TIMEOUT, &min, &max); if (xe_exec_queue_enforce_schedule_limit() && !xe_hw_engine_timeout_in_range(value, min, max)) return -EINVAL; q->sched_props.job_timeout_ms = value; return 0; } static int exec_queue_set_acc_trigger(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { if (XE_IOCTL_DBG(xe, !create)) return -EINVAL; if (XE_IOCTL_DBG(xe, !xe->info.has_usm)) return -EINVAL; q->usm.acc_trigger = value; return 0; } static int exec_queue_set_acc_notify(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { if (XE_IOCTL_DBG(xe, !create)) return -EINVAL; if (XE_IOCTL_DBG(xe, !xe->info.has_usm)) return -EINVAL; q->usm.acc_notify = value; return 0; } static int exec_queue_set_acc_granularity(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create) { if (XE_IOCTL_DBG(xe, !create)) return -EINVAL; if (XE_IOCTL_DBG(xe, !xe->info.has_usm)) return -EINVAL; if (value > DRM_XE_ACC_GRANULARITY_64M) return -EINVAL; q->usm.acc_granularity = value; return 0; } typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe, struct xe_exec_queue *q, u64 value, bool create); static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = { [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_PREEMPTION_TIMEOUT] = exec_queue_set_preemption_timeout, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_JOB_TIMEOUT] = exec_queue_set_job_timeout, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_TRIGGER] = exec_queue_set_acc_trigger, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_NOTIFY] = exec_queue_set_acc_notify, [DRM_XE_EXEC_QUEUE_SET_PROPERTY_ACC_GRANULARITY] = exec_queue_set_acc_granularity, }; static int exec_queue_user_ext_set_property(struct xe_device *xe, struct xe_exec_queue *q, u64 extension, bool create) { u64 __user *address = u64_to_user_ptr(extension); struct drm_xe_ext_set_property ext; int err; u32 idx; err = __copy_from_user(&ext, address, sizeof(ext)); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, ext.property >= ARRAY_SIZE(exec_queue_set_property_funcs)) || XE_IOCTL_DBG(xe, ext.pad)) return -EINVAL; idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs)); if (!exec_queue_set_property_funcs[idx]) return -EINVAL; return exec_queue_set_property_funcs[idx](xe, q, ext.value, create); } typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe, struct xe_exec_queue *q, u64 extension, bool create); static const xe_exec_queue_set_property_fn exec_queue_user_extension_funcs[] = { [DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property, }; #define MAX_USER_EXTENSIONS 16 static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q, u64 extensions, int ext_number, bool create) { u64 __user *address = u64_to_user_ptr(extensions); struct drm_xe_user_extension ext; int err; u32 idx; if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS)) return -E2BIG; err = __copy_from_user(&ext, address, sizeof(ext)); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, ext.pad) || XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(exec_queue_user_extension_funcs))) return -EINVAL; idx = array_index_nospec(ext.name, ARRAY_SIZE(exec_queue_user_extension_funcs)); err = exec_queue_user_extension_funcs[idx](xe, q, extensions, create); if (XE_IOCTL_DBG(xe, err)) return err; if (ext.next_extension) return exec_queue_user_extensions(xe, q, ext.next_extension, ++ext_number, create); return 0; } static const enum xe_engine_class user_to_xe_engine_class[] = { [DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER, [DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY, [DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE, [DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE, [DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE, }; static struct xe_hw_engine * find_hw_engine(struct xe_device *xe, struct drm_xe_engine_class_instance eci) { u32 idx; if (eci.engine_class > ARRAY_SIZE(user_to_xe_engine_class)) return NULL; if (eci.gt_id >= xe->info.gt_count) return NULL; idx = array_index_nospec(eci.engine_class, ARRAY_SIZE(user_to_xe_engine_class)); return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id), user_to_xe_engine_class[idx], eci.engine_instance, true); } static u32 bind_exec_queue_logical_mask(struct xe_device *xe, struct xe_gt *gt, struct drm_xe_engine_class_instance *eci, u16 width, u16 num_placements) { struct xe_hw_engine *hwe; enum xe_hw_engine_id id; u32 logical_mask = 0; if (XE_IOCTL_DBG(xe, width != 1)) return 0; if (XE_IOCTL_DBG(xe, num_placements != 1)) return 0; if (XE_IOCTL_DBG(xe, eci[0].engine_instance != 0)) return 0; eci[0].engine_class = DRM_XE_ENGINE_CLASS_COPY; for_each_hw_engine(hwe, gt, id) { if (xe_hw_engine_is_reserved(hwe)) continue; if (hwe->class == user_to_xe_engine_class[DRM_XE_ENGINE_CLASS_COPY]) logical_mask |= BIT(hwe->logical_instance); } return logical_mask; } static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt, struct drm_xe_engine_class_instance *eci, u16 width, u16 num_placements) { int len = width * num_placements; int i, j, n; u16 class; u16 gt_id; u32 return_mask = 0, prev_mask; if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) && len > 1)) return 0; for (i = 0; i < width; ++i) { u32 current_mask = 0; for (j = 0; j < num_placements; ++j) { struct xe_hw_engine *hwe; n = j * width + i; hwe = find_hw_engine(xe, eci[n]); if (XE_IOCTL_DBG(xe, !hwe)) return 0; if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe))) return 0; if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) || XE_IOCTL_DBG(xe, n && eci[n].engine_class != class)) return 0; class = eci[n].engine_class; gt_id = eci[n].gt_id; if (width == 1 || !i) return_mask |= BIT(eci[n].engine_instance); current_mask |= BIT(eci[n].engine_instance); } /* Parallel submissions must be logically contiguous */ if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1)) return 0; prev_mask = current_mask; } return return_mask; } int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_create *args = data; struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE]; struct drm_xe_engine_class_instance __user *user_eci = u64_to_user_ptr(args->instances); struct xe_hw_engine *hwe; struct xe_vm *vm, *migrate_vm; struct xe_gt *gt; struct xe_exec_queue *q = NULL; u32 logical_mask; u32 id; u32 len; int err; if (XE_IOCTL_DBG(xe, args->flags) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; len = args->width * args->num_placements; if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE)) return -EINVAL; err = __copy_from_user(eci, user_eci, sizeof(struct drm_xe_engine_class_instance) * len); if (XE_IOCTL_DBG(xe, err)) return -EFAULT; if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count)) return -EINVAL; if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) { for_each_gt(gt, xe, id) { struct xe_exec_queue *new; u32 flags; if (xe_gt_is_media_type(gt)) continue; eci[0].gt_id = gt->info.id; logical_mask = bind_exec_queue_logical_mask(xe, gt, eci, args->width, args->num_placements); if (XE_IOCTL_DBG(xe, !logical_mask)) return -EINVAL; hwe = find_hw_engine(xe, eci[0]); if (XE_IOCTL_DBG(xe, !hwe)) return -EINVAL; /* The migration vm doesn't hold rpm ref */ xe_device_mem_access_get(xe); flags = EXEC_QUEUE_FLAG_VM | (id ? EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD : 0); migrate_vm = xe_migrate_get_vm(gt_to_tile(gt)->migrate); new = xe_exec_queue_create(xe, migrate_vm, logical_mask, args->width, hwe, flags, args->extensions); xe_device_mem_access_put(xe); /* now held by engine */ xe_vm_put(migrate_vm); if (IS_ERR(new)) { err = PTR_ERR(new); if (q) goto put_exec_queue; return err; } if (id == 0) q = new; else list_add_tail(&new->multi_gt_list, &q->multi_gt_link); } } else { gt = xe_device_get_gt(xe, eci[0].gt_id); logical_mask = calc_validate_logical_mask(xe, gt, eci, args->width, args->num_placements); if (XE_IOCTL_DBG(xe, !logical_mask)) return -EINVAL; hwe = find_hw_engine(xe, eci[0]); if (XE_IOCTL_DBG(xe, !hwe)) return -EINVAL; vm = xe_vm_lookup(xef, args->vm_id); if (XE_IOCTL_DBG(xe, !vm)) return -ENOENT; err = down_read_interruptible(&vm->lock); if (err) { xe_vm_put(vm); return err; } if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) { up_read(&vm->lock); xe_vm_put(vm); return -ENOENT; } q = xe_exec_queue_create(xe, vm, logical_mask, args->width, hwe, 0, args->extensions); up_read(&vm->lock); xe_vm_put(vm); if (IS_ERR(q)) return PTR_ERR(q); if (xe_vm_in_preempt_fence_mode(vm)) { q->compute.context = dma_fence_context_alloc(1); spin_lock_init(&q->compute.lock); err = xe_vm_add_compute_exec_queue(vm, q); if (XE_IOCTL_DBG(xe, err)) goto put_exec_queue; } } mutex_lock(&xef->exec_queue.lock); err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL); mutex_unlock(&xef->exec_queue.lock); if (err) goto kill_exec_queue; args->exec_queue_id = id; return 0; kill_exec_queue: xe_exec_queue_kill(q); put_exec_queue: xe_exec_queue_put(q); return err; } int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_get_property *args = data; struct xe_exec_queue *q; int ret; if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; q = xe_exec_queue_lookup(xef, args->exec_queue_id); if (XE_IOCTL_DBG(xe, !q)) return -ENOENT; switch (args->property) { case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN: args->value = !!(q->flags & EXEC_QUEUE_FLAG_BANNED); ret = 0; break; default: ret = -EINVAL; } xe_exec_queue_put(q); return ret; } /** * xe_exec_queue_is_lr() - Whether an exec_queue is long-running * @q: The exec_queue * * Return: True if the exec_queue is long-running, false otherwise. */ bool xe_exec_queue_is_lr(struct xe_exec_queue *q) { return q->vm && xe_vm_in_lr_mode(q->vm) && !(q->flags & EXEC_QUEUE_FLAG_VM); } static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q) { return q->lrc->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc) - 1; } /** * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full * @q: The exec_queue * * Return: True if the exec_queue's ring is full, false otherwise. */ bool xe_exec_queue_ring_full(struct xe_exec_queue *q) { struct xe_lrc *lrc = q->lrc; s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES; return xe_exec_queue_num_job_inflight(q) >= max_job; } /** * xe_exec_queue_is_idle() - Whether an exec_queue is idle. * @q: The exec_queue * * FIXME: Need to determine what to use as the short-lived * timeline lock for the exec_queues, so that the return value * of this function becomes more than just an advisory * snapshot in time. The timeline lock must protect the * seqno from racing submissions on the same exec_queue. * Typically vm->resv, but user-created timeline locks use the migrate vm * and never grabs the migrate vm->resv so we have a race there. * * Return: True if the exec_queue is idle, false otherwise. */ bool xe_exec_queue_is_idle(struct xe_exec_queue *q) { if (xe_exec_queue_is_parallel(q)) { int i; for (i = 0; i < q->width; ++i) { if (xe_lrc_seqno(&q->lrc[i]) != q->lrc[i].fence_ctx.next_seqno - 1) return false; } return true; } return xe_lrc_seqno(&q->lrc[0]) == q->lrc[0].fence_ctx.next_seqno - 1; } void xe_exec_queue_kill(struct xe_exec_queue *q) { struct xe_exec_queue *eq = q, *next; list_for_each_entry_safe(eq, next, &eq->multi_gt_list, multi_gt_link) { q->ops->kill(eq); xe_vm_remove_compute_exec_queue(q->vm, eq); } q->ops->kill(q); xe_vm_remove_compute_exec_queue(q->vm, q); } int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = to_xe_file(file); struct drm_xe_exec_queue_destroy *args = data; struct xe_exec_queue *q; if (XE_IOCTL_DBG(xe, args->pad) || XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) return -EINVAL; mutex_lock(&xef->exec_queue.lock); q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id); mutex_unlock(&xef->exec_queue.lock); if (XE_IOCTL_DBG(xe, !q)) return -ENOENT; xe_exec_queue_kill(q); trace_xe_exec_queue_close(q); xe_exec_queue_put(q); return 0; } static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q, struct xe_vm *vm) { if (q->flags & EXEC_QUEUE_FLAG_VM) lockdep_assert_held(&vm->lock); else xe_vm_assert_held(vm); } /** * xe_exec_queue_last_fence_put() - Drop ref to last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for */ void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm) { xe_exec_queue_last_fence_lockdep_assert(q, vm); if (q->last_fence) { dma_fence_put(q->last_fence); q->last_fence = NULL; } } /** * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked * @q: The exec queue * * Only safe to be called from xe_exec_queue_destroy(). */ void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q) { if (q->last_fence) { dma_fence_put(q->last_fence); q->last_fence = NULL; } } /** * xe_exec_queue_last_fence_get() - Get last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for * * Get last fence, takes a ref * * Returns: last fence if not signaled, dma fence stub if signaled */ struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q, struct xe_vm *vm) { struct dma_fence *fence; xe_exec_queue_last_fence_lockdep_assert(q, vm); if (q->last_fence && test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags)) xe_exec_queue_last_fence_put(q, vm); fence = q->last_fence ? q->last_fence : dma_fence_get_stub(); dma_fence_get(fence); return fence; } /** * xe_exec_queue_last_fence_set() - Set last fence * @q: The exec queue * @vm: The VM the engine does a bind or exec for * @fence: The fence * * Set the last fence for the engine. Increases reference count for fence, when * closing engine xe_exec_queue_last_fence_put should be called. */ void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm, struct dma_fence *fence) { xe_exec_queue_last_fence_lockdep_assert(q, vm); xe_exec_queue_last_fence_put(q, vm); q->last_fence = dma_fence_get(fence); }