// SPDX-License-Identifier: GPL-2.0-only /* * DRM driver for Solomon SSD13xx OLED displays * * Copyright 2022 Red Hat Inc. * Author: Javier Martinez Canillas * * Based on drivers/video/fbdev/ssd1307fb.c * Copyright 2012 Free Electrons */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ssd130x.h" #define DRIVER_NAME "ssd130x" #define DRIVER_DESC "DRM driver for Solomon SSD13xx OLED displays" #define DRIVER_DATE "20220131" #define DRIVER_MAJOR 1 #define DRIVER_MINOR 0 #define SSD130X_PAGE_HEIGHT 8 #define SSD132X_SEGMENT_WIDTH 2 /* ssd13xx commands */ #define SSD13XX_CONTRAST 0x81 #define SSD13XX_SET_SEG_REMAP 0xa0 #define SSD13XX_SET_MULTIPLEX_RATIO 0xa8 #define SSD13XX_DISPLAY_OFF 0xae #define SSD13XX_DISPLAY_ON 0xaf #define SSD13XX_SET_SEG_REMAP_MASK GENMASK(0, 0) #define SSD13XX_SET_SEG_REMAP_SET(val) FIELD_PREP(SSD13XX_SET_SEG_REMAP_MASK, (val)) /* ssd130x commands */ #define SSD130X_PAGE_COL_START_LOW 0x00 #define SSD130X_PAGE_COL_START_HIGH 0x10 #define SSD130X_SET_ADDRESS_MODE 0x20 #define SSD130X_SET_COL_RANGE 0x21 #define SSD130X_SET_PAGE_RANGE 0x22 #define SSD130X_SET_LOOKUP_TABLE 0x91 #define SSD130X_CHARGE_PUMP 0x8d #define SSD130X_START_PAGE_ADDRESS 0xb0 #define SSD130X_SET_COM_SCAN_DIR 0xc0 #define SSD130X_SET_DISPLAY_OFFSET 0xd3 #define SSD130X_SET_CLOCK_FREQ 0xd5 #define SSD130X_SET_AREA_COLOR_MODE 0xd8 #define SSD130X_SET_PRECHARGE_PERIOD 0xd9 #define SSD130X_SET_COM_PINS_CONFIG 0xda #define SSD130X_SET_VCOMH 0xdb /* ssd130x commands accessors */ #define SSD130X_PAGE_COL_START_MASK GENMASK(3, 0) #define SSD130X_PAGE_COL_START_HIGH_SET(val) FIELD_PREP(SSD130X_PAGE_COL_START_MASK, (val) >> 4) #define SSD130X_PAGE_COL_START_LOW_SET(val) FIELD_PREP(SSD130X_PAGE_COL_START_MASK, (val)) #define SSD130X_START_PAGE_ADDRESS_MASK GENMASK(2, 0) #define SSD130X_START_PAGE_ADDRESS_SET(val) FIELD_PREP(SSD130X_START_PAGE_ADDRESS_MASK, (val)) #define SSD130X_SET_COM_SCAN_DIR_MASK GENMASK(3, 3) #define SSD130X_SET_COM_SCAN_DIR_SET(val) FIELD_PREP(SSD130X_SET_COM_SCAN_DIR_MASK, (val)) #define SSD130X_SET_CLOCK_DIV_MASK GENMASK(3, 0) #define SSD130X_SET_CLOCK_DIV_SET(val) FIELD_PREP(SSD130X_SET_CLOCK_DIV_MASK, (val)) #define SSD130X_SET_CLOCK_FREQ_MASK GENMASK(7, 4) #define SSD130X_SET_CLOCK_FREQ_SET(val) FIELD_PREP(SSD130X_SET_CLOCK_FREQ_MASK, (val)) #define SSD130X_SET_PRECHARGE_PERIOD1_MASK GENMASK(3, 0) #define SSD130X_SET_PRECHARGE_PERIOD1_SET(val) FIELD_PREP(SSD130X_SET_PRECHARGE_PERIOD1_MASK, (val)) #define SSD130X_SET_PRECHARGE_PERIOD2_MASK GENMASK(7, 4) #define SSD130X_SET_PRECHARGE_PERIOD2_SET(val) FIELD_PREP(SSD130X_SET_PRECHARGE_PERIOD2_MASK, (val)) #define SSD130X_SET_COM_PINS_CONFIG1_MASK GENMASK(4, 4) #define SSD130X_SET_COM_PINS_CONFIG1_SET(val) FIELD_PREP(SSD130X_SET_COM_PINS_CONFIG1_MASK, (val)) #define SSD130X_SET_COM_PINS_CONFIG2_MASK GENMASK(5, 5) #define SSD130X_SET_COM_PINS_CONFIG2_SET(val) FIELD_PREP(SSD130X_SET_COM_PINS_CONFIG2_MASK, (val)) #define SSD130X_SET_ADDRESS_MODE_HORIZONTAL 0x00 #define SSD130X_SET_ADDRESS_MODE_VERTICAL 0x01 #define SSD130X_SET_ADDRESS_MODE_PAGE 0x02 #define SSD130X_SET_AREA_COLOR_MODE_ENABLE 0x1e #define SSD130X_SET_AREA_COLOR_MODE_LOW_POWER 0x05 /* ssd132x commands */ #define SSD132X_SET_COL_RANGE 0x15 #define SSD132X_SET_DEACTIVATE_SCROLL 0x2e #define SSD132X_SET_ROW_RANGE 0x75 #define SSD132X_SET_DISPLAY_START 0xa1 #define SSD132X_SET_DISPLAY_OFFSET 0xa2 #define SSD132X_SET_DISPLAY_NORMAL 0xa4 #define SSD132X_SET_FUNCTION_SELECT_A 0xab #define SSD132X_SET_PHASE_LENGTH 0xb1 #define SSD132X_SET_CLOCK_FREQ 0xb3 #define SSD132X_SET_GPIO 0xb5 #define SSD132X_SET_PRECHARGE_PERIOD 0xb6 #define SSD132X_SET_GRAY_SCALE_TABLE 0xb8 #define SSD132X_SELECT_DEFAULT_TABLE 0xb9 #define SSD132X_SET_PRECHARGE_VOLTAGE 0xbc #define SSD130X_SET_VCOMH_VOLTAGE 0xbe #define SSD132X_SET_FUNCTION_SELECT_B 0xd5 /* ssd133x commands */ #define SSD133X_SET_COL_RANGE 0x15 #define SSD133X_SET_ROW_RANGE 0x75 #define SSD133X_CONTRAST_A 0x81 #define SSD133X_CONTRAST_B 0x82 #define SSD133X_CONTRAST_C 0x83 #define SSD133X_SET_MASTER_CURRENT 0x87 #define SSD132X_SET_PRECHARGE_A 0x8a #define SSD132X_SET_PRECHARGE_B 0x8b #define SSD132X_SET_PRECHARGE_C 0x8c #define SSD133X_SET_DISPLAY_START 0xa1 #define SSD133X_SET_DISPLAY_OFFSET 0xa2 #define SSD133X_SET_DISPLAY_NORMAL 0xa4 #define SSD133X_SET_MASTER_CONFIG 0xad #define SSD133X_POWER_SAVE_MODE 0xb0 #define SSD133X_PHASES_PERIOD 0xb1 #define SSD133X_SET_CLOCK_FREQ 0xb3 #define SSD133X_SET_PRECHARGE_VOLTAGE 0xbb #define SSD133X_SET_VCOMH_VOLTAGE 0xbe #define MAX_CONTRAST 255 const struct ssd130x_deviceinfo ssd130x_variants[] = { [SH1106_ID] = { .default_vcomh = 0x40, .default_dclk_div = 1, .default_dclk_frq = 5, .default_width = 132, .default_height = 64, .page_mode_only = 1, .family_id = SSD130X_FAMILY, }, [SSD1305_ID] = { .default_vcomh = 0x34, .default_dclk_div = 1, .default_dclk_frq = 7, .default_width = 132, .default_height = 64, .family_id = SSD130X_FAMILY, }, [SSD1306_ID] = { .default_vcomh = 0x20, .default_dclk_div = 1, .default_dclk_frq = 8, .need_chargepump = 1, .default_width = 128, .default_height = 64, .family_id = SSD130X_FAMILY, }, [SSD1307_ID] = { .default_vcomh = 0x20, .default_dclk_div = 2, .default_dclk_frq = 12, .need_pwm = 1, .default_width = 128, .default_height = 39, .family_id = SSD130X_FAMILY, }, [SSD1309_ID] = { .default_vcomh = 0x34, .default_dclk_div = 1, .default_dclk_frq = 10, .default_width = 128, .default_height = 64, .family_id = SSD130X_FAMILY, }, /* ssd132x family */ [SSD1322_ID] = { .default_width = 480, .default_height = 128, .family_id = SSD132X_FAMILY, }, [SSD1325_ID] = { .default_width = 128, .default_height = 80, .family_id = SSD132X_FAMILY, }, [SSD1327_ID] = { .default_width = 128, .default_height = 128, .family_id = SSD132X_FAMILY, }, /* ssd133x family */ [SSD1331_ID] = { .default_width = 96, .default_height = 64, .family_id = SSD133X_FAMILY, } }; EXPORT_SYMBOL_NS_GPL(ssd130x_variants, DRM_SSD130X); struct ssd130x_crtc_state { struct drm_crtc_state base; /* Buffer to store pixels in HW format and written to the panel */ u8 *data_array; }; struct ssd130x_plane_state { struct drm_shadow_plane_state base; /* Intermediate buffer to convert pixels from XRGB8888 to HW format */ u8 *buffer; }; static inline struct ssd130x_crtc_state *to_ssd130x_crtc_state(struct drm_crtc_state *state) { return container_of(state, struct ssd130x_crtc_state, base); } static inline struct ssd130x_plane_state *to_ssd130x_plane_state(struct drm_plane_state *state) { return container_of(state, struct ssd130x_plane_state, base.base); } static inline struct ssd130x_device *drm_to_ssd130x(struct drm_device *drm) { return container_of(drm, struct ssd130x_device, drm); } /* * Helper to write data (SSD13XX_DATA) to the device. */ static int ssd130x_write_data(struct ssd130x_device *ssd130x, u8 *values, int count) { return regmap_bulk_write(ssd130x->regmap, SSD13XX_DATA, values, count); } /* * Helper to write command (SSD13XX_COMMAND). The fist variadic argument * is the command to write and the following are the command options. * * Note that the ssd13xx protocol requires each command and option to be * written as a SSD13XX_COMMAND device register value. That is why a call * to regmap_write(..., SSD13XX_COMMAND, ...) is done for each argument. */ static int ssd130x_write_cmd(struct ssd130x_device *ssd130x, int count, /* u8 cmd, u8 option, ... */...) { va_list ap; u8 value; int ret; va_start(ap, count); do { value = va_arg(ap, int); ret = regmap_write(ssd130x->regmap, SSD13XX_COMMAND, value); if (ret) goto out_end; } while (--count); out_end: va_end(ap); return ret; } /* Set address range for horizontal/vertical addressing modes */ static int ssd130x_set_col_range(struct ssd130x_device *ssd130x, u8 col_start, u8 cols) { u8 col_end = col_start + cols - 1; int ret; if (col_start == ssd130x->col_start && col_end == ssd130x->col_end) return 0; ret = ssd130x_write_cmd(ssd130x, 3, SSD130X_SET_COL_RANGE, col_start, col_end); if (ret < 0) return ret; ssd130x->col_start = col_start; ssd130x->col_end = col_end; return 0; } static int ssd130x_set_page_range(struct ssd130x_device *ssd130x, u8 page_start, u8 pages) { u8 page_end = page_start + pages - 1; int ret; if (page_start == ssd130x->page_start && page_end == ssd130x->page_end) return 0; ret = ssd130x_write_cmd(ssd130x, 3, SSD130X_SET_PAGE_RANGE, page_start, page_end); if (ret < 0) return ret; ssd130x->page_start = page_start; ssd130x->page_end = page_end; return 0; } /* Set page and column start address for page addressing mode */ static int ssd130x_set_page_pos(struct ssd130x_device *ssd130x, u8 page_start, u8 col_start) { int ret; u32 page, col_low, col_high; page = SSD130X_START_PAGE_ADDRESS | SSD130X_START_PAGE_ADDRESS_SET(page_start); col_low = SSD130X_PAGE_COL_START_LOW | SSD130X_PAGE_COL_START_LOW_SET(col_start); col_high = SSD130X_PAGE_COL_START_HIGH | SSD130X_PAGE_COL_START_HIGH_SET(col_start); ret = ssd130x_write_cmd(ssd130x, 3, page, col_low, col_high); if (ret < 0) return ret; return 0; } static int ssd130x_pwm_enable(struct ssd130x_device *ssd130x) { struct device *dev = ssd130x->dev; struct pwm_state pwmstate; ssd130x->pwm = pwm_get(dev, NULL); if (IS_ERR(ssd130x->pwm)) { dev_err(dev, "Could not get PWM from firmware description!\n"); return PTR_ERR(ssd130x->pwm); } pwm_init_state(ssd130x->pwm, &pwmstate); pwm_set_relative_duty_cycle(&pwmstate, 50, 100); pwm_apply_might_sleep(ssd130x->pwm, &pwmstate); /* Enable the PWM */ pwm_enable(ssd130x->pwm); dev_dbg(dev, "Using PWM %s with a %lluns period.\n", ssd130x->pwm->label, pwm_get_period(ssd130x->pwm)); return 0; } static void ssd130x_reset(struct ssd130x_device *ssd130x) { if (!ssd130x->reset) return; /* Reset the screen */ gpiod_set_value_cansleep(ssd130x->reset, 1); udelay(4); gpiod_set_value_cansleep(ssd130x->reset, 0); udelay(4); } static int ssd130x_power_on(struct ssd130x_device *ssd130x) { struct device *dev = ssd130x->dev; int ret; ssd130x_reset(ssd130x); ret = regulator_enable(ssd130x->vcc_reg); if (ret) { dev_err(dev, "Failed to enable VCC: %d\n", ret); return ret; } if (ssd130x->device_info->need_pwm) { ret = ssd130x_pwm_enable(ssd130x); if (ret) { dev_err(dev, "Failed to enable PWM: %d\n", ret); regulator_disable(ssd130x->vcc_reg); return ret; } } return 0; } static void ssd130x_power_off(struct ssd130x_device *ssd130x) { pwm_disable(ssd130x->pwm); pwm_put(ssd130x->pwm); regulator_disable(ssd130x->vcc_reg); } static int ssd130x_init(struct ssd130x_device *ssd130x) { u32 precharge, dclk, com_invdir, compins, chargepump, seg_remap; bool scan_mode; int ret; /* Set initial contrast */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_CONTRAST, ssd130x->contrast); if (ret < 0) return ret; /* Set segment re-map */ seg_remap = (SSD13XX_SET_SEG_REMAP | SSD13XX_SET_SEG_REMAP_SET(ssd130x->seg_remap)); ret = ssd130x_write_cmd(ssd130x, 1, seg_remap); if (ret < 0) return ret; /* Set COM direction */ com_invdir = (SSD130X_SET_COM_SCAN_DIR | SSD130X_SET_COM_SCAN_DIR_SET(ssd130x->com_invdir)); ret = ssd130x_write_cmd(ssd130x, 1, com_invdir); if (ret < 0) return ret; /* Set multiplex ratio value */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1); if (ret < 0) return ret; /* set display offset value */ ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_DISPLAY_OFFSET, ssd130x->com_offset); if (ret < 0) return ret; /* Set clock frequency */ dclk = (SSD130X_SET_CLOCK_DIV_SET(ssd130x->dclk_div - 1) | SSD130X_SET_CLOCK_FREQ_SET(ssd130x->dclk_frq)); ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_CLOCK_FREQ, dclk); if (ret < 0) return ret; /* Set Area Color Mode ON/OFF & Low Power Display Mode */ if (ssd130x->area_color_enable || ssd130x->low_power) { u32 mode = 0; if (ssd130x->area_color_enable) mode |= SSD130X_SET_AREA_COLOR_MODE_ENABLE; if (ssd130x->low_power) mode |= SSD130X_SET_AREA_COLOR_MODE_LOW_POWER; ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_AREA_COLOR_MODE, mode); if (ret < 0) return ret; } /* Set precharge period in number of ticks from the internal clock */ precharge = (SSD130X_SET_PRECHARGE_PERIOD1_SET(ssd130x->prechargep1) | SSD130X_SET_PRECHARGE_PERIOD2_SET(ssd130x->prechargep2)); ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_PRECHARGE_PERIOD, precharge); if (ret < 0) return ret; /* Set COM pins configuration */ compins = BIT(1); /* * The COM scan mode field values are the inverse of the boolean DT * property "solomon,com-seq". The value 0b means scan from COM0 to * COM[N - 1] while 1b means scan from COM[N - 1] to COM0. */ scan_mode = !ssd130x->com_seq; compins |= (SSD130X_SET_COM_PINS_CONFIG1_SET(scan_mode) | SSD130X_SET_COM_PINS_CONFIG2_SET(ssd130x->com_lrremap)); ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_COM_PINS_CONFIG, compins); if (ret < 0) return ret; /* Set VCOMH */ ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_VCOMH, ssd130x->vcomh); if (ret < 0) return ret; /* Turn on the DC-DC Charge Pump */ chargepump = BIT(4); if (ssd130x->device_info->need_chargepump) chargepump |= BIT(2); ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_CHARGE_PUMP, chargepump); if (ret < 0) return ret; /* Set lookup table */ if (ssd130x->lookup_table_set) { int i; ret = ssd130x_write_cmd(ssd130x, 1, SSD130X_SET_LOOKUP_TABLE); if (ret < 0) return ret; for (i = 0; i < ARRAY_SIZE(ssd130x->lookup_table); i++) { u8 val = ssd130x->lookup_table[i]; if (val < 31 || val > 63) dev_warn(ssd130x->dev, "lookup table index %d value out of range 31 <= %d <= 63\n", i, val); ret = ssd130x_write_cmd(ssd130x, 1, val); if (ret < 0) return ret; } } /* Switch to page addressing mode */ if (ssd130x->page_address_mode) return ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_ADDRESS_MODE, SSD130X_SET_ADDRESS_MODE_PAGE); /* Switch to horizontal addressing mode */ return ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_ADDRESS_MODE, SSD130X_SET_ADDRESS_MODE_HORIZONTAL); } static int ssd132x_init(struct ssd130x_device *ssd130x) { int ret; /* Set initial contrast */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_CONTRAST, 0x80); if (ret < 0) return ret; /* Set column start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_COL_RANGE, 0x00, ssd130x->width / SSD132X_SEGMENT_WIDTH - 1); if (ret < 0) return ret; /* Set row start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_ROW_RANGE, 0x00, ssd130x->height - 1); if (ret < 0) return ret; /* * Horizontal Address Increment * Re-map for Column Address, Nibble and COM * COM Split Odd Even */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_SEG_REMAP, 0x53); if (ret < 0) return ret; /* Set display start and offset */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_DISPLAY_START, 0x00); if (ret < 0) return ret; ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_DISPLAY_OFFSET, 0x00); if (ret < 0) return ret; /* Set display mode normal */ ret = ssd130x_write_cmd(ssd130x, 1, SSD132X_SET_DISPLAY_NORMAL); if (ret < 0) return ret; /* Set multiplex ratio value */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1); if (ret < 0) return ret; /* Set phase length */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PHASE_LENGTH, 0x55); if (ret < 0) return ret; /* Select default linear gray scale table */ ret = ssd130x_write_cmd(ssd130x, 1, SSD132X_SELECT_DEFAULT_TABLE); if (ret < 0) return ret; /* Set clock frequency */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_CLOCK_FREQ, 0x01); if (ret < 0) return ret; /* Enable internal VDD regulator */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_FUNCTION_SELECT_A, 0x1); if (ret < 0) return ret; /* Set pre-charge period */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_PERIOD, 0x01); if (ret < 0) return ret; /* Set pre-charge voltage */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_VOLTAGE, 0x08); if (ret < 0) return ret; /* Set VCOMH voltage */ ret = ssd130x_write_cmd(ssd130x, 2, SSD130X_SET_VCOMH_VOLTAGE, 0x07); if (ret < 0) return ret; /* Enable second pre-charge and internal VSL */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_FUNCTION_SELECT_B, 0x62); if (ret < 0) return ret; return 0; } static int ssd133x_init(struct ssd130x_device *ssd130x) { int ret; /* Set color A contrast */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_A, 0x91); if (ret < 0) return ret; /* Set color B contrast */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_B, 0x50); if (ret < 0) return ret; /* Set color C contrast */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_CONTRAST_C, 0x7d); if (ret < 0) return ret; /* Set master current */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_MASTER_CURRENT, 0x06); if (ret < 0) return ret; /* Set column start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_COL_RANGE, 0x00, ssd130x->width - 1); if (ret < 0) return ret; /* Set row start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_ROW_RANGE, 0x00, ssd130x->height - 1); if (ret < 0) return ret; /* * Horizontal Address Increment * Normal order SA,SB,SC (e.g. RGB) * COM Split Odd Even * 256 color format */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_SEG_REMAP, 0x20); if (ret < 0) return ret; /* Set display start and offset */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_DISPLAY_START, 0x00); if (ret < 0) return ret; ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_DISPLAY_OFFSET, 0x00); if (ret < 0) return ret; /* Set display mode normal */ ret = ssd130x_write_cmd(ssd130x, 1, SSD133X_SET_DISPLAY_NORMAL); if (ret < 0) return ret; /* Set multiplex ratio value */ ret = ssd130x_write_cmd(ssd130x, 2, SSD13XX_SET_MULTIPLEX_RATIO, ssd130x->height - 1); if (ret < 0) return ret; /* Set master configuration */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_MASTER_CONFIG, 0x8e); if (ret < 0) return ret; /* Set power mode */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_POWER_SAVE_MODE, 0x0b); if (ret < 0) return ret; /* Set Phase 1 and 2 period */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_PHASES_PERIOD, 0x31); if (ret < 0) return ret; /* Set clock divider */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_CLOCK_FREQ, 0xf0); if (ret < 0) return ret; /* Set pre-charge A */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_A, 0x64); if (ret < 0) return ret; /* Set pre-charge B */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_B, 0x78); if (ret < 0) return ret; /* Set pre-charge C */ ret = ssd130x_write_cmd(ssd130x, 2, SSD132X_SET_PRECHARGE_C, 0x64); if (ret < 0) return ret; /* Set pre-charge level */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_PRECHARGE_VOLTAGE, 0x3a); if (ret < 0) return ret; /* Set VCOMH voltage */ ret = ssd130x_write_cmd(ssd130x, 2, SSD133X_SET_VCOMH_VOLTAGE, 0x3e); if (ret < 0) return ret; return 0; } static int ssd130x_update_rect(struct ssd130x_device *ssd130x, struct drm_rect *rect, u8 *buf, u8 *data_array) { unsigned int x = rect->x1; unsigned int y = rect->y1; unsigned int width = drm_rect_width(rect); unsigned int height = drm_rect_height(rect); unsigned int line_length = DIV_ROUND_UP(width, 8); unsigned int page_height = SSD130X_PAGE_HEIGHT; unsigned int pages = DIV_ROUND_UP(height, page_height); struct drm_device *drm = &ssd130x->drm; u32 array_idx = 0; int ret, i, j, k; drm_WARN_ONCE(drm, y % page_height != 0, "y must be aligned to screen page\n"); /* * The screen is divided in pages, each having a height of 8 * pixels, and the width of the screen. When sending a byte of * data to the controller, it gives the 8 bits for the current * column. I.e, the first byte are the 8 bits of the first * column, then the 8 bits for the second column, etc. * * * Representation of the screen, assuming it is 5 bits * wide. Each letter-number combination is a bit that controls * one pixel. * * A0 A1 A2 A3 A4 * B0 B1 B2 B3 B4 * C0 C1 C2 C3 C4 * D0 D1 D2 D3 D4 * E0 E1 E2 E3 E4 * F0 F1 F2 F3 F4 * G0 G1 G2 G3 G4 * H0 H1 H2 H3 H4 * * If you want to update this screen, you need to send 5 bytes: * (1) A0 B0 C0 D0 E0 F0 G0 H0 * (2) A1 B1 C1 D1 E1 F1 G1 H1 * (3) A2 B2 C2 D2 E2 F2 G2 H2 * (4) A3 B3 C3 D3 E3 F3 G3 H3 * (5) A4 B4 C4 D4 E4 F4 G4 H4 */ if (!ssd130x->page_address_mode) { u8 page_start; /* Set address range for horizontal addressing mode */ ret = ssd130x_set_col_range(ssd130x, ssd130x->col_offset + x, width); if (ret < 0) return ret; page_start = ssd130x->page_offset + y / page_height; ret = ssd130x_set_page_range(ssd130x, page_start, pages); if (ret < 0) return ret; } for (i = 0; i < pages; i++) { int m = page_height; /* Last page may be partial */ if (page_height * (y / page_height + i + 1) > ssd130x->height) m = ssd130x->height % page_height; for (j = 0; j < width; j++) { u8 data = 0; for (k = 0; k < m; k++) { u32 idx = (page_height * i + k) * line_length + j / 8; u8 byte = buf[idx]; u8 bit = (byte >> (j % 8)) & 1; data |= bit << k; } data_array[array_idx++] = data; } /* * In page addressing mode, the start address needs to be reset, * and each page then needs to be written out separately. */ if (ssd130x->page_address_mode) { ret = ssd130x_set_page_pos(ssd130x, ssd130x->page_offset + i, ssd130x->col_offset + x); if (ret < 0) return ret; ret = ssd130x_write_data(ssd130x, data_array, width); if (ret < 0) return ret; array_idx = 0; } } /* Write out update in one go if we aren't using page addressing mode */ if (!ssd130x->page_address_mode) ret = ssd130x_write_data(ssd130x, data_array, width * pages); return ret; } static int ssd132x_update_rect(struct ssd130x_device *ssd130x, struct drm_rect *rect, u8 *buf, u8 *data_array) { unsigned int x = rect->x1; unsigned int y = rect->y1; unsigned int segment_width = SSD132X_SEGMENT_WIDTH; unsigned int width = drm_rect_width(rect); unsigned int height = drm_rect_height(rect); unsigned int columns = DIV_ROUND_UP(width, segment_width); unsigned int rows = height; struct drm_device *drm = &ssd130x->drm; u32 array_idx = 0; unsigned int i, j; int ret; drm_WARN_ONCE(drm, x % segment_width != 0, "x must be aligned to screen segment\n"); /* * The screen is divided in Segment and Common outputs, where * COM0 to COM[N - 1] are the rows and SEG0 to SEG[M - 1] are * the columns. * * Each Segment has a 4-bit pixel and each Common output has a * row of pixels. When using the (default) horizontal address * increment mode, each byte of data sent to the controller has * two Segments (e.g: SEG0 and SEG1) that are stored in the lower * and higher nibbles of a single byte representing one column. * That is, the first byte are SEG0 (D0[3:0]) and SEG1 (D0[7:4]), * the second byte are SEG2 (D1[3:0]) and SEG3 (D1[7:4]) and so on. */ /* Set column start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_COL_RANGE, x / segment_width, columns - 1); if (ret < 0) return ret; /* Set row start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD132X_SET_ROW_RANGE, y, rows - 1); if (ret < 0) return ret; for (i = 0; i < height; i++) { /* Process pair of pixels and combine them into a single byte */ for (j = 0; j < width; j += segment_width) { u8 n1 = buf[i * width + j]; u8 n2 = buf[i * width + j + 1]; data_array[array_idx++] = (n2 << 4) | n1; } } /* Write out update in one go since horizontal addressing mode is used */ ret = ssd130x_write_data(ssd130x, data_array, columns * rows); return ret; } static int ssd133x_update_rect(struct ssd130x_device *ssd130x, struct drm_rect *rect, u8 *data_array, unsigned int pitch) { unsigned int x = rect->x1; unsigned int y = rect->y1; unsigned int columns = drm_rect_width(rect); unsigned int rows = drm_rect_height(rect); int ret; /* * The screen is divided in Segment and Common outputs, where * COM0 to COM[N - 1] are the rows and SEG0 to SEG[M - 1] are * the columns. * * Each Segment has a 8-bit pixel and each Common output has a * row of pixels. When using the (default) horizontal address * increment mode, each byte of data sent to the controller has * a Segment (e.g: SEG0). * * When using the 256 color depth format, each pixel contains 3 * sub-pixels for color A, B and C. These have 3 bit, 3 bit and * 2 bits respectively. */ /* Set column start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_COL_RANGE, x, columns - 1); if (ret < 0) return ret; /* Set row start and end */ ret = ssd130x_write_cmd(ssd130x, 3, SSD133X_SET_ROW_RANGE, y, rows - 1); if (ret < 0) return ret; /* Write out update in one go since horizontal addressing mode is used */ ret = ssd130x_write_data(ssd130x, data_array, pitch * rows); return ret; } static void ssd130x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array) { unsigned int pages = DIV_ROUND_UP(ssd130x->height, SSD130X_PAGE_HEIGHT); unsigned int width = ssd130x->width; int ret, i; if (!ssd130x->page_address_mode) { memset(data_array, 0, width * pages); /* Set address range for horizontal addressing mode */ ret = ssd130x_set_col_range(ssd130x, ssd130x->col_offset, width); if (ret < 0) return; ret = ssd130x_set_page_range(ssd130x, ssd130x->page_offset, pages); if (ret < 0) return; /* Write out update in one go if we aren't using page addressing mode */ ssd130x_write_data(ssd130x, data_array, width * pages); } else { /* * In page addressing mode, the start address needs to be reset, * and each page then needs to be written out separately. */ memset(data_array, 0, width); for (i = 0; i < pages; i++) { ret = ssd130x_set_page_pos(ssd130x, ssd130x->page_offset + i, ssd130x->col_offset); if (ret < 0) return; ret = ssd130x_write_data(ssd130x, data_array, width); if (ret < 0) return; } } } static void ssd132x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array) { unsigned int columns = DIV_ROUND_UP(ssd130x->height, SSD132X_SEGMENT_WIDTH); unsigned int height = ssd130x->height; memset(data_array, 0, columns * height); /* Write out update in one go since horizontal addressing mode is used */ ssd130x_write_data(ssd130x, data_array, columns * height); } static void ssd133x_clear_screen(struct ssd130x_device *ssd130x, u8 *data_array) { const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332); unsigned int pitch; if (!fi) return; pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width); memset(data_array, 0, pitch * ssd130x->height); /* Write out update in one go since horizontal addressing mode is used */ ssd130x_write_data(ssd130x, data_array, pitch * ssd130x->height); } static int ssd130x_fb_blit_rect(struct drm_framebuffer *fb, const struct iosys_map *vmap, struct drm_rect *rect, u8 *buf, u8 *data_array, struct drm_format_conv_state *fmtcnv_state) { struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev); struct iosys_map dst; unsigned int dst_pitch; int ret = 0; /* Align y to display page boundaries */ rect->y1 = round_down(rect->y1, SSD130X_PAGE_HEIGHT); rect->y2 = min_t(unsigned int, round_up(rect->y2, SSD130X_PAGE_HEIGHT), ssd130x->height); dst_pitch = DIV_ROUND_UP(drm_rect_width(rect), 8); ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE); if (ret) return ret; iosys_map_set_vaddr(&dst, buf); drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state); drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE); ssd130x_update_rect(ssd130x, rect, buf, data_array); return ret; } static int ssd132x_fb_blit_rect(struct drm_framebuffer *fb, const struct iosys_map *vmap, struct drm_rect *rect, u8 *buf, u8 *data_array, struct drm_format_conv_state *fmtcnv_state) { struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev); unsigned int dst_pitch = drm_rect_width(rect); struct iosys_map dst; int ret = 0; /* Align x to display segment boundaries */ rect->x1 = round_down(rect->x1, SSD132X_SEGMENT_WIDTH); rect->x2 = min_t(unsigned int, round_up(rect->x2, SSD132X_SEGMENT_WIDTH), ssd130x->width); ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE); if (ret) return ret; iosys_map_set_vaddr(&dst, buf); drm_fb_xrgb8888_to_gray8(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state); drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE); ssd132x_update_rect(ssd130x, rect, buf, data_array); return ret; } static int ssd133x_fb_blit_rect(struct drm_framebuffer *fb, const struct iosys_map *vmap, struct drm_rect *rect, u8 *data_array, struct drm_format_conv_state *fmtcnv_state) { struct ssd130x_device *ssd130x = drm_to_ssd130x(fb->dev); const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332); unsigned int dst_pitch; struct iosys_map dst; int ret = 0; if (!fi) return -EINVAL; dst_pitch = drm_format_info_min_pitch(fi, 0, drm_rect_width(rect)); ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE); if (ret) return ret; iosys_map_set_vaddr(&dst, data_array); drm_fb_xrgb8888_to_rgb332(&dst, &dst_pitch, vmap, fb, rect, fmtcnv_state); drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE); ssd133x_update_rect(ssd130x, rect, data_array, dst_pitch); return ret; } static int ssd130x_primary_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *drm = plane->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(plane_state); struct drm_shadow_plane_state *shadow_plane_state = &ssd130x_state->base; struct drm_crtc *crtc = plane_state->crtc; struct drm_crtc_state *crtc_state = NULL; const struct drm_format_info *fi; unsigned int pitch; int ret; if (crtc) crtc_state = drm_atomic_get_new_crtc_state(state, crtc); ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, false); if (ret) return ret; else if (!plane_state->visible) return 0; fi = drm_format_info(DRM_FORMAT_R1); if (!fi) return -EINVAL; pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width); if (plane_state->fb->format != fi) { void *buf; /* format conversion necessary; reserve buffer */ buf = drm_format_conv_state_reserve(&shadow_plane_state->fmtcnv_state, pitch, GFP_KERNEL); if (!buf) return -ENOMEM; } ssd130x_state->buffer = kcalloc(pitch, ssd130x->height, GFP_KERNEL); if (!ssd130x_state->buffer) return -ENOMEM; return 0; } static int ssd132x_primary_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *drm = plane->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(plane_state); struct drm_shadow_plane_state *shadow_plane_state = &ssd130x_state->base; struct drm_crtc *crtc = plane_state->crtc; struct drm_crtc_state *crtc_state = NULL; const struct drm_format_info *fi; unsigned int pitch; int ret; if (crtc) crtc_state = drm_atomic_get_new_crtc_state(state, crtc); ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, false); if (ret) return ret; else if (!plane_state->visible) return 0; fi = drm_format_info(DRM_FORMAT_R8); if (!fi) return -EINVAL; pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width); if (plane_state->fb->format != fi) { void *buf; /* format conversion necessary; reserve buffer */ buf = drm_format_conv_state_reserve(&shadow_plane_state->fmtcnv_state, pitch, GFP_KERNEL); if (!buf) return -ENOMEM; } ssd130x_state->buffer = kcalloc(pitch, ssd130x->height, GFP_KERNEL); if (!ssd130x_state->buffer) return -ENOMEM; return 0; } static int ssd133x_primary_plane_atomic_check(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc *crtc = plane_state->crtc; struct drm_crtc_state *crtc_state = NULL; int ret; if (crtc) crtc_state = drm_atomic_get_new_crtc_state(state, crtc); ret = drm_atomic_helper_check_plane_state(plane_state, crtc_state, DRM_PLANE_NO_SCALING, DRM_PLANE_NO_SCALING, false, false); if (ret) return ret; else if (!plane_state->visible) return 0; return 0; } static void ssd130x_primary_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane); struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); struct ssd130x_plane_state *ssd130x_plane_state = to_ssd130x_plane_state(plane_state); struct drm_framebuffer *fb = plane_state->fb; struct drm_atomic_helper_damage_iter iter; struct drm_device *drm = plane->dev; struct drm_rect dst_clip; struct drm_rect damage; int idx; if (!drm_dev_enter(drm, &idx)) return; drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state); drm_atomic_for_each_plane_damage(&iter, &damage) { dst_clip = plane_state->dst; if (!drm_rect_intersect(&dst_clip, &damage)) continue; ssd130x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip, ssd130x_plane_state->buffer, ssd130x_crtc_state->data_array, &shadow_plane_state->fmtcnv_state); } drm_dev_exit(idx); } static void ssd132x_primary_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane); struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); struct ssd130x_plane_state *ssd130x_plane_state = to_ssd130x_plane_state(plane_state); struct drm_framebuffer *fb = plane_state->fb; struct drm_atomic_helper_damage_iter iter; struct drm_device *drm = plane->dev; struct drm_rect dst_clip; struct drm_rect damage; int idx; if (!drm_dev_enter(drm, &idx)) return; drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state); drm_atomic_for_each_plane_damage(&iter, &damage) { dst_clip = plane_state->dst; if (!drm_rect_intersect(&dst_clip, &damage)) continue; ssd132x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip, ssd130x_plane_state->buffer, ssd130x_crtc_state->data_array, &shadow_plane_state->fmtcnv_state); } drm_dev_exit(idx); } static void ssd133x_primary_plane_atomic_update(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(state, plane); struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); struct ssd130x_crtc_state *ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); struct drm_framebuffer *fb = plane_state->fb; struct drm_atomic_helper_damage_iter iter; struct drm_device *drm = plane->dev; struct drm_rect dst_clip; struct drm_rect damage; int idx; if (!drm_dev_enter(drm, &idx)) return; drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state); drm_atomic_for_each_plane_damage(&iter, &damage) { dst_clip = plane_state->dst; if (!drm_rect_intersect(&dst_clip, &damage)) continue; ssd133x_fb_blit_rect(fb, &shadow_plane_state->data[0], &dst_clip, ssd130x_crtc_state->data_array, &shadow_plane_state->fmtcnv_state); } drm_dev_exit(idx); } static void ssd130x_primary_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *drm = plane->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state; struct ssd130x_crtc_state *ssd130x_crtc_state; int idx; if (!plane_state->crtc) return; crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); if (!drm_dev_enter(drm, &idx)) return; ssd130x_clear_screen(ssd130x, ssd130x_crtc_state->data_array); drm_dev_exit(idx); } static void ssd132x_primary_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *drm = plane->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state; struct ssd130x_crtc_state *ssd130x_crtc_state; int idx; if (!plane_state->crtc) return; crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); if (!drm_dev_enter(drm, &idx)) return; ssd132x_clear_screen(ssd130x, ssd130x_crtc_state->data_array); drm_dev_exit(idx); } static void ssd133x_primary_plane_atomic_disable(struct drm_plane *plane, struct drm_atomic_state *state) { struct drm_device *drm = plane->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_plane_state *plane_state = drm_atomic_get_new_plane_state(state, plane); struct drm_crtc_state *crtc_state; struct ssd130x_crtc_state *ssd130x_crtc_state; int idx; if (!plane_state->crtc) return; crtc_state = drm_atomic_get_new_crtc_state(state, plane_state->crtc); ssd130x_crtc_state = to_ssd130x_crtc_state(crtc_state); if (!drm_dev_enter(drm, &idx)) return; ssd133x_clear_screen(ssd130x, ssd130x_crtc_state->data_array); drm_dev_exit(idx); } /* Called during init to allocate the plane's atomic state. */ static void ssd130x_primary_plane_reset(struct drm_plane *plane) { struct ssd130x_plane_state *ssd130x_state; WARN_ON(plane->state); ssd130x_state = kzalloc(sizeof(*ssd130x_state), GFP_KERNEL); if (!ssd130x_state) return; __drm_gem_reset_shadow_plane(plane, &ssd130x_state->base); } static struct drm_plane_state *ssd130x_primary_plane_duplicate_state(struct drm_plane *plane) { struct drm_shadow_plane_state *new_shadow_plane_state; struct ssd130x_plane_state *old_ssd130x_state; struct ssd130x_plane_state *ssd130x_state; if (WARN_ON(!plane->state)) return NULL; old_ssd130x_state = to_ssd130x_plane_state(plane->state); ssd130x_state = kmemdup(old_ssd130x_state, sizeof(*ssd130x_state), GFP_KERNEL); if (!ssd130x_state) return NULL; /* The buffer is not duplicated and is allocated in .atomic_check */ ssd130x_state->buffer = NULL; new_shadow_plane_state = &ssd130x_state->base; __drm_gem_duplicate_shadow_plane_state(plane, new_shadow_plane_state); return &new_shadow_plane_state->base; } static void ssd130x_primary_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct ssd130x_plane_state *ssd130x_state = to_ssd130x_plane_state(state); kfree(ssd130x_state->buffer); __drm_gem_destroy_shadow_plane_state(&ssd130x_state->base); kfree(ssd130x_state); } static const struct drm_plane_helper_funcs ssd130x_primary_plane_helper_funcs[] = { [SSD130X_FAMILY] = { DRM_GEM_SHADOW_PLANE_HELPER_FUNCS, .atomic_check = ssd130x_primary_plane_atomic_check, .atomic_update = ssd130x_primary_plane_atomic_update, .atomic_disable = ssd130x_primary_plane_atomic_disable, }, [SSD132X_FAMILY] = { DRM_GEM_SHADOW_PLANE_HELPER_FUNCS, .atomic_check = ssd132x_primary_plane_atomic_check, .atomic_update = ssd132x_primary_plane_atomic_update, .atomic_disable = ssd132x_primary_plane_atomic_disable, }, [SSD133X_FAMILY] = { DRM_GEM_SHADOW_PLANE_HELPER_FUNCS, .atomic_check = ssd133x_primary_plane_atomic_check, .atomic_update = ssd133x_primary_plane_atomic_update, .atomic_disable = ssd133x_primary_plane_atomic_disable, } }; static const struct drm_plane_funcs ssd130x_primary_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .reset = ssd130x_primary_plane_reset, .atomic_duplicate_state = ssd130x_primary_plane_duplicate_state, .atomic_destroy_state = ssd130x_primary_plane_destroy_state, .destroy = drm_plane_cleanup, }; static enum drm_mode_status ssd130x_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct ssd130x_device *ssd130x = drm_to_ssd130x(crtc->dev); if (mode->hdisplay != ssd130x->mode.hdisplay && mode->vdisplay != ssd130x->mode.vdisplay) return MODE_ONE_SIZE; else if (mode->hdisplay != ssd130x->mode.hdisplay) return MODE_ONE_WIDTH; else if (mode->vdisplay != ssd130x->mode.vdisplay) return MODE_ONE_HEIGHT; return MODE_OK; } static int ssd130x_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *drm = crtc->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state); unsigned int pages = DIV_ROUND_UP(ssd130x->height, SSD130X_PAGE_HEIGHT); int ret; ret = drm_crtc_helper_atomic_check(crtc, state); if (ret) return ret; ssd130x_state->data_array = kmalloc(ssd130x->width * pages, GFP_KERNEL); if (!ssd130x_state->data_array) return -ENOMEM; return 0; } static int ssd132x_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *drm = crtc->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state); unsigned int columns = DIV_ROUND_UP(ssd130x->width, SSD132X_SEGMENT_WIDTH); int ret; ret = drm_crtc_helper_atomic_check(crtc, state); if (ret) return ret; ssd130x_state->data_array = kmalloc(columns * ssd130x->height, GFP_KERNEL); if (!ssd130x_state->data_array) return -ENOMEM; return 0; } static int ssd133x_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *drm = crtc->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(crtc_state); const struct drm_format_info *fi = drm_format_info(DRM_FORMAT_RGB332); unsigned int pitch; int ret; if (!fi) return -EINVAL; ret = drm_crtc_helper_atomic_check(crtc, state); if (ret) return ret; pitch = drm_format_info_min_pitch(fi, 0, ssd130x->width); ssd130x_state->data_array = kmalloc(pitch * ssd130x->height, GFP_KERNEL); if (!ssd130x_state->data_array) return -ENOMEM; return 0; } /* Called during init to allocate the CRTC's atomic state. */ static void ssd130x_crtc_reset(struct drm_crtc *crtc) { struct ssd130x_crtc_state *ssd130x_state; WARN_ON(crtc->state); ssd130x_state = kzalloc(sizeof(*ssd130x_state), GFP_KERNEL); if (!ssd130x_state) return; __drm_atomic_helper_crtc_reset(crtc, &ssd130x_state->base); } static struct drm_crtc_state *ssd130x_crtc_duplicate_state(struct drm_crtc *crtc) { struct ssd130x_crtc_state *old_ssd130x_state; struct ssd130x_crtc_state *ssd130x_state; if (WARN_ON(!crtc->state)) return NULL; old_ssd130x_state = to_ssd130x_crtc_state(crtc->state); ssd130x_state = kmemdup(old_ssd130x_state, sizeof(*ssd130x_state), GFP_KERNEL); if (!ssd130x_state) return NULL; /* The buffer is not duplicated and is allocated in .atomic_check */ ssd130x_state->data_array = NULL; __drm_atomic_helper_crtc_duplicate_state(crtc, &ssd130x_state->base); return &ssd130x_state->base; } static void ssd130x_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct ssd130x_crtc_state *ssd130x_state = to_ssd130x_crtc_state(state); kfree(ssd130x_state->data_array); __drm_atomic_helper_crtc_destroy_state(state); kfree(ssd130x_state); } /* * The CRTC is always enabled. Screen updates are performed by * the primary plane's atomic_update function. Disabling clears * the screen in the primary plane's atomic_disable function. */ static const struct drm_crtc_helper_funcs ssd130x_crtc_helper_funcs[] = { [SSD130X_FAMILY] = { .mode_valid = ssd130x_crtc_mode_valid, .atomic_check = ssd130x_crtc_atomic_check, }, [SSD132X_FAMILY] = { .mode_valid = ssd130x_crtc_mode_valid, .atomic_check = ssd132x_crtc_atomic_check, }, [SSD133X_FAMILY] = { .mode_valid = ssd130x_crtc_mode_valid, .atomic_check = ssd133x_crtc_atomic_check, }, }; static const struct drm_crtc_funcs ssd130x_crtc_funcs = { .reset = ssd130x_crtc_reset, .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .atomic_duplicate_state = ssd130x_crtc_duplicate_state, .atomic_destroy_state = ssd130x_crtc_destroy_state, }; static void ssd130x_encoder_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *drm = encoder->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); int ret; ret = ssd130x_power_on(ssd130x); if (ret) return; ret = ssd130x_init(ssd130x); if (ret) goto power_off; ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON); backlight_enable(ssd130x->bl_dev); return; power_off: ssd130x_power_off(ssd130x); return; } static void ssd132x_encoder_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *drm = encoder->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); int ret; ret = ssd130x_power_on(ssd130x); if (ret) return; ret = ssd132x_init(ssd130x); if (ret) goto power_off; ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON); backlight_enable(ssd130x->bl_dev); return; power_off: ssd130x_power_off(ssd130x); } static void ssd133x_encoder_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *drm = encoder->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); int ret; ret = ssd130x_power_on(ssd130x); if (ret) return; ret = ssd133x_init(ssd130x); if (ret) goto power_off; ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_ON); backlight_enable(ssd130x->bl_dev); return; power_off: ssd130x_power_off(ssd130x); } static void ssd130x_encoder_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct drm_device *drm = encoder->dev; struct ssd130x_device *ssd130x = drm_to_ssd130x(drm); backlight_disable(ssd130x->bl_dev); ssd130x_write_cmd(ssd130x, 1, SSD13XX_DISPLAY_OFF); ssd130x_power_off(ssd130x); } static const struct drm_encoder_helper_funcs ssd130x_encoder_helper_funcs[] = { [SSD130X_FAMILY] = { .atomic_enable = ssd130x_encoder_atomic_enable, .atomic_disable = ssd130x_encoder_atomic_disable, }, [SSD132X_FAMILY] = { .atomic_enable = ssd132x_encoder_atomic_enable, .atomic_disable = ssd130x_encoder_atomic_disable, }, [SSD133X_FAMILY] = { .atomic_enable = ssd133x_encoder_atomic_enable, .atomic_disable = ssd130x_encoder_atomic_disable, } }; static const struct drm_encoder_funcs ssd130x_encoder_funcs = { .destroy = drm_encoder_cleanup, }; static int ssd130x_connector_get_modes(struct drm_connector *connector) { struct ssd130x_device *ssd130x = drm_to_ssd130x(connector->dev); struct drm_display_mode *mode; struct device *dev = ssd130x->dev; mode = drm_mode_duplicate(connector->dev, &ssd130x->mode); if (!mode) { dev_err(dev, "Failed to duplicated mode\n"); return 0; } drm_mode_probed_add(connector, mode); drm_set_preferred_mode(connector, mode->hdisplay, mode->vdisplay); /* There is only a single mode */ return 1; } static const struct drm_connector_helper_funcs ssd130x_connector_helper_funcs = { .get_modes = ssd130x_connector_get_modes, }; static const struct drm_connector_funcs ssd130x_connector_funcs = { .reset = drm_atomic_helper_connector_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_mode_config_funcs ssd130x_mode_config_funcs = { .fb_create = drm_gem_fb_create_with_dirty, .atomic_check = drm_atomic_helper_check, .atomic_commit = drm_atomic_helper_commit, }; static const uint32_t ssd130x_formats[] = { DRM_FORMAT_XRGB8888, }; DEFINE_DRM_GEM_FOPS(ssd130x_fops); static const struct drm_driver ssd130x_drm_driver = { DRM_GEM_SHMEM_DRIVER_OPS, DRM_FBDEV_SHMEM_DRIVER_OPS, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, .driver_features = DRIVER_ATOMIC | DRIVER_GEM | DRIVER_MODESET, .fops = &ssd130x_fops, }; static int ssd130x_update_bl(struct backlight_device *bdev) { struct ssd130x_device *ssd130x = bl_get_data(bdev); int brightness = backlight_get_brightness(bdev); int ret; ssd130x->contrast = brightness; ret = ssd130x_write_cmd(ssd130x, 1, SSD13XX_CONTRAST); if (ret < 0) return ret; ret = ssd130x_write_cmd(ssd130x, 1, ssd130x->contrast); if (ret < 0) return ret; return 0; } static const struct backlight_ops ssd130xfb_bl_ops = { .update_status = ssd130x_update_bl, }; static void ssd130x_parse_properties(struct ssd130x_device *ssd130x) { struct device *dev = ssd130x->dev; if (device_property_read_u32(dev, "solomon,width", &ssd130x->width)) ssd130x->width = ssd130x->device_info->default_width; if (device_property_read_u32(dev, "solomon,height", &ssd130x->height)) ssd130x->height = ssd130x->device_info->default_height; if (device_property_read_u32(dev, "solomon,page-offset", &ssd130x->page_offset)) ssd130x->page_offset = 1; if (device_property_read_u32(dev, "solomon,col-offset", &ssd130x->col_offset)) ssd130x->col_offset = 0; if (device_property_read_u32(dev, "solomon,com-offset", &ssd130x->com_offset)) ssd130x->com_offset = 0; if (device_property_read_u32(dev, "solomon,prechargep1", &ssd130x->prechargep1)) ssd130x->prechargep1 = 2; if (device_property_read_u32(dev, "solomon,prechargep2", &ssd130x->prechargep2)) ssd130x->prechargep2 = 2; if (!device_property_read_u8_array(dev, "solomon,lookup-table", ssd130x->lookup_table, ARRAY_SIZE(ssd130x->lookup_table))) ssd130x->lookup_table_set = 1; ssd130x->seg_remap = !device_property_read_bool(dev, "solomon,segment-no-remap"); ssd130x->com_seq = device_property_read_bool(dev, "solomon,com-seq"); ssd130x->com_lrremap = device_property_read_bool(dev, "solomon,com-lrremap"); ssd130x->com_invdir = device_property_read_bool(dev, "solomon,com-invdir"); ssd130x->area_color_enable = device_property_read_bool(dev, "solomon,area-color-enable"); ssd130x->low_power = device_property_read_bool(dev, "solomon,low-power"); ssd130x->contrast = 127; ssd130x->vcomh = ssd130x->device_info->default_vcomh; /* Setup display timing */ if (device_property_read_u32(dev, "solomon,dclk-div", &ssd130x->dclk_div)) ssd130x->dclk_div = ssd130x->device_info->default_dclk_div; if (device_property_read_u32(dev, "solomon,dclk-frq", &ssd130x->dclk_frq)) ssd130x->dclk_frq = ssd130x->device_info->default_dclk_frq; } static int ssd130x_init_modeset(struct ssd130x_device *ssd130x) { enum ssd130x_family_ids family_id = ssd130x->device_info->family_id; struct drm_display_mode *mode = &ssd130x->mode; struct device *dev = ssd130x->dev; struct drm_device *drm = &ssd130x->drm; unsigned long max_width, max_height; struct drm_plane *primary_plane; struct drm_crtc *crtc; struct drm_encoder *encoder; struct drm_connector *connector; int ret; /* * Modesetting */ ret = drmm_mode_config_init(drm); if (ret) { dev_err(dev, "DRM mode config init failed: %d\n", ret); return ret; } mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = 1; mode->hdisplay = mode->htotal = ssd130x->width; mode->hsync_start = mode->hsync_end = ssd130x->width; mode->vdisplay = mode->vtotal = ssd130x->height; mode->vsync_start = mode->vsync_end = ssd130x->height; mode->width_mm = 27; mode->height_mm = 27; max_width = max_t(unsigned long, mode->hdisplay, DRM_SHADOW_PLANE_MAX_WIDTH); max_height = max_t(unsigned long, mode->vdisplay, DRM_SHADOW_PLANE_MAX_HEIGHT); drm->mode_config.min_width = mode->hdisplay; drm->mode_config.max_width = max_width; drm->mode_config.min_height = mode->vdisplay; drm->mode_config.max_height = max_height; drm->mode_config.preferred_depth = 24; drm->mode_config.funcs = &ssd130x_mode_config_funcs; /* Primary plane */ primary_plane = &ssd130x->primary_plane; ret = drm_universal_plane_init(drm, primary_plane, 0, &ssd130x_primary_plane_funcs, ssd130x_formats, ARRAY_SIZE(ssd130x_formats), NULL, DRM_PLANE_TYPE_PRIMARY, NULL); if (ret) { dev_err(dev, "DRM primary plane init failed: %d\n", ret); return ret; } drm_plane_helper_add(primary_plane, &ssd130x_primary_plane_helper_funcs[family_id]); drm_plane_enable_fb_damage_clips(primary_plane); /* CRTC */ crtc = &ssd130x->crtc; ret = drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, &ssd130x_crtc_funcs, NULL); if (ret) { dev_err(dev, "DRM crtc init failed: %d\n", ret); return ret; } drm_crtc_helper_add(crtc, &ssd130x_crtc_helper_funcs[family_id]); /* Encoder */ encoder = &ssd130x->encoder; ret = drm_encoder_init(drm, encoder, &ssd130x_encoder_funcs, DRM_MODE_ENCODER_NONE, NULL); if (ret) { dev_err(dev, "DRM encoder init failed: %d\n", ret); return ret; } drm_encoder_helper_add(encoder, &ssd130x_encoder_helper_funcs[family_id]); encoder->possible_crtcs = drm_crtc_mask(crtc); /* Connector */ connector = &ssd130x->connector; ret = drm_connector_init(drm, connector, &ssd130x_connector_funcs, DRM_MODE_CONNECTOR_Unknown); if (ret) { dev_err(dev, "DRM connector init failed: %d\n", ret); return ret; } drm_connector_helper_add(connector, &ssd130x_connector_helper_funcs); ret = drm_connector_attach_encoder(connector, encoder); if (ret) { dev_err(dev, "DRM attach connector to encoder failed: %d\n", ret); return ret; } drm_mode_config_reset(drm); return 0; } static int ssd130x_get_resources(struct ssd130x_device *ssd130x) { struct device *dev = ssd130x->dev; ssd130x->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(ssd130x->reset)) return dev_err_probe(dev, PTR_ERR(ssd130x->reset), "Failed to get reset gpio\n"); ssd130x->vcc_reg = devm_regulator_get(dev, "vcc"); if (IS_ERR(ssd130x->vcc_reg)) return dev_err_probe(dev, PTR_ERR(ssd130x->vcc_reg), "Failed to get VCC regulator\n"); return 0; } struct ssd130x_device *ssd130x_probe(struct device *dev, struct regmap *regmap) { struct ssd130x_device *ssd130x; struct backlight_device *bl; struct drm_device *drm; int ret; ssd130x = devm_drm_dev_alloc(dev, &ssd130x_drm_driver, struct ssd130x_device, drm); if (IS_ERR(ssd130x)) return ERR_PTR(dev_err_probe(dev, PTR_ERR(ssd130x), "Failed to allocate DRM device\n")); drm = &ssd130x->drm; ssd130x->dev = dev; ssd130x->regmap = regmap; ssd130x->device_info = device_get_match_data(dev); if (ssd130x->device_info->page_mode_only) ssd130x->page_address_mode = 1; ssd130x_parse_properties(ssd130x); ret = ssd130x_get_resources(ssd130x); if (ret) return ERR_PTR(ret); bl = devm_backlight_device_register(dev, dev_name(dev), dev, ssd130x, &ssd130xfb_bl_ops, NULL); if (IS_ERR(bl)) return ERR_PTR(dev_err_probe(dev, PTR_ERR(bl), "Unable to register backlight device\n")); bl->props.brightness = ssd130x->contrast; bl->props.max_brightness = MAX_CONTRAST; ssd130x->bl_dev = bl; ret = ssd130x_init_modeset(ssd130x); if (ret) return ERR_PTR(ret); ret = drm_dev_register(drm, 0); if (ret) return ERR_PTR(dev_err_probe(dev, ret, "DRM device register failed\n")); drm_client_setup(drm, NULL); return ssd130x; } EXPORT_SYMBOL_GPL(ssd130x_probe); void ssd130x_remove(struct ssd130x_device *ssd130x) { drm_dev_unplug(&ssd130x->drm); drm_atomic_helper_shutdown(&ssd130x->drm); } EXPORT_SYMBOL_GPL(ssd130x_remove); void ssd130x_shutdown(struct ssd130x_device *ssd130x) { drm_atomic_helper_shutdown(&ssd130x->drm); } EXPORT_SYMBOL_GPL(ssd130x_shutdown); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("Javier Martinez Canillas "); MODULE_LICENSE("GPL v2");