// SPDX-License-Identifier: GPL-2.0 or MIT /* Copyright 2023 Collabora ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "panthor_devfreq.h" #include "panthor_device.h" #include "panthor_fw.h" #include "panthor_gem.h" #include "panthor_gpu.h" #include "panthor_heap.h" #include "panthor_mmu.h" #include "panthor_regs.h" #include "panthor_sched.h" /** * DOC: Scheduler * * Mali CSF hardware adopts a firmware-assisted scheduling model, where * the firmware takes care of scheduling aspects, to some extent. * * The scheduling happens at the scheduling group level, each group * contains 1 to N queues (N is FW/hardware dependent, and exposed * through the firmware interface). Each queue is assigned a command * stream ring buffer, which serves as a way to get jobs submitted to * the GPU, among other things. * * The firmware can schedule a maximum of M groups (M is FW/hardware * dependent, and exposed through the firmware interface). Passed * this maximum number of groups, the kernel must take care of * rotating the groups passed to the firmware so every group gets * a chance to have his queues scheduled for execution. * * The current implementation only supports with kernel-mode queues. * In other terms, userspace doesn't have access to the ring-buffer. * Instead, userspace passes indirect command stream buffers that are * called from the queue ring-buffer by the kernel using a pre-defined * sequence of command stream instructions to ensure the userspace driver * always gets consistent results (cache maintenance, * synchronization, ...). * * We rely on the drm_gpu_scheduler framework to deal with job * dependencies and submission. As any other driver dealing with a * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each * entity has its own job scheduler. When a job is ready to be executed * (all its dependencies are met), it is pushed to the appropriate * queue ring-buffer, and the group is scheduled for execution if it * wasn't already active. * * Kernel-side group scheduling is timeslice-based. When we have less * groups than there are slots, the periodic tick is disabled and we * just let the FW schedule the active groups. When there are more * groups than slots, we let each group a chance to execute stuff for * a given amount of time, and then re-evaluate and pick new groups * to schedule. The group selection algorithm is based on * priority+round-robin. * * Even though user-mode queues is out of the scope right now, the * current design takes them into account by avoiding any guess on the * group/queue state that would be based on information we wouldn't have * if userspace was in charge of the ring-buffer. That's also one of the * reason we don't do 'cooperative' scheduling (encoding FW group slot * reservation as dma_fence that would be returned from the * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as * a queue of waiters, ordered by job submission order). This approach * would work for kernel-mode queues, but would make user-mode queues a * lot more complicated to retrofit. */ #define JOB_TIMEOUT_MS 5000 #define MIN_CS_PER_CSG 8 #define MIN_CSGS 3 #define MAX_CSG_PRIO 0xf #define NUM_INSTRS_PER_CACHE_LINE (64 / sizeof(u64)) #define MAX_INSTRS_PER_JOB 24 struct panthor_group; /** * struct panthor_csg_slot - Command stream group slot * * This represents a FW slot for a scheduling group. */ struct panthor_csg_slot { /** @group: Scheduling group bound to this slot. */ struct panthor_group *group; /** @priority: Group priority. */ u8 priority; /** * @idle: True if the group bound to this slot is idle. * * A group is idle when it has nothing waiting for execution on * all its queues, or when queues are blocked waiting for something * to happen (synchronization object). */ bool idle; }; /** * enum panthor_csg_priority - Group priority */ enum panthor_csg_priority { /** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */ PANTHOR_CSG_PRIORITY_LOW = 0, /** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */ PANTHOR_CSG_PRIORITY_MEDIUM, /** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */ PANTHOR_CSG_PRIORITY_HIGH, /** * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group. * * Real-time priority allows one to preempt scheduling of other * non-real-time groups. When such a group becomes executable, * it will evict the group with the lowest non-rt priority if * there's no free group slot available. */ PANTHOR_CSG_PRIORITY_RT, /** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */ PANTHOR_CSG_PRIORITY_COUNT, }; /** * struct panthor_scheduler - Object used to manage the scheduler */ struct panthor_scheduler { /** @ptdev: Device. */ struct panthor_device *ptdev; /** * @wq: Workqueue used by our internal scheduler logic and * drm_gpu_scheduler. * * Used for the scheduler tick, group update or other kind of FW * event processing that can't be handled in the threaded interrupt * path. Also passed to the drm_gpu_scheduler instances embedded * in panthor_queue. */ struct workqueue_struct *wq; /** * @heap_alloc_wq: Workqueue used to schedule tiler_oom works. * * We have a queue dedicated to heap chunk allocation works to avoid * blocking the rest of the scheduler if the allocation tries to * reclaim memory. */ struct workqueue_struct *heap_alloc_wq; /** @tick_work: Work executed on a scheduling tick. */ struct delayed_work tick_work; /** * @sync_upd_work: Work used to process synchronization object updates. * * We use this work to unblock queues/groups that were waiting on a * synchronization object. */ struct work_struct sync_upd_work; /** * @fw_events_work: Work used to process FW events outside the interrupt path. * * Even if the interrupt is threaded, we need any event processing * that require taking the panthor_scheduler::lock to be processed * outside the interrupt path so we don't block the tick logic when * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the * event processing requires taking this lock, we just delegate all * FW event processing to the scheduler workqueue. */ struct work_struct fw_events_work; /** * @fw_events: Bitmask encoding pending FW events. */ atomic_t fw_events; /** * @resched_target: When the next tick should occur. * * Expressed in jiffies. */ u64 resched_target; /** * @last_tick: When the last tick occurred. * * Expressed in jiffies. */ u64 last_tick; /** @tick_period: Tick period in jiffies. */ u64 tick_period; /** * @lock: Lock protecting access to all the scheduler fields. * * Should be taken in the tick work, the irq handler, and anywhere the @groups * fields are touched. */ struct mutex lock; /** @groups: Various lists used to classify groups. */ struct { /** * @runnable: Runnable group lists. * * When a group has queues that want to execute something, * its panthor_group::run_node should be inserted here. * * One list per-priority. */ struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT]; /** * @idle: Idle group lists. * * When all queues of a group are idle (either because they * have nothing to execute, or because they are blocked), the * panthor_group::run_node field should be inserted here. * * One list per-priority. */ struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT]; /** * @waiting: List of groups whose queues are blocked on a * synchronization object. * * Insert panthor_group::wait_node here when a group is waiting * for synchronization objects to be signaled. * * This list is evaluated in the @sync_upd_work work. */ struct list_head waiting; } groups; /** * @csg_slots: FW command stream group slots. */ struct panthor_csg_slot csg_slots[MAX_CSGS]; /** @csg_slot_count: Number of command stream group slots exposed by the FW. */ u32 csg_slot_count; /** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */ u32 cs_slot_count; /** @as_slot_count: Number of address space slots supported by the MMU. */ u32 as_slot_count; /** @used_csg_slot_count: Number of command stream group slot currently used. */ u32 used_csg_slot_count; /** @sb_slot_count: Number of scoreboard slots. */ u32 sb_slot_count; /** * @might_have_idle_groups: True if an active group might have become idle. * * This will force a tick, so other runnable groups can be scheduled if one * or more active groups became idle. */ bool might_have_idle_groups; /** @pm: Power management related fields. */ struct { /** @has_ref: True if the scheduler owns a runtime PM reference. */ bool has_ref; } pm; /** @reset: Reset related fields. */ struct { /** @lock: Lock protecting the other reset fields. */ struct mutex lock; /** * @in_progress: True if a reset is in progress. * * Set to true in panthor_sched_pre_reset() and back to false in * panthor_sched_post_reset(). */ atomic_t in_progress; /** * @stopped_groups: List containing all groups that were stopped * before a reset. * * Insert panthor_group::run_node in the pre_reset path. */ struct list_head stopped_groups; } reset; }; /** * struct panthor_syncobj_32b - 32-bit FW synchronization object */ struct panthor_syncobj_32b { /** @seqno: Sequence number. */ u32 seqno; /** * @status: Status. * * Not zero on failure. */ u32 status; }; /** * struct panthor_syncobj_64b - 64-bit FW synchronization object */ struct panthor_syncobj_64b { /** @seqno: Sequence number. */ u64 seqno; /** * @status: Status. * * Not zero on failure. */ u32 status; /** @pad: MBZ. */ u32 pad; }; /** * struct panthor_queue - Execution queue */ struct panthor_queue { /** @scheduler: DRM scheduler used for this queue. */ struct drm_gpu_scheduler scheduler; /** @entity: DRM scheduling entity used for this queue. */ struct drm_sched_entity entity; /** * @remaining_time: Time remaining before the job timeout expires. * * The job timeout is suspended when the queue is not scheduled by the * FW. Every time we suspend the timer, we need to save the remaining * time so we can restore it later on. */ unsigned long remaining_time; /** @timeout_suspended: True if the job timeout was suspended. */ bool timeout_suspended; /** * @doorbell_id: Doorbell assigned to this queue. * * Right now, all groups share the same doorbell, and the doorbell ID * is assigned to group_slot + 1 when the group is assigned a slot. But * we might decide to provide fine grained doorbell assignment at some * point, so don't have to wake up all queues in a group every time one * of them is updated. */ u8 doorbell_id; /** * @priority: Priority of the queue inside the group. * * Must be less than 16 (Only 4 bits available). */ u8 priority; #define CSF_MAX_QUEUE_PRIO GENMASK(3, 0) /** @ringbuf: Command stream ring-buffer. */ struct panthor_kernel_bo *ringbuf; /** @iface: Firmware interface. */ struct { /** @mem: FW memory allocated for this interface. */ struct panthor_kernel_bo *mem; /** @input: Input interface. */ struct panthor_fw_ringbuf_input_iface *input; /** @output: Output interface. */ const struct panthor_fw_ringbuf_output_iface *output; /** @input_fw_va: FW virtual address of the input interface buffer. */ u32 input_fw_va; /** @output_fw_va: FW virtual address of the output interface buffer. */ u32 output_fw_va; } iface; /** * @syncwait: Stores information about the synchronization object this * queue is waiting on. */ struct { /** @gpu_va: GPU address of the synchronization object. */ u64 gpu_va; /** @ref: Reference value to compare against. */ u64 ref; /** @gt: True if this is a greater-than test. */ bool gt; /** @sync64: True if this is a 64-bit sync object. */ bool sync64; /** @bo: Buffer object holding the synchronization object. */ struct drm_gem_object *obj; /** @offset: Offset of the synchronization object inside @bo. */ u64 offset; /** * @kmap: Kernel mapping of the buffer object holding the * synchronization object. */ void *kmap; } syncwait; /** @fence_ctx: Fence context fields. */ struct { /** @lock: Used to protect access to all fences allocated by this context. */ spinlock_t lock; /** * @id: Fence context ID. * * Allocated with dma_fence_context_alloc(). */ u64 id; /** @seqno: Sequence number of the last initialized fence. */ atomic64_t seqno; /** * @last_fence: Fence of the last submitted job. * * We return this fence when we get an empty command stream. * This way, we are guaranteed that all earlier jobs have completed * when drm_sched_job::s_fence::finished without having to feed * the CS ring buffer with a dummy job that only signals the fence. */ struct dma_fence *last_fence; /** * @in_flight_jobs: List containing all in-flight jobs. * * Used to keep track and signal panthor_job::done_fence when the * synchronization object attached to the queue is signaled. */ struct list_head in_flight_jobs; } fence_ctx; /** @profiling: Job profiling data slots and access information. */ struct { /** @slots: Kernel BO holding the slots. */ struct panthor_kernel_bo *slots; /** @slot_count: Number of jobs ringbuffer can hold at once. */ u32 slot_count; /** @seqno: Index of the next available profiling information slot. */ u32 seqno; } profiling; }; /** * enum panthor_group_state - Scheduling group state. */ enum panthor_group_state { /** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */ PANTHOR_CS_GROUP_CREATED, /** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */ PANTHOR_CS_GROUP_ACTIVE, /** * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is * inactive/suspended right now. */ PANTHOR_CS_GROUP_SUSPENDED, /** * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated. * * Can no longer be scheduled. The only allowed action is a destruction. */ PANTHOR_CS_GROUP_TERMINATED, /** * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state. * * The FW returned an inconsistent state. The group is flagged unusable * and can no longer be scheduled. The only allowed action is a * destruction. * * When that happens, we also schedule a FW reset, to start from a fresh * state. */ PANTHOR_CS_GROUP_UNKNOWN_STATE, }; /** * struct panthor_group - Scheduling group object */ struct panthor_group { /** @refcount: Reference count */ struct kref refcount; /** @ptdev: Device. */ struct panthor_device *ptdev; /** @vm: VM bound to the group. */ struct panthor_vm *vm; /** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */ u64 compute_core_mask; /** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */ u64 fragment_core_mask; /** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */ u64 tiler_core_mask; /** @max_compute_cores: Maximum number of shader cores used for compute jobs. */ u8 max_compute_cores; /** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */ u8 max_fragment_cores; /** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */ u8 max_tiler_cores; /** @priority: Group priority (check panthor_csg_priority). */ u8 priority; /** @blocked_queues: Bitmask reflecting the blocked queues. */ u32 blocked_queues; /** @idle_queues: Bitmask reflecting the idle queues. */ u32 idle_queues; /** @fatal_lock: Lock used to protect access to fatal fields. */ spinlock_t fatal_lock; /** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */ u32 fatal_queues; /** @tiler_oom: Mask of queues that have a tiler OOM event to process. */ atomic_t tiler_oom; /** @queue_count: Number of queues in this group. */ u32 queue_count; /** @queues: Queues owned by this group. */ struct panthor_queue *queues[MAX_CS_PER_CSG]; /** * @csg_id: ID of the FW group slot. * * -1 when the group is not scheduled/active. */ int csg_id; /** * @destroyed: True when the group has been destroyed. * * If a group is destroyed it becomes useless: no further jobs can be submitted * to its queues. We simply wait for all references to be dropped so we can * release the group object. */ bool destroyed; /** * @timedout: True when a timeout occurred on any of the queues owned by * this group. * * Timeouts can be reported by drm_sched or by the FW. If a reset is required, * and the group can't be suspended, this also leads to a timeout. In any case, * any timeout situation is unrecoverable, and the group becomes useless. We * simply wait for all references to be dropped so we can release the group * object. */ bool timedout; /** * @syncobjs: Pool of per-queue synchronization objects. * * One sync object per queue. The position of the sync object is * determined by the queue index. */ struct panthor_kernel_bo *syncobjs; /** @fdinfo: Per-file total cycle and timestamp values reference. */ struct { /** @data: Total sampled values for jobs in queues from this group. */ struct panthor_gpu_usage data; /** * @lock: Mutex to govern concurrent access from drm file's fdinfo callback * and job post-completion processing function */ struct mutex lock; } fdinfo; /** @state: Group state. */ enum panthor_group_state state; /** * @suspend_buf: Suspend buffer. * * Stores the state of the group and its queues when a group is suspended. * Used at resume time to restore the group in its previous state. * * The size of the suspend buffer is exposed through the FW interface. */ struct panthor_kernel_bo *suspend_buf; /** * @protm_suspend_buf: Protection mode suspend buffer. * * Stores the state of the group and its queues when a group that's in * protection mode is suspended. * * Used at resume time to restore the group in its previous state. * * The size of the protection mode suspend buffer is exposed through the * FW interface. */ struct panthor_kernel_bo *protm_suspend_buf; /** @sync_upd_work: Work used to check/signal job fences. */ struct work_struct sync_upd_work; /** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */ struct work_struct tiler_oom_work; /** @term_work: Work used to finish the group termination procedure. */ struct work_struct term_work; /** * @release_work: Work used to release group resources. * * We need to postpone the group release to avoid a deadlock when * the last ref is released in the tick work. */ struct work_struct release_work; /** * @run_node: Node used to insert the group in the * panthor_group::groups::{runnable,idle} and * panthor_group::reset.stopped_groups lists. */ struct list_head run_node; /** * @wait_node: Node used to insert the group in the * panthor_group::groups::waiting list. */ struct list_head wait_node; }; struct panthor_job_profiling_data { struct { u64 before; u64 after; } cycles; struct { u64 before; u64 after; } time; }; /** * group_queue_work() - Queue a group work * @group: Group to queue the work for. * @wname: Work name. * * Grabs a ref and queue a work item to the scheduler workqueue. If * the work was already queued, we release the reference we grabbed. * * Work callbacks must release the reference we grabbed here. */ #define group_queue_work(group, wname) \ do { \ group_get(group); \ if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \ group_put(group); \ } while (0) /** * sched_queue_work() - Queue a scheduler work. * @sched: Scheduler object. * @wname: Work name. * * Conditionally queues a scheduler work if no reset is pending/in-progress. */ #define sched_queue_work(sched, wname) \ do { \ if (!atomic_read(&(sched)->reset.in_progress) && \ !panthor_device_reset_is_pending((sched)->ptdev)) \ queue_work((sched)->wq, &(sched)->wname ## _work); \ } while (0) /** * sched_queue_delayed_work() - Queue a scheduler delayed work. * @sched: Scheduler object. * @wname: Work name. * @delay: Work delay in jiffies. * * Conditionally queues a scheduler delayed work if no reset is * pending/in-progress. */ #define sched_queue_delayed_work(sched, wname, delay) \ do { \ if (!atomic_read(&sched->reset.in_progress) && \ !panthor_device_reset_is_pending((sched)->ptdev)) \ mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \ } while (0) /* * We currently set the maximum of groups per file to an arbitrary low value. * But this can be updated if we need more. */ #define MAX_GROUPS_PER_POOL 128 /** * struct panthor_group_pool - Group pool * * Each file get assigned a group pool. */ struct panthor_group_pool { /** @xa: Xarray used to manage group handles. */ struct xarray xa; }; /** * struct panthor_job - Used to manage GPU job */ struct panthor_job { /** @base: Inherit from drm_sched_job. */ struct drm_sched_job base; /** @refcount: Reference count. */ struct kref refcount; /** @group: Group of the queue this job will be pushed to. */ struct panthor_group *group; /** @queue_idx: Index of the queue inside @group. */ u32 queue_idx; /** @call_info: Information about the userspace command stream call. */ struct { /** @start: GPU address of the userspace command stream. */ u64 start; /** @size: Size of the userspace command stream. */ u32 size; /** * @latest_flush: Flush ID at the time the userspace command * stream was built. * * Needed for the flush reduction mechanism. */ u32 latest_flush; } call_info; /** @ringbuf: Position of this job is in the ring buffer. */ struct { /** @start: Start offset. */ u64 start; /** @end: End offset. */ u64 end; } ringbuf; /** * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs * list. */ struct list_head node; /** @done_fence: Fence signaled when the job is finished or cancelled. */ struct dma_fence *done_fence; /** @profiling: Job profiling information. */ struct { /** @mask: Current device job profiling enablement bitmask. */ u32 mask; /** @slot: Job index in the profiling slots BO. */ u32 slot; } profiling; }; static void panthor_queue_put_syncwait_obj(struct panthor_queue *queue) { if (queue->syncwait.kmap) { struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap); drm_gem_vunmap_unlocked(queue->syncwait.obj, &map); queue->syncwait.kmap = NULL; } drm_gem_object_put(queue->syncwait.obj); queue->syncwait.obj = NULL; } static void * panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue) { struct panthor_device *ptdev = group->ptdev; struct panthor_gem_object *bo; struct iosys_map map; int ret; if (queue->syncwait.kmap) return queue->syncwait.kmap + queue->syncwait.offset; bo = panthor_vm_get_bo_for_va(group->vm, queue->syncwait.gpu_va, &queue->syncwait.offset); if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo))) goto err_put_syncwait_obj; queue->syncwait.obj = &bo->base.base; ret = drm_gem_vmap_unlocked(queue->syncwait.obj, &map); if (drm_WARN_ON(&ptdev->base, ret)) goto err_put_syncwait_obj; queue->syncwait.kmap = map.vaddr; if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap)) goto err_put_syncwait_obj; return queue->syncwait.kmap + queue->syncwait.offset; err_put_syncwait_obj: panthor_queue_put_syncwait_obj(queue); return NULL; } static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue) { if (IS_ERR_OR_NULL(queue)) return; if (queue->entity.fence_context) drm_sched_entity_destroy(&queue->entity); if (queue->scheduler.ops) drm_sched_fini(&queue->scheduler); panthor_queue_put_syncwait_obj(queue); panthor_kernel_bo_destroy(queue->ringbuf); panthor_kernel_bo_destroy(queue->iface.mem); panthor_kernel_bo_destroy(queue->profiling.slots); /* Release the last_fence we were holding, if any. */ dma_fence_put(queue->fence_ctx.last_fence); kfree(queue); } static void group_release_work(struct work_struct *work) { struct panthor_group *group = container_of(work, struct panthor_group, release_work); u32 i; mutex_destroy(&group->fdinfo.lock); for (i = 0; i < group->queue_count; i++) group_free_queue(group, group->queues[i]); panthor_kernel_bo_destroy(group->suspend_buf); panthor_kernel_bo_destroy(group->protm_suspend_buf); panthor_kernel_bo_destroy(group->syncobjs); panthor_vm_put(group->vm); kfree(group); } static void group_release(struct kref *kref) { struct panthor_group *group = container_of(kref, struct panthor_group, refcount); struct panthor_device *ptdev = group->ptdev; drm_WARN_ON(&ptdev->base, group->csg_id >= 0); drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node)); drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node)); queue_work(panthor_cleanup_wq, &group->release_work); } static void group_put(struct panthor_group *group) { if (group) kref_put(&group->refcount, group_release); } static struct panthor_group * group_get(struct panthor_group *group) { if (group) kref_get(&group->refcount); return group; } /** * group_bind_locked() - Bind a group to a group slot * @group: Group. * @csg_id: Slot. * * Return: 0 on success, a negative error code otherwise. */ static int group_bind_locked(struct panthor_group *group, u32 csg_id) { struct panthor_device *ptdev = group->ptdev; struct panthor_csg_slot *csg_slot; int ret; lockdep_assert_held(&ptdev->scheduler->lock); if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS || ptdev->scheduler->csg_slots[csg_id].group)) return -EINVAL; ret = panthor_vm_active(group->vm); if (ret) return ret; csg_slot = &ptdev->scheduler->csg_slots[csg_id]; group_get(group); group->csg_id = csg_id; /* Dummy doorbell allocation: doorbell is assigned to the group and * all queues use the same doorbell. * * TODO: Implement LRU-based doorbell assignment, so the most often * updated queues get their own doorbell, thus avoiding useless checks * on queues belonging to the same group that are rarely updated. */ for (u32 i = 0; i < group->queue_count; i++) group->queues[i]->doorbell_id = csg_id + 1; csg_slot->group = group; return 0; } /** * group_unbind_locked() - Unbind a group from a slot. * @group: Group to unbind. * * Return: 0 on success, a negative error code otherwise. */ static int group_unbind_locked(struct panthor_group *group) { struct panthor_device *ptdev = group->ptdev; struct panthor_csg_slot *slot; lockdep_assert_held(&ptdev->scheduler->lock); if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS)) return -EINVAL; if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE)) return -EINVAL; slot = &ptdev->scheduler->csg_slots[group->csg_id]; panthor_vm_idle(group->vm); group->csg_id = -1; /* Tiler OOM events will be re-issued next time the group is scheduled. */ atomic_set(&group->tiler_oom, 0); cancel_work(&group->tiler_oom_work); for (u32 i = 0; i < group->queue_count; i++) group->queues[i]->doorbell_id = -1; slot->group = NULL; group_put(group); return 0; } /** * cs_slot_prog_locked() - Program a queue slot * @ptdev: Device. * @csg_id: Group slot ID. * @cs_id: Queue slot ID. * * Program a queue slot with the queue information so things can start being * executed on this queue. * * The group slot must have a group bound to it already (group_bind_locked()). */ static void cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id]; struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); lockdep_assert_held(&ptdev->scheduler->lock); queue->iface.input->extract = queue->iface.output->extract; drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract); cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf); cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); cs_iface->input->ringbuf_input = queue->iface.input_fw_va; cs_iface->input->ringbuf_output = queue->iface.output_fw_va; cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) | CS_CONFIG_DOORBELL(queue->doorbell_id); cs_iface->input->ack_irq_mask = ~0; panthor_fw_update_reqs(cs_iface, req, CS_IDLE_SYNC_WAIT | CS_IDLE_EMPTY | CS_STATE_START | CS_EXTRACT_EVENT, CS_IDLE_SYNC_WAIT | CS_IDLE_EMPTY | CS_STATE_MASK | CS_EXTRACT_EVENT); if (queue->iface.input->insert != queue->iface.input->extract && queue->timeout_suspended) { drm_sched_resume_timeout(&queue->scheduler, queue->remaining_time); queue->timeout_suspended = false; } } /** * cs_slot_reset_locked() - Reset a queue slot * @ptdev: Device. * @csg_id: Group slot. * @cs_id: Queue slot. * * Change the queue slot state to STOP and suspend the queue timeout if * the queue is not blocked. * * The group slot must have a group bound to it (group_bind_locked()). */ static int cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; struct panthor_queue *queue = group->queues[cs_id]; lockdep_assert_held(&ptdev->scheduler->lock); panthor_fw_update_reqs(cs_iface, req, CS_STATE_STOP, CS_STATE_MASK); /* If the queue is blocked, we want to keep the timeout running, so * we can detect unbounded waits and kill the group when that happens. */ if (!(group->blocked_queues & BIT(cs_id)) && !queue->timeout_suspended) { queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); queue->timeout_suspended = true; WARN_ON(queue->remaining_time > msecs_to_jiffies(JOB_TIMEOUT_MS)); } return 0; } /** * csg_slot_sync_priority_locked() - Synchronize the group slot priority * @ptdev: Device. * @csg_id: Group slot ID. * * Group slot priority update happens asynchronously. When we receive a * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can * reflect it to our panthor_csg_slot object. */ static void csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; struct panthor_fw_csg_iface *csg_iface; lockdep_assert_held(&ptdev->scheduler->lock); csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); csg_slot->priority = (csg_iface->input->endpoint_req & CSG_EP_REQ_PRIORITY_MASK) >> 28; } /** * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority * @ptdev: Device. * @csg_id: Group slot. * @cs_id: Queue slot. * * Queue state is updated on group suspend or STATUS_UPDATE event. */ static void cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group; struct panthor_queue *queue = group->queues[cs_id]; struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id); u32 status_wait_cond; switch (cs_iface->output->status_blocked_reason) { case CS_STATUS_BLOCKED_REASON_UNBLOCKED: if (queue->iface.input->insert == queue->iface.output->extract && cs_iface->output->status_scoreboards == 0) group->idle_queues |= BIT(cs_id); break; case CS_STATUS_BLOCKED_REASON_SYNC_WAIT: if (list_empty(&group->wait_node)) { list_move_tail(&group->wait_node, &group->ptdev->scheduler->groups.waiting); } /* The queue is only blocked if there's no deferred operation * pending, which can be checked through the scoreboard status. */ if (!cs_iface->output->status_scoreboards) group->blocked_queues |= BIT(cs_id); queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr; queue->syncwait.ref = cs_iface->output->status_wait_sync_value; status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK; queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT; if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) { u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi; queue->syncwait.sync64 = true; queue->syncwait.ref |= sync_val_hi << 32; } else { queue->syncwait.sync64 = false; } break; default: /* Other reasons are not blocking. Consider the queue as runnable * in those cases. */ break; } } static void csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; u32 i; lockdep_assert_held(&ptdev->scheduler->lock); group->idle_queues = 0; group->blocked_queues = 0; for (i = 0; i < group->queue_count; i++) { if (group->queues[i]) cs_slot_sync_queue_state_locked(ptdev, csg_id, i); } } static void csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; struct panthor_fw_csg_iface *csg_iface; struct panthor_group *group; enum panthor_group_state new_state, old_state; u32 csg_state; lockdep_assert_held(&ptdev->scheduler->lock); csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); group = csg_slot->group; if (!group) return; old_state = group->state; csg_state = csg_iface->output->ack & CSG_STATE_MASK; switch (csg_state) { case CSG_STATE_START: case CSG_STATE_RESUME: new_state = PANTHOR_CS_GROUP_ACTIVE; break; case CSG_STATE_TERMINATE: new_state = PANTHOR_CS_GROUP_TERMINATED; break; case CSG_STATE_SUSPEND: new_state = PANTHOR_CS_GROUP_SUSPENDED; break; default: /* The unknown state might be caused by a FW state corruption, * which means the group metadata can't be trusted anymore, and * the SUSPEND operation might propagate the corruption to the * suspend buffers. Flag the group state as unknown to make * sure it's unusable after that point. */ drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)", csg_id, csg_state); new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE; break; } if (old_state == new_state) return; /* The unknown state might be caused by a FW issue, reset the FW to * take a fresh start. */ if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE) panthor_device_schedule_reset(ptdev); if (new_state == PANTHOR_CS_GROUP_SUSPENDED) csg_slot_sync_queues_state_locked(ptdev, csg_id); if (old_state == PANTHOR_CS_GROUP_ACTIVE) { u32 i; /* Reset the queue slots so we start from a clean * state when starting/resuming a new group on this * CSG slot. No wait needed here, and no ringbell * either, since the CS slot will only be re-used * on the next CSG start operation. */ for (i = 0; i < group->queue_count; i++) { if (group->queues[i]) cs_slot_reset_locked(ptdev, csg_id, i); } } group->state = new_state; } static int csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority) { struct panthor_fw_csg_iface *csg_iface; struct panthor_csg_slot *csg_slot; struct panthor_group *group; u32 queue_mask = 0, i; lockdep_assert_held(&ptdev->scheduler->lock); if (priority > MAX_CSG_PRIO) return -EINVAL; if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS)) return -EINVAL; csg_slot = &ptdev->scheduler->csg_slots[csg_id]; group = csg_slot->group; if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE) return 0; csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id); for (i = 0; i < group->queue_count; i++) { if (group->queues[i]) { cs_slot_prog_locked(ptdev, csg_id, i); queue_mask |= BIT(i); } } csg_iface->input->allow_compute = group->compute_core_mask; csg_iface->input->allow_fragment = group->fragment_core_mask; csg_iface->input->allow_other = group->tiler_core_mask; csg_iface->input->endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) | CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) | CSG_EP_REQ_TILER(group->max_tiler_cores) | CSG_EP_REQ_PRIORITY(priority); csg_iface->input->config = panthor_vm_as(group->vm); if (group->suspend_buf) csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf); else csg_iface->input->suspend_buf = 0; if (group->protm_suspend_buf) { csg_iface->input->protm_suspend_buf = panthor_kernel_bo_gpuva(group->protm_suspend_buf); } else { csg_iface->input->protm_suspend_buf = 0; } csg_iface->input->ack_irq_mask = ~0; panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask); return 0; } static void cs_slot_process_fatal_event_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; struct panthor_fw_cs_iface *cs_iface; u32 fatal; u64 info; lockdep_assert_held(&sched->lock); cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); fatal = cs_iface->output->fatal; info = cs_iface->output->fatal_info; if (group) group->fatal_queues |= BIT(cs_id); if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) { /* If this exception is unrecoverable, queue a reset, and make * sure we stop scheduling groups until the reset has happened. */ panthor_device_schedule_reset(ptdev); cancel_delayed_work(&sched->tick_work); } else { sched_queue_delayed_work(sched, tick, 0); } drm_warn(&ptdev->base, "CSG slot %d CS slot: %d\n" "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n" "CS_FATAL.EXCEPTION_DATA: 0x%x\n" "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n", csg_id, cs_id, (unsigned int)CS_EXCEPTION_TYPE(fatal), panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)), (unsigned int)CS_EXCEPTION_DATA(fatal), info); } static void cs_slot_process_fault_event_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; struct panthor_queue *queue = group && cs_id < group->queue_count ? group->queues[cs_id] : NULL; struct panthor_fw_cs_iface *cs_iface; u32 fault; u64 info; lockdep_assert_held(&sched->lock); cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); fault = cs_iface->output->fault; info = cs_iface->output->fault_info; if (queue && CS_EXCEPTION_TYPE(fault) == DRM_PANTHOR_EXCEPTION_CS_INHERIT_FAULT) { u64 cs_extract = queue->iface.output->extract; struct panthor_job *job; spin_lock(&queue->fence_ctx.lock); list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) { if (cs_extract >= job->ringbuf.end) continue; if (cs_extract < job->ringbuf.start) break; dma_fence_set_error(job->done_fence, -EINVAL); } spin_unlock(&queue->fence_ctx.lock); } drm_warn(&ptdev->base, "CSG slot %d CS slot: %d\n" "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n" "CS_FAULT.EXCEPTION_DATA: 0x%x\n" "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n", csg_id, cs_id, (unsigned int)CS_EXCEPTION_TYPE(fault), panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)), (unsigned int)CS_EXCEPTION_DATA(fault), info); } static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id) { struct panthor_device *ptdev = group->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; u32 renderpasses_in_flight, pending_frag_count; struct panthor_heap_pool *heaps = NULL; u64 heap_address, new_chunk_va = 0; u32 vt_start, vt_end, frag_end; int ret, csg_id; mutex_lock(&sched->lock); csg_id = group->csg_id; if (csg_id >= 0) { struct panthor_fw_cs_iface *cs_iface; cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); heaps = panthor_vm_get_heap_pool(group->vm, false); heap_address = cs_iface->output->heap_address; vt_start = cs_iface->output->heap_vt_start; vt_end = cs_iface->output->heap_vt_end; frag_end = cs_iface->output->heap_frag_end; renderpasses_in_flight = vt_start - frag_end; pending_frag_count = vt_end - frag_end; } mutex_unlock(&sched->lock); /* The group got scheduled out, we stop here. We will get a new tiler OOM event * when it's scheduled again. */ if (unlikely(csg_id < 0)) return 0; if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) { ret = -EINVAL; } else { /* We do the allocation without holding the scheduler lock to avoid * blocking the scheduling. */ ret = panthor_heap_grow(heaps, heap_address, renderpasses_in_flight, pending_frag_count, &new_chunk_va); } /* If the heap context doesn't have memory for us, we want to let the * FW try to reclaim memory by waiting for fragment jobs to land or by * executing the tiler OOM exception handler, which is supposed to * implement incremental rendering. */ if (ret && ret != -ENOMEM) { drm_warn(&ptdev->base, "Failed to extend the tiler heap\n"); group->fatal_queues |= BIT(cs_id); sched_queue_delayed_work(sched, tick, 0); goto out_put_heap_pool; } mutex_lock(&sched->lock); csg_id = group->csg_id; if (csg_id >= 0) { struct panthor_fw_csg_iface *csg_iface; struct panthor_fw_cs_iface *cs_iface; csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); cs_iface->input->heap_start = new_chunk_va; cs_iface->input->heap_end = new_chunk_va; panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM); panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id)); panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); } mutex_unlock(&sched->lock); /* We allocated a chunck, but couldn't link it to the heap * context because the group was scheduled out while we were * allocating memory. We need to return this chunk to the heap. */ if (unlikely(csg_id < 0 && new_chunk_va)) panthor_heap_return_chunk(heaps, heap_address, new_chunk_va); ret = 0; out_put_heap_pool: panthor_heap_pool_put(heaps); return ret; } static void group_tiler_oom_work(struct work_struct *work) { struct panthor_group *group = container_of(work, struct panthor_group, tiler_oom_work); u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0); while (tiler_oom) { u32 cs_id = ffs(tiler_oom) - 1; group_process_tiler_oom(group, cs_id); tiler_oom &= ~BIT(cs_id); } group_put(group); } static void cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; lockdep_assert_held(&sched->lock); if (drm_WARN_ON(&ptdev->base, !group)) return; atomic_or(BIT(cs_id), &group->tiler_oom); /* We don't use group_queue_work() here because we want to queue the * work item to the heap_alloc_wq. */ group_get(group); if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work)) group_put(group); } static bool cs_slot_process_irq_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id) { struct panthor_fw_cs_iface *cs_iface; u32 req, ack, events; lockdep_assert_held(&ptdev->scheduler->lock); cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id); req = cs_iface->input->req; ack = cs_iface->output->ack; events = (req ^ ack) & CS_EVT_MASK; if (events & CS_FATAL) cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id); if (events & CS_FAULT) cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id); if (events & CS_TILER_OOM) cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id); /* We don't acknowledge the TILER_OOM event since its handling is * deferred to a separate work. */ panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT); return (events & (CS_FAULT | CS_TILER_OOM)) != 0; } static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; struct panthor_fw_csg_iface *csg_iface; lockdep_assert_held(&ptdev->scheduler->lock); csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE; } static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_scheduler *sched = ptdev->scheduler; lockdep_assert_held(&sched->lock); sched->might_have_idle_groups = true; /* Schedule a tick so we can evict idle groups and schedule non-idle * ones. This will also update runtime PM and devfreq busy/idle states, * so the device can lower its frequency or get suspended. */ sched_queue_delayed_work(sched, tick, 0); } static void csg_slot_sync_update_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; lockdep_assert_held(&ptdev->scheduler->lock); if (group) group_queue_work(group, sync_upd); sched_queue_work(ptdev->scheduler, sync_upd); } static void csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; struct panthor_group *group = csg_slot->group; lockdep_assert_held(&sched->lock); drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id); group = csg_slot->group; if (!drm_WARN_ON(&ptdev->base, !group)) group->timedout = true; sched_queue_delayed_work(sched, tick, 0); } static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id) { u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events; struct panthor_fw_csg_iface *csg_iface; u32 ring_cs_db_mask = 0; lockdep_assert_held(&ptdev->scheduler->lock); if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) return; csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); req = READ_ONCE(csg_iface->input->req); ack = READ_ONCE(csg_iface->output->ack); cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req); cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack); csg_events = (req ^ ack) & CSG_EVT_MASK; /* There may not be any pending CSG/CS interrupts to process */ if (req == ack && cs_irq_req == cs_irq_ack) return; /* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before * examining the CS_ACK & CS_REQ bits. This would ensure that Host * doesn't miss an interrupt for the CS in the race scenario where * whilst Host is servicing an interrupt for the CS, firmware sends * another interrupt for that CS. */ csg_iface->input->cs_irq_ack = cs_irq_req; panthor_fw_update_reqs(csg_iface, req, ack, CSG_SYNC_UPDATE | CSG_IDLE | CSG_PROGRESS_TIMER_EVENT); if (csg_events & CSG_IDLE) csg_slot_process_idle_event_locked(ptdev, csg_id); if (csg_events & CSG_PROGRESS_TIMER_EVENT) csg_slot_process_progress_timer_event_locked(ptdev, csg_id); cs_irqs = cs_irq_req ^ cs_irq_ack; while (cs_irqs) { u32 cs_id = ffs(cs_irqs) - 1; if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id)) ring_cs_db_mask |= BIT(cs_id); cs_irqs &= ~BIT(cs_id); } if (csg_events & CSG_SYNC_UPDATE) csg_slot_sync_update_locked(ptdev, csg_id); if (ring_cs_db_mask) panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask); panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id)); } static void sched_process_idle_event_locked(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); lockdep_assert_held(&ptdev->scheduler->lock); /* Acknowledge the idle event and schedule a tick. */ panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE); sched_queue_delayed_work(ptdev->scheduler, tick, 0); } /** * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ * @ptdev: Device. */ static void sched_process_global_irq_locked(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); u32 req, ack, evts; lockdep_assert_held(&ptdev->scheduler->lock); req = READ_ONCE(glb_iface->input->req); ack = READ_ONCE(glb_iface->output->ack); evts = (req ^ ack) & GLB_EVT_MASK; if (evts & GLB_IDLE) sched_process_idle_event_locked(ptdev); } static void process_fw_events_work(struct work_struct *work) { struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, fw_events_work); u32 events = atomic_xchg(&sched->fw_events, 0); struct panthor_device *ptdev = sched->ptdev; mutex_lock(&sched->lock); if (events & JOB_INT_GLOBAL_IF) { sched_process_global_irq_locked(ptdev); events &= ~JOB_INT_GLOBAL_IF; } while (events) { u32 csg_id = ffs(events) - 1; sched_process_csg_irq_locked(ptdev, csg_id); events &= ~BIT(csg_id); } mutex_unlock(&sched->lock); } /** * panthor_sched_report_fw_events() - Report FW events to the scheduler. */ void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events) { if (!ptdev->scheduler) return; atomic_or(events, &ptdev->scheduler->fw_events); sched_queue_work(ptdev->scheduler, fw_events); } static const char *fence_get_driver_name(struct dma_fence *fence) { return "panthor"; } static const char *queue_fence_get_timeline_name(struct dma_fence *fence) { return "queue-fence"; } static const struct dma_fence_ops panthor_queue_fence_ops = { .get_driver_name = fence_get_driver_name, .get_timeline_name = queue_fence_get_timeline_name, }; struct panthor_csg_slots_upd_ctx { u32 update_mask; u32 timedout_mask; struct { u32 value; u32 mask; } requests[MAX_CSGS]; }; static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx) { memset(ctx, 0, sizeof(*ctx)); } static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev, struct panthor_csg_slots_upd_ctx *ctx, u32 csg_id, u32 value, u32 mask) { if (drm_WARN_ON(&ptdev->base, !mask) || drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count)) return; ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask); ctx->requests[csg_id].mask |= mask; ctx->update_mask |= BIT(csg_id); } static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev, struct panthor_csg_slots_upd_ctx *ctx) { struct panthor_scheduler *sched = ptdev->scheduler; u32 update_slots = ctx->update_mask; lockdep_assert_held(&sched->lock); if (!ctx->update_mask) return 0; while (update_slots) { struct panthor_fw_csg_iface *csg_iface; u32 csg_id = ffs(update_slots) - 1; update_slots &= ~BIT(csg_id); csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); panthor_fw_update_reqs(csg_iface, req, ctx->requests[csg_id].value, ctx->requests[csg_id].mask); } panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask); update_slots = ctx->update_mask; while (update_slots) { struct panthor_fw_csg_iface *csg_iface; u32 csg_id = ffs(update_slots) - 1; u32 req_mask = ctx->requests[csg_id].mask, acked; int ret; update_slots &= ~BIT(csg_id); csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100); if (acked & CSG_ENDPOINT_CONFIG) csg_slot_sync_priority_locked(ptdev, csg_id); if (acked & CSG_STATE_MASK) csg_slot_sync_state_locked(ptdev, csg_id); if (acked & CSG_STATUS_UPDATE) { csg_slot_sync_queues_state_locked(ptdev, csg_id); csg_slot_sync_idle_state_locked(ptdev, csg_id); } if (ret && acked != req_mask && ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) { drm_err(&ptdev->base, "CSG %d update request timedout", csg_id); ctx->timedout_mask |= BIT(csg_id); } } if (ctx->timedout_mask) return -ETIMEDOUT; return 0; } struct panthor_sched_tick_ctx { struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT]; struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT]; u32 idle_group_count; u32 group_count; enum panthor_csg_priority min_priority; struct panthor_vm *vms[MAX_CS_PER_CSG]; u32 as_count; bool immediate_tick; u32 csg_upd_failed_mask; }; static bool tick_ctx_is_full(const struct panthor_scheduler *sched, const struct panthor_sched_tick_ctx *ctx) { return ctx->group_count == sched->csg_slot_count; } static bool group_is_idle(struct panthor_group *group) { struct panthor_device *ptdev = group->ptdev; u32 inactive_queues; if (group->csg_id >= 0) return ptdev->scheduler->csg_slots[group->csg_id].idle; inactive_queues = group->idle_queues | group->blocked_queues; return hweight32(inactive_queues) == group->queue_count; } static bool group_can_run(struct panthor_group *group) { return group->state != PANTHOR_CS_GROUP_TERMINATED && group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE && !group->destroyed && group->fatal_queues == 0 && !group->timedout; } static void tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx, struct list_head *queue, bool skip_idle_groups, bool owned_by_tick_ctx) { struct panthor_group *group, *tmp; if (tick_ctx_is_full(sched, ctx)) return; list_for_each_entry_safe(group, tmp, queue, run_node) { u32 i; if (!group_can_run(group)) continue; if (skip_idle_groups && group_is_idle(group)) continue; for (i = 0; i < ctx->as_count; i++) { if (ctx->vms[i] == group->vm) break; } if (i == ctx->as_count && ctx->as_count == sched->as_slot_count) continue; if (!owned_by_tick_ctx) group_get(group); list_move_tail(&group->run_node, &ctx->groups[group->priority]); ctx->group_count++; if (group_is_idle(group)) ctx->idle_group_count++; if (i == ctx->as_count) ctx->vms[ctx->as_count++] = group->vm; if (ctx->min_priority > group->priority) ctx->min_priority = group->priority; if (tick_ctx_is_full(sched, ctx)) return; } } static void tick_ctx_insert_old_group(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx, struct panthor_group *group, bool full_tick) { struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id]; struct panthor_group *other_group; if (!full_tick) { list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); return; } /* Rotate to make sure groups with lower CSG slot * priorities have a chance to get a higher CSG slot * priority next time they get picked. This priority * has an impact on resource request ordering, so it's * important to make sure we don't let one group starve * all other groups with the same group priority. */ list_for_each_entry(other_group, &ctx->old_groups[csg_slot->group->priority], run_node) { struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id]; if (other_csg_slot->priority > csg_slot->priority) { list_add_tail(&csg_slot->group->run_node, &other_group->run_node); return; } } list_add_tail(&group->run_node, &ctx->old_groups[group->priority]); } static void tick_ctx_init(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx, bool full_tick) { struct panthor_device *ptdev = sched->ptdev; struct panthor_csg_slots_upd_ctx upd_ctx; int ret; u32 i; memset(ctx, 0, sizeof(*ctx)); csgs_upd_ctx_init(&upd_ctx); ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT; for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { INIT_LIST_HEAD(&ctx->groups[i]); INIT_LIST_HEAD(&ctx->old_groups[i]); } for (i = 0; i < sched->csg_slot_count; i++) { struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; struct panthor_group *group = csg_slot->group; struct panthor_fw_csg_iface *csg_iface; if (!group) continue; csg_iface = panthor_fw_get_csg_iface(ptdev, i); group_get(group); /* If there was unhandled faults on the VM, force processing of * CSG IRQs, so we can flag the faulty queue. */ if (panthor_vm_has_unhandled_faults(group->vm)) { sched_process_csg_irq_locked(ptdev, i); /* No fatal fault reported, flag all queues as faulty. */ if (!group->fatal_queues) group->fatal_queues |= GENMASK(group->queue_count - 1, 0); } tick_ctx_insert_old_group(sched, ctx, group, full_tick); csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, csg_iface->output->ack ^ CSG_STATUS_UPDATE, CSG_STATUS_UPDATE); } ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); if (ret) { panthor_device_schedule_reset(ptdev); ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; } } static void group_term_post_processing(struct panthor_group *group) { struct panthor_job *job, *tmp; LIST_HEAD(faulty_jobs); bool cookie; u32 i = 0; if (drm_WARN_ON(&group->ptdev->base, group_can_run(group))) return; cookie = dma_fence_begin_signalling(); for (i = 0; i < group->queue_count; i++) { struct panthor_queue *queue = group->queues[i]; struct panthor_syncobj_64b *syncobj; int err; if (group->fatal_queues & BIT(i)) err = -EINVAL; else if (group->timedout) err = -ETIMEDOUT; else err = -ECANCELED; if (!queue) continue; spin_lock(&queue->fence_ctx.lock); list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) { list_move_tail(&job->node, &faulty_jobs); dma_fence_set_error(job->done_fence, err); dma_fence_signal_locked(job->done_fence); } spin_unlock(&queue->fence_ctx.lock); /* Manually update the syncobj seqno to unblock waiters. */ syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj)); syncobj->status = ~0; syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno); sched_queue_work(group->ptdev->scheduler, sync_upd); } dma_fence_end_signalling(cookie); list_for_each_entry_safe(job, tmp, &faulty_jobs, node) { list_del_init(&job->node); panthor_job_put(&job->base); } } static void group_term_work(struct work_struct *work) { struct panthor_group *group = container_of(work, struct panthor_group, term_work); group_term_post_processing(group); group_put(group); } static void tick_ctx_cleanup(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) { struct panthor_device *ptdev = sched->ptdev; struct panthor_group *group, *tmp; u32 i; for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) { list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) { /* If everything went fine, we should only have groups * to be terminated in the old_groups lists. */ drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && group_can_run(group)); if (!group_can_run(group)) { list_del_init(&group->run_node); list_del_init(&group->wait_node); group_queue_work(group, term); } else if (group->csg_id >= 0) { list_del_init(&group->run_node); } else { list_move(&group->run_node, group_is_idle(group) ? &sched->groups.idle[group->priority] : &sched->groups.runnable[group->priority]); } group_put(group); } } for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) { /* If everything went fine, the groups to schedule lists should * be empty. */ drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i])); list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) { if (group->csg_id >= 0) { list_del_init(&group->run_node); } else { list_move(&group->run_node, group_is_idle(group) ? &sched->groups.idle[group->priority] : &sched->groups.runnable[group->priority]); } group_put(group); } } } static void tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx) { struct panthor_group *group, *tmp; struct panthor_device *ptdev = sched->ptdev; struct panthor_csg_slot *csg_slot; int prio, new_csg_prio = MAX_CSG_PRIO, i; u32 free_csg_slots = 0; struct panthor_csg_slots_upd_ctx upd_ctx; int ret; csgs_upd_ctx_init(&upd_ctx); for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { /* Suspend or terminate evicted groups. */ list_for_each_entry(group, &ctx->old_groups[prio], run_node) { bool term = !group_can_run(group); int csg_id = group->csg_id; if (drm_WARN_ON(&ptdev->base, csg_id < 0)) continue; csg_slot = &sched->csg_slots[csg_id]; csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND, CSG_STATE_MASK); } /* Update priorities on already running groups. */ list_for_each_entry(group, &ctx->groups[prio], run_node) { struct panthor_fw_csg_iface *csg_iface; int csg_id = group->csg_id; if (csg_id < 0) { new_csg_prio--; continue; } csg_slot = &sched->csg_slots[csg_id]; csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); if (csg_slot->priority == new_csg_prio) { new_csg_prio--; continue; } panthor_fw_update_reqs(csg_iface, endpoint_req, CSG_EP_REQ_PRIORITY(new_csg_prio), CSG_EP_REQ_PRIORITY_MASK); csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, CSG_ENDPOINT_CONFIG); new_csg_prio--; } } ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); if (ret) { panthor_device_schedule_reset(ptdev); ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; return; } /* Unbind evicted groups. */ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { list_for_each_entry(group, &ctx->old_groups[prio], run_node) { /* This group is gone. Process interrupts to clear * any pending interrupts before we start the new * group. */ if (group->csg_id >= 0) sched_process_csg_irq_locked(ptdev, group->csg_id); group_unbind_locked(group); } } for (i = 0; i < sched->csg_slot_count; i++) { if (!sched->csg_slots[i].group) free_csg_slots |= BIT(i); } csgs_upd_ctx_init(&upd_ctx); new_csg_prio = MAX_CSG_PRIO; /* Start new groups. */ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { list_for_each_entry(group, &ctx->groups[prio], run_node) { int csg_id = group->csg_id; struct panthor_fw_csg_iface *csg_iface; if (csg_id >= 0) { new_csg_prio--; continue; } csg_id = ffs(free_csg_slots) - 1; if (drm_WARN_ON(&ptdev->base, csg_id < 0)) break; csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id); csg_slot = &sched->csg_slots[csg_id]; group_bind_locked(group, csg_id); csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--); csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, group->state == PANTHOR_CS_GROUP_SUSPENDED ? CSG_STATE_RESUME : CSG_STATE_START, CSG_STATE_MASK); csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG, CSG_ENDPOINT_CONFIG); free_csg_slots &= ~BIT(csg_id); } } ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); if (ret) { panthor_device_schedule_reset(ptdev); ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask; return; } for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) { list_del_init(&group->run_node); /* If the group has been destroyed while we were * scheduling, ask for an immediate tick to * re-evaluate as soon as possible and get rid of * this dangling group. */ if (group->destroyed) ctx->immediate_tick = true; group_put(group); } /* Return evicted groups to the idle or run queues. Groups * that can no longer be run (because they've been destroyed * or experienced an unrecoverable error) will be scheduled * for destruction in tick_ctx_cleanup(). */ list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) { if (!group_can_run(group)) continue; if (group_is_idle(group)) list_move_tail(&group->run_node, &sched->groups.idle[prio]); else list_move_tail(&group->run_node, &sched->groups.runnable[prio]); group_put(group); } } sched->used_csg_slot_count = ctx->group_count; sched->might_have_idle_groups = ctx->idle_group_count > 0; } static u64 tick_ctx_update_resched_target(struct panthor_scheduler *sched, const struct panthor_sched_tick_ctx *ctx) { /* We had space left, no need to reschedule until some external event happens. */ if (!tick_ctx_is_full(sched, ctx)) goto no_tick; /* If idle groups were scheduled, no need to wake up until some external * event happens (group unblocked, new job submitted, ...). */ if (ctx->idle_group_count) goto no_tick; if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT)) goto no_tick; /* If there are groups of the same priority waiting, we need to * keep the scheduler ticking, otherwise, we'll just wait for * new groups with higher priority to be queued. */ if (!list_empty(&sched->groups.runnable[ctx->min_priority])) { u64 resched_target = sched->last_tick + sched->tick_period; if (time_before64(sched->resched_target, sched->last_tick) || time_before64(resched_target, sched->resched_target)) sched->resched_target = resched_target; return sched->resched_target - sched->last_tick; } no_tick: sched->resched_target = U64_MAX; return U64_MAX; } static void tick_work(struct work_struct *work) { struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, tick_work.work); struct panthor_device *ptdev = sched->ptdev; struct panthor_sched_tick_ctx ctx; u64 remaining_jiffies = 0, resched_delay; u64 now = get_jiffies_64(); int prio, ret, cookie; if (!drm_dev_enter(&ptdev->base, &cookie)) return; ret = pm_runtime_resume_and_get(ptdev->base.dev); if (drm_WARN_ON(&ptdev->base, ret)) goto out_dev_exit; if (time_before64(now, sched->resched_target)) remaining_jiffies = sched->resched_target - now; mutex_lock(&sched->lock); if (panthor_device_reset_is_pending(sched->ptdev)) goto out_unlock; tick_ctx_init(sched, &ctx, remaining_jiffies != 0); if (ctx.csg_upd_failed_mask) goto out_cleanup_ctx; if (remaining_jiffies) { /* Scheduling forced in the middle of a tick. Only RT groups * can preempt non-RT ones. Currently running RT groups can't be * preempted. */ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0 && !tick_ctx_is_full(sched, &ctx); prio--) { tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); if (prio == PANTHOR_CSG_PRIORITY_RT) { tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], true, false); } } } /* First pick non-idle groups */ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0 && !tick_ctx_is_full(sched, &ctx); prio--) { tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio], true, false); tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true); } /* If we have free CSG slots left, pick idle groups */ for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0 && !tick_ctx_is_full(sched, &ctx); prio--) { /* Check the old_group queue first to avoid reprogramming the slots */ tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true); tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio], false, false); } tick_ctx_apply(sched, &ctx); if (ctx.csg_upd_failed_mask) goto out_cleanup_ctx; if (ctx.idle_group_count == ctx.group_count) { panthor_devfreq_record_idle(sched->ptdev); if (sched->pm.has_ref) { pm_runtime_put_autosuspend(ptdev->base.dev); sched->pm.has_ref = false; } } else { panthor_devfreq_record_busy(sched->ptdev); if (!sched->pm.has_ref) { pm_runtime_get(ptdev->base.dev); sched->pm.has_ref = true; } } sched->last_tick = now; resched_delay = tick_ctx_update_resched_target(sched, &ctx); if (ctx.immediate_tick) resched_delay = 0; if (resched_delay != U64_MAX) sched_queue_delayed_work(sched, tick, resched_delay); out_cleanup_ctx: tick_ctx_cleanup(sched, &ctx); out_unlock: mutex_unlock(&sched->lock); pm_runtime_mark_last_busy(ptdev->base.dev); pm_runtime_put_autosuspend(ptdev->base.dev); out_dev_exit: drm_dev_exit(cookie); } static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx) { struct panthor_queue *queue = group->queues[queue_idx]; union { struct panthor_syncobj_64b sync64; struct panthor_syncobj_32b sync32; } *syncobj; bool result; u64 value; syncobj = panthor_queue_get_syncwait_obj(group, queue); if (!syncobj) return -EINVAL; value = queue->syncwait.sync64 ? syncobj->sync64.seqno : syncobj->sync32.seqno; if (queue->syncwait.gt) result = value > queue->syncwait.ref; else result = value <= queue->syncwait.ref; if (result) panthor_queue_put_syncwait_obj(queue); return result; } static void sync_upd_work(struct work_struct *work) { struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler, sync_upd_work); struct panthor_group *group, *tmp; bool immediate_tick = false; mutex_lock(&sched->lock); list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) { u32 tested_queues = group->blocked_queues; u32 unblocked_queues = 0; while (tested_queues) { u32 cs_id = ffs(tested_queues) - 1; int ret; ret = panthor_queue_eval_syncwait(group, cs_id); drm_WARN_ON(&group->ptdev->base, ret < 0); if (ret) unblocked_queues |= BIT(cs_id); tested_queues &= ~BIT(cs_id); } if (unblocked_queues) { group->blocked_queues &= ~unblocked_queues; if (group->csg_id < 0) { list_move(&group->run_node, &sched->groups.runnable[group->priority]); if (group->priority == PANTHOR_CSG_PRIORITY_RT) immediate_tick = true; } } if (!group->blocked_queues) list_del_init(&group->wait_node); } mutex_unlock(&sched->lock); if (immediate_tick) sched_queue_delayed_work(sched, tick, 0); } static void group_schedule_locked(struct panthor_group *group, u32 queue_mask) { struct panthor_device *ptdev = group->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; struct list_head *queue = &sched->groups.runnable[group->priority]; u64 delay_jiffies = 0; bool was_idle; u64 now; if (!group_can_run(group)) return; /* All updated queues are blocked, no need to wake up the scheduler. */ if ((queue_mask & group->blocked_queues) == queue_mask) return; was_idle = group_is_idle(group); group->idle_queues &= ~queue_mask; /* Don't mess up with the lists if we're in a middle of a reset. */ if (atomic_read(&sched->reset.in_progress)) return; if (was_idle && !group_is_idle(group)) list_move_tail(&group->run_node, queue); /* RT groups are preemptive. */ if (group->priority == PANTHOR_CSG_PRIORITY_RT) { sched_queue_delayed_work(sched, tick, 0); return; } /* Some groups might be idle, force an immediate tick to * re-evaluate. */ if (sched->might_have_idle_groups) { sched_queue_delayed_work(sched, tick, 0); return; } /* Scheduler is ticking, nothing to do. */ if (sched->resched_target != U64_MAX) { /* If there are free slots, force immediating ticking. */ if (sched->used_csg_slot_count < sched->csg_slot_count) sched_queue_delayed_work(sched, tick, 0); return; } /* Scheduler tick was off, recalculate the resched_target based on the * last tick event, and queue the scheduler work. */ now = get_jiffies_64(); sched->resched_target = sched->last_tick + sched->tick_period; if (sched->used_csg_slot_count == sched->csg_slot_count && time_before64(now, sched->resched_target)) delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX); sched_queue_delayed_work(sched, tick, delay_jiffies); } static void queue_stop(struct panthor_queue *queue, struct panthor_job *bad_job) { drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL); } static void queue_start(struct panthor_queue *queue) { struct panthor_job *job; /* Re-assign the parent fences. */ list_for_each_entry(job, &queue->scheduler.pending_list, base.list) job->base.s_fence->parent = dma_fence_get(job->done_fence); drm_sched_start(&queue->scheduler, 0); } static void panthor_group_stop(struct panthor_group *group) { struct panthor_scheduler *sched = group->ptdev->scheduler; lockdep_assert_held(&sched->reset.lock); for (u32 i = 0; i < group->queue_count; i++) queue_stop(group->queues[i], NULL); group_get(group); list_move_tail(&group->run_node, &sched->reset.stopped_groups); } static void panthor_group_start(struct panthor_group *group) { struct panthor_scheduler *sched = group->ptdev->scheduler; lockdep_assert_held(&group->ptdev->scheduler->reset.lock); for (u32 i = 0; i < group->queue_count; i++) queue_start(group->queues[i]); if (group_can_run(group)) { list_move_tail(&group->run_node, group_is_idle(group) ? &sched->groups.idle[group->priority] : &sched->groups.runnable[group->priority]); } else { list_del_init(&group->run_node); list_del_init(&group->wait_node); group_queue_work(group, term); } group_put(group); } static void panthor_sched_immediate_tick(struct panthor_device *ptdev) { struct panthor_scheduler *sched = ptdev->scheduler; sched_queue_delayed_work(sched, tick, 0); } /** * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler. */ void panthor_sched_report_mmu_fault(struct panthor_device *ptdev) { /* Force a tick to immediately kill faulty groups. */ if (ptdev->scheduler) panthor_sched_immediate_tick(ptdev); } void panthor_sched_resume(struct panthor_device *ptdev) { /* Force a tick to re-evaluate after a resume. */ panthor_sched_immediate_tick(ptdev); } void panthor_sched_suspend(struct panthor_device *ptdev) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_csg_slots_upd_ctx upd_ctx; struct panthor_group *group; u32 suspended_slots; u32 i; mutex_lock(&sched->lock); csgs_upd_ctx_init(&upd_ctx); for (i = 0; i < sched->csg_slot_count; i++) { struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; if (csg_slot->group) { csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i, group_can_run(csg_slot->group) ? CSG_STATE_SUSPEND : CSG_STATE_TERMINATE, CSG_STATE_MASK); } } suspended_slots = upd_ctx.update_mask; csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); suspended_slots &= ~upd_ctx.timedout_mask; if (upd_ctx.timedout_mask) { u32 slot_mask = upd_ctx.timedout_mask; drm_err(&ptdev->base, "CSG suspend failed, escalating to termination"); csgs_upd_ctx_init(&upd_ctx); while (slot_mask) { u32 csg_id = ffs(slot_mask) - 1; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; /* We consider group suspension failures as fatal and flag the * group as unusable by setting timedout=true. */ csg_slot->group->timedout = true; csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id, CSG_STATE_TERMINATE, CSG_STATE_MASK); slot_mask &= ~BIT(csg_id); } csgs_upd_ctx_apply_locked(ptdev, &upd_ctx); slot_mask = upd_ctx.timedout_mask; while (slot_mask) { u32 csg_id = ffs(slot_mask) - 1; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; /* Terminate command timedout, but the soft-reset will * automatically terminate all active groups, so let's * force the state to halted here. */ if (csg_slot->group->state != PANTHOR_CS_GROUP_TERMINATED) csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; slot_mask &= ~BIT(csg_id); } } /* Flush L2 and LSC caches to make sure suspend state is up-to-date. * If the flush fails, flag all queues for termination. */ if (suspended_slots) { bool flush_caches_failed = false; u32 slot_mask = suspended_slots; if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0)) flush_caches_failed = true; while (slot_mask) { u32 csg_id = ffs(slot_mask) - 1; struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id]; if (flush_caches_failed) csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED; else csg_slot_sync_update_locked(ptdev, csg_id); slot_mask &= ~BIT(csg_id); } } for (i = 0; i < sched->csg_slot_count; i++) { struct panthor_csg_slot *csg_slot = &sched->csg_slots[i]; group = csg_slot->group; if (!group) continue; group_get(group); if (group->csg_id >= 0) sched_process_csg_irq_locked(ptdev, group->csg_id); group_unbind_locked(group); drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node)); if (group_can_run(group)) { list_add(&group->run_node, &sched->groups.idle[group->priority]); } else { /* We don't bother stopping the scheduler if the group is * faulty, the group termination work will finish the job. */ list_del_init(&group->wait_node); group_queue_work(group, term); } group_put(group); } mutex_unlock(&sched->lock); } void panthor_sched_pre_reset(struct panthor_device *ptdev) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_group *group, *group_tmp; u32 i; mutex_lock(&sched->reset.lock); atomic_set(&sched->reset.in_progress, true); /* Cancel all scheduler works. Once this is done, these works can't be * scheduled again until the reset operation is complete. */ cancel_work_sync(&sched->sync_upd_work); cancel_delayed_work_sync(&sched->tick_work); panthor_sched_suspend(ptdev); /* Stop all groups that might still accept jobs, so we don't get passed * new jobs while we're resetting. */ for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) { /* All groups should be in the idle lists. */ drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i])); list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node) panthor_group_stop(group); } for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) { list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node) panthor_group_stop(group); } mutex_unlock(&sched->reset.lock); } void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed) { struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_group *group, *group_tmp; mutex_lock(&sched->reset.lock); list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) { /* Consider all previously running group as terminated if the * reset failed. */ if (reset_failed) group->state = PANTHOR_CS_GROUP_TERMINATED; panthor_group_start(group); } /* We're done resetting the GPU, clear the reset.in_progress bit so we can * kick the scheduler. */ atomic_set(&sched->reset.in_progress, false); mutex_unlock(&sched->reset.lock); /* No need to queue a tick and update syncs if the reset failed. */ if (!reset_failed) { sched_queue_delayed_work(sched, tick, 0); sched_queue_work(sched, sync_upd); } } static void update_fdinfo_stats(struct panthor_job *job) { struct panthor_group *group = job->group; struct panthor_queue *queue = group->queues[job->queue_idx]; struct panthor_gpu_usage *fdinfo = &group->fdinfo.data; struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap; struct panthor_job_profiling_data *data = &slots[job->profiling.slot]; mutex_lock(&group->fdinfo.lock); if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES) fdinfo->cycles += data->cycles.after - data->cycles.before; if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP) fdinfo->time += data->time.after - data->time.before; mutex_unlock(&group->fdinfo.lock); } void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile) { struct panthor_group_pool *gpool = pfile->groups; struct panthor_group *group; unsigned long i; if (IS_ERR_OR_NULL(gpool)) return; xa_for_each(&gpool->xa, i, group) { mutex_lock(&group->fdinfo.lock); pfile->stats.cycles += group->fdinfo.data.cycles; pfile->stats.time += group->fdinfo.data.time; group->fdinfo.data.cycles = 0; group->fdinfo.data.time = 0; mutex_unlock(&group->fdinfo.lock); } } static void group_sync_upd_work(struct work_struct *work) { struct panthor_group *group = container_of(work, struct panthor_group, sync_upd_work); struct panthor_job *job, *job_tmp; LIST_HEAD(done_jobs); u32 queue_idx; bool cookie; cookie = dma_fence_begin_signalling(); for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) { struct panthor_queue *queue = group->queues[queue_idx]; struct panthor_syncobj_64b *syncobj; if (!queue) continue; syncobj = group->syncobjs->kmap + (queue_idx * sizeof(*syncobj)); spin_lock(&queue->fence_ctx.lock); list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) { if (syncobj->seqno < job->done_fence->seqno) break; list_move_tail(&job->node, &done_jobs); dma_fence_signal_locked(job->done_fence); } spin_unlock(&queue->fence_ctx.lock); } dma_fence_end_signalling(cookie); list_for_each_entry_safe(job, job_tmp, &done_jobs, node) { if (job->profiling.mask) update_fdinfo_stats(job); list_del_init(&job->node); panthor_job_put(&job->base); } group_put(group); } struct panthor_job_ringbuf_instrs { u64 buffer[MAX_INSTRS_PER_JOB]; u32 count; }; struct panthor_job_instr { u32 profile_mask; u64 instr; }; #define JOB_INSTR(__prof, __instr) \ { \ .profile_mask = __prof, \ .instr = __instr, \ } static void copy_instrs_to_ringbuf(struct panthor_queue *queue, struct panthor_job *job, struct panthor_job_ringbuf_instrs *instrs) { u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf); u64 start = job->ringbuf.start & (ringbuf_size - 1); u64 size, written; /* * We need to write a whole slot, including any trailing zeroes * that may come at the end of it. Also, because instrs.buffer has * been zero-initialised, there's no need to pad it with 0's */ instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); size = instrs->count * sizeof(u64); WARN_ON(size > ringbuf_size); written = min(ringbuf_size - start, size); memcpy(queue->ringbuf->kmap + start, instrs->buffer, written); if (written < size) memcpy(queue->ringbuf->kmap, &instrs->buffer[written / sizeof(u64)], size - written); } struct panthor_job_cs_params { u32 profile_mask; u64 addr_reg; u64 val_reg; u64 cycle_reg; u64 time_reg; u64 sync_addr; u64 times_addr; u64 cs_start; u64 cs_size; u32 last_flush; u32 waitall_mask; }; static void get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params) { struct panthor_group *group = job->group; struct panthor_queue *queue = group->queues[job->queue_idx]; struct panthor_device *ptdev = group->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; params->addr_reg = ptdev->csif_info.cs_reg_count - ptdev->csif_info.unpreserved_cs_reg_count; params->val_reg = params->addr_reg + 2; params->cycle_reg = params->addr_reg; params->time_reg = params->val_reg; params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) + job->queue_idx * sizeof(struct panthor_syncobj_64b); params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) + (job->profiling.slot * sizeof(struct panthor_job_profiling_data)); params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0); params->cs_start = job->call_info.start; params->cs_size = job->call_info.size; params->last_flush = job->call_info.latest_flush; params->profile_mask = job->profiling.mask; } #define JOB_INSTR_ALWAYS(instr) \ JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr)) #define JOB_INSTR_TIMESTAMP(instr) \ JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr)) #define JOB_INSTR_CYCLES(instr) \ JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr)) static void prepare_job_instrs(const struct panthor_job_cs_params *params, struct panthor_job_ringbuf_instrs *instrs) { const struct panthor_job_instr instr_seq[] = { /* MOV32 rX+2, cs.latest_flush */ JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush), /* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */ JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) | (0 << 16) | 0x233), /* MOV48 rX:rX+1, cycles_offset */ JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | (params->times_addr + offsetof(struct panthor_job_profiling_data, cycles.before))), /* STORE_STATE cycles */ JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), /* MOV48 rX:rX+1, time_offset */ JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | (params->times_addr + offsetof(struct panthor_job_profiling_data, time.before))), /* STORE_STATE timer */ JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), /* MOV48 rX:rX+1, cs.start */ JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start), /* MOV32 rX+2, cs.size */ JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size), /* WAIT(0) => waits for FLUSH_CACHE2 instruction */ JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)), /* CALL rX:rX+1, rX+2 */ JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) | (params->val_reg << 32)), /* MOV48 rX:rX+1, cycles_offset */ JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) | (params->times_addr + offsetof(struct panthor_job_profiling_data, cycles.after))), /* STORE_STATE cycles */ JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)), /* MOV48 rX:rX+1, time_offset */ JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) | (params->times_addr + offsetof(struct panthor_job_profiling_data, time.after))), /* STORE_STATE timer */ JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)), /* MOV48 rX:rX+1, sync_addr */ JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr), /* MOV48 rX+2, #1 */ JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1), /* WAIT(all) */ JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)), /* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/ JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) | (params->val_reg << 32) | (0 << 16) | 1), /* ERROR_BARRIER, so we can recover from faults at job boundaries. */ JOB_INSTR_ALWAYS((47ull << 56)), }; u32 pad; instrs->count = 0; /* NEED to be cacheline aligned to please the prefetcher. */ static_assert(sizeof(instrs->buffer) % 64 == 0, "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline"); /* Make sure we have enough storage to store the whole sequence. */ static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) == ARRAY_SIZE(instrs->buffer), "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch"); for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) { /* If the profile mask of this instruction is not enabled, skip it. */ if (instr_seq[i].profile_mask && !(instr_seq[i].profile_mask & params->profile_mask)) continue; instrs->buffer[instrs->count++] = instr_seq[i].instr; } pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE); memset(&instrs->buffer[instrs->count], 0, (pad - instrs->count) * sizeof(instrs->buffer[0])); instrs->count = pad; } static u32 calc_job_credits(u32 profile_mask) { struct panthor_job_ringbuf_instrs instrs; struct panthor_job_cs_params params = { .profile_mask = profile_mask, }; prepare_job_instrs(¶ms, &instrs); return instrs.count; } static struct dma_fence * queue_run_job(struct drm_sched_job *sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); struct panthor_group *group = job->group; struct panthor_queue *queue = group->queues[job->queue_idx]; struct panthor_device *ptdev = group->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_job_ringbuf_instrs instrs; struct panthor_job_cs_params cs_params; struct dma_fence *done_fence; int ret; /* Stream size is zero, nothing to do except making sure all previously * submitted jobs are done before we signal the * drm_sched_job::s_fence::finished fence. */ if (!job->call_info.size) { job->done_fence = dma_fence_get(queue->fence_ctx.last_fence); return dma_fence_get(job->done_fence); } ret = pm_runtime_resume_and_get(ptdev->base.dev); if (drm_WARN_ON(&ptdev->base, ret)) return ERR_PTR(ret); mutex_lock(&sched->lock); if (!group_can_run(group)) { done_fence = ERR_PTR(-ECANCELED); goto out_unlock; } dma_fence_init(job->done_fence, &panthor_queue_fence_ops, &queue->fence_ctx.lock, queue->fence_ctx.id, atomic64_inc_return(&queue->fence_ctx.seqno)); job->profiling.slot = queue->profiling.seqno++; if (queue->profiling.seqno == queue->profiling.slot_count) queue->profiling.seqno = 0; job->ringbuf.start = queue->iface.input->insert; get_job_cs_params(job, &cs_params); prepare_job_instrs(&cs_params, &instrs); copy_instrs_to_ringbuf(queue, job, &instrs); job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64)); panthor_job_get(&job->base); spin_lock(&queue->fence_ctx.lock); list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs); spin_unlock(&queue->fence_ctx.lock); /* Make sure the ring buffer is updated before the INSERT * register. */ wmb(); queue->iface.input->extract = queue->iface.output->extract; queue->iface.input->insert = job->ringbuf.end; if (group->csg_id < 0) { /* If the queue is blocked, we want to keep the timeout running, so we * can detect unbounded waits and kill the group when that happens. * Otherwise, we suspend the timeout so the time we spend waiting for * a CSG slot is not counted. */ if (!(group->blocked_queues & BIT(job->queue_idx)) && !queue->timeout_suspended) { queue->remaining_time = drm_sched_suspend_timeout(&queue->scheduler); queue->timeout_suspended = true; } group_schedule_locked(group, BIT(job->queue_idx)); } else { gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1); if (!sched->pm.has_ref && !(group->blocked_queues & BIT(job->queue_idx))) { pm_runtime_get(ptdev->base.dev); sched->pm.has_ref = true; } panthor_devfreq_record_busy(sched->ptdev); } /* Update the last fence. */ dma_fence_put(queue->fence_ctx.last_fence); queue->fence_ctx.last_fence = dma_fence_get(job->done_fence); done_fence = dma_fence_get(job->done_fence); out_unlock: mutex_unlock(&sched->lock); pm_runtime_mark_last_busy(ptdev->base.dev); pm_runtime_put_autosuspend(ptdev->base.dev); return done_fence; } static enum drm_gpu_sched_stat queue_timedout_job(struct drm_sched_job *sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); struct panthor_group *group = job->group; struct panthor_device *ptdev = group->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_queue *queue = group->queues[job->queue_idx]; drm_warn(&ptdev->base, "job timeout\n"); drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress)); queue_stop(queue, job); mutex_lock(&sched->lock); group->timedout = true; if (group->csg_id >= 0) { sched_queue_delayed_work(ptdev->scheduler, tick, 0); } else { /* Remove from the run queues, so the scheduler can't * pick the group on the next tick. */ list_del_init(&group->run_node); list_del_init(&group->wait_node); group_queue_work(group, term); } mutex_unlock(&sched->lock); queue_start(queue); return DRM_GPU_SCHED_STAT_NOMINAL; } static void queue_free_job(struct drm_sched_job *sched_job) { drm_sched_job_cleanup(sched_job); panthor_job_put(sched_job); } static const struct drm_sched_backend_ops panthor_queue_sched_ops = { .run_job = queue_run_job, .timedout_job = queue_timedout_job, .free_job = queue_free_job, }; static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev, u32 cs_ringbuf_size) { u32 min_profiled_job_instrs = U32_MAX; u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL); /* * We want to calculate the minimum size of a profiled job's CS, * because since they need additional instructions for the sampling * of performance metrics, they might take up further slots in * the queue's ringbuffer. This means we might not need as many job * slots for keeping track of their profiling information. What we * need is the maximum number of slots we should allocate to this end, * which matches the maximum number of profiled jobs we can place * simultaneously in the queue's ring buffer. * That has to be calculated separately for every single job profiling * flag, but not in the case job profiling is disabled, since unprofiled * jobs don't need to keep track of this at all. */ for (u32 i = 0; i < last_flag; i++) { min_profiled_job_instrs = min(min_profiled_job_instrs, calc_job_credits(BIT(i))); } return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64)); } static struct panthor_queue * group_create_queue(struct panthor_group *group, const struct drm_panthor_queue_create *args) { struct drm_gpu_scheduler *drm_sched; struct panthor_queue *queue; int ret; if (args->pad[0] || args->pad[1] || args->pad[2]) return ERR_PTR(-EINVAL); if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K || !is_power_of_2(args->ringbuf_size)) return ERR_PTR(-EINVAL); if (args->priority > CSF_MAX_QUEUE_PRIO) return ERR_PTR(-EINVAL); queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) return ERR_PTR(-ENOMEM); queue->fence_ctx.id = dma_fence_context_alloc(1); spin_lock_init(&queue->fence_ctx.lock); INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs); queue->priority = args->priority; queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm, args->ringbuf_size, DRM_PANTHOR_BO_NO_MMAP, DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, PANTHOR_VM_KERNEL_AUTO_VA); if (IS_ERR(queue->ringbuf)) { ret = PTR_ERR(queue->ringbuf); goto err_free_queue; } ret = panthor_kernel_bo_vmap(queue->ringbuf); if (ret) goto err_free_queue; queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev, &queue->iface.input, &queue->iface.output, &queue->iface.input_fw_va, &queue->iface.output_fw_va); if (IS_ERR(queue->iface.mem)) { ret = PTR_ERR(queue->iface.mem); goto err_free_queue; } queue->profiling.slot_count = calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size); queue->profiling.slots = panthor_kernel_bo_create(group->ptdev, group->vm, queue->profiling.slot_count * sizeof(struct panthor_job_profiling_data), DRM_PANTHOR_BO_NO_MMAP, DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, PANTHOR_VM_KERNEL_AUTO_VA); if (IS_ERR(queue->profiling.slots)) { ret = PTR_ERR(queue->profiling.slots); goto err_free_queue; } ret = panthor_kernel_bo_vmap(queue->profiling.slots); if (ret) goto err_free_queue; /* * Credit limit argument tells us the total number of instructions * across all CS slots in the ringbuffer, with some jobs requiring * twice as many as others, depending on their profiling status. */ ret = drm_sched_init(&queue->scheduler, &panthor_queue_sched_ops, group->ptdev->scheduler->wq, 1, args->ringbuf_size / sizeof(u64), 0, msecs_to_jiffies(JOB_TIMEOUT_MS), group->ptdev->reset.wq, NULL, "panthor-queue", group->ptdev->base.dev); if (ret) goto err_free_queue; drm_sched = &queue->scheduler; ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL); return queue; err_free_queue: group_free_queue(group, queue); return ERR_PTR(ret); } #define MAX_GROUPS_PER_POOL 128 int panthor_group_create(struct panthor_file *pfile, const struct drm_panthor_group_create *group_args, const struct drm_panthor_queue_create *queue_args) { struct panthor_device *ptdev = pfile->ptdev; struct panthor_group_pool *gpool = pfile->groups; struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); struct panthor_group *group = NULL; u32 gid, i, suspend_size; int ret; if (group_args->pad) return -EINVAL; if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT) return -EINVAL; if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) || (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) || (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present)) return -EINVAL; if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores || hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores || hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores) return -EINVAL; group = kzalloc(sizeof(*group), GFP_KERNEL); if (!group) return -ENOMEM; spin_lock_init(&group->fatal_lock); kref_init(&group->refcount); group->state = PANTHOR_CS_GROUP_CREATED; group->csg_id = -1; group->ptdev = ptdev; group->max_compute_cores = group_args->max_compute_cores; group->compute_core_mask = group_args->compute_core_mask; group->max_fragment_cores = group_args->max_fragment_cores; group->fragment_core_mask = group_args->fragment_core_mask; group->max_tiler_cores = group_args->max_tiler_cores; group->tiler_core_mask = group_args->tiler_core_mask; group->priority = group_args->priority; INIT_LIST_HEAD(&group->wait_node); INIT_LIST_HEAD(&group->run_node); INIT_WORK(&group->term_work, group_term_work); INIT_WORK(&group->sync_upd_work, group_sync_upd_work); INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work); INIT_WORK(&group->release_work, group_release_work); group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id); if (!group->vm) { ret = -EINVAL; goto err_put_group; } suspend_size = csg_iface->control->suspend_size; group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); if (IS_ERR(group->suspend_buf)) { ret = PTR_ERR(group->suspend_buf); group->suspend_buf = NULL; goto err_put_group; } suspend_size = csg_iface->control->protm_suspend_size; group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size); if (IS_ERR(group->protm_suspend_buf)) { ret = PTR_ERR(group->protm_suspend_buf); group->protm_suspend_buf = NULL; goto err_put_group; } group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm, group_args->queues.count * sizeof(struct panthor_syncobj_64b), DRM_PANTHOR_BO_NO_MMAP, DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED, PANTHOR_VM_KERNEL_AUTO_VA); if (IS_ERR(group->syncobjs)) { ret = PTR_ERR(group->syncobjs); goto err_put_group; } ret = panthor_kernel_bo_vmap(group->syncobjs); if (ret) goto err_put_group; memset(group->syncobjs->kmap, 0, group_args->queues.count * sizeof(struct panthor_syncobj_64b)); for (i = 0; i < group_args->queues.count; i++) { group->queues[i] = group_create_queue(group, &queue_args[i]); if (IS_ERR(group->queues[i])) { ret = PTR_ERR(group->queues[i]); group->queues[i] = NULL; goto err_put_group; } group->queue_count++; } group->idle_queues = GENMASK(group->queue_count - 1, 0); ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL); if (ret) goto err_put_group; mutex_lock(&sched->reset.lock); if (atomic_read(&sched->reset.in_progress)) { panthor_group_stop(group); } else { mutex_lock(&sched->lock); list_add_tail(&group->run_node, &sched->groups.idle[group->priority]); mutex_unlock(&sched->lock); } mutex_unlock(&sched->reset.lock); mutex_init(&group->fdinfo.lock); return gid; err_put_group: group_put(group); return ret; } int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle) { struct panthor_group_pool *gpool = pfile->groups; struct panthor_device *ptdev = pfile->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_group *group; group = xa_erase(&gpool->xa, group_handle); if (!group) return -EINVAL; for (u32 i = 0; i < group->queue_count; i++) { if (group->queues[i]) drm_sched_entity_destroy(&group->queues[i]->entity); } mutex_lock(&sched->reset.lock); mutex_lock(&sched->lock); group->destroyed = true; if (group->csg_id >= 0) { sched_queue_delayed_work(sched, tick, 0); } else if (!atomic_read(&sched->reset.in_progress)) { /* Remove from the run queues, so the scheduler can't * pick the group on the next tick. */ list_del_init(&group->run_node); list_del_init(&group->wait_node); group_queue_work(group, term); } mutex_unlock(&sched->lock); mutex_unlock(&sched->reset.lock); group_put(group); return 0; } static struct panthor_group *group_from_handle(struct panthor_group_pool *pool, u32 group_handle) { struct panthor_group *group; xa_lock(&pool->xa); group = group_get(xa_load(&pool->xa, group_handle)); xa_unlock(&pool->xa); return group; } int panthor_group_get_state(struct panthor_file *pfile, struct drm_panthor_group_get_state *get_state) { struct panthor_group_pool *gpool = pfile->groups; struct panthor_device *ptdev = pfile->ptdev; struct panthor_scheduler *sched = ptdev->scheduler; struct panthor_group *group; if (get_state->pad) return -EINVAL; group = group_from_handle(gpool, get_state->group_handle); if (!group) return -EINVAL; memset(get_state, 0, sizeof(*get_state)); mutex_lock(&sched->lock); if (group->timedout) get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT; if (group->fatal_queues) { get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT; get_state->fatal_queues = group->fatal_queues; } mutex_unlock(&sched->lock); group_put(group); return 0; } int panthor_group_pool_create(struct panthor_file *pfile) { struct panthor_group_pool *gpool; gpool = kzalloc(sizeof(*gpool), GFP_KERNEL); if (!gpool) return -ENOMEM; xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1); pfile->groups = gpool; return 0; } void panthor_group_pool_destroy(struct panthor_file *pfile) { struct panthor_group_pool *gpool = pfile->groups; struct panthor_group *group; unsigned long i; if (IS_ERR_OR_NULL(gpool)) return; xa_for_each(&gpool->xa, i, group) panthor_group_destroy(pfile, i); xa_destroy(&gpool->xa); kfree(gpool); pfile->groups = NULL; } static void job_release(struct kref *ref) { struct panthor_job *job = container_of(ref, struct panthor_job, refcount); drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node)); if (job->base.s_fence) drm_sched_job_cleanup(&job->base); if (job->done_fence && job->done_fence->ops) dma_fence_put(job->done_fence); else dma_fence_free(job->done_fence); group_put(job->group); kfree(job); } struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job) { if (sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); kref_get(&job->refcount); } return sched_job; } void panthor_job_put(struct drm_sched_job *sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); if (sched_job) kref_put(&job->refcount, job_release); } struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); return job->group->vm; } struct drm_sched_job * panthor_job_create(struct panthor_file *pfile, u16 group_handle, const struct drm_panthor_queue_submit *qsubmit) { struct panthor_group_pool *gpool = pfile->groups; struct panthor_job *job; u32 credits; int ret; if (qsubmit->pad) return ERR_PTR(-EINVAL); /* If stream_addr is zero, so stream_size should be. */ if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0)) return ERR_PTR(-EINVAL); /* Make sure the address is aligned on 64-byte (cacheline) and the size is * aligned on 8-byte (instruction size). */ if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7)) return ERR_PTR(-EINVAL); /* bits 24:30 must be zero. */ if (qsubmit->latest_flush & GENMASK(30, 24)) return ERR_PTR(-EINVAL); job = kzalloc(sizeof(*job), GFP_KERNEL); if (!job) return ERR_PTR(-ENOMEM); kref_init(&job->refcount); job->queue_idx = qsubmit->queue_index; job->call_info.size = qsubmit->stream_size; job->call_info.start = qsubmit->stream_addr; job->call_info.latest_flush = qsubmit->latest_flush; INIT_LIST_HEAD(&job->node); job->group = group_from_handle(gpool, group_handle); if (!job->group) { ret = -EINVAL; goto err_put_job; } if (!group_can_run(job->group)) { ret = -EINVAL; goto err_put_job; } if (job->queue_idx >= job->group->queue_count || !job->group->queues[job->queue_idx]) { ret = -EINVAL; goto err_put_job; } /* Empty command streams don't need a fence, they'll pick the one from * the previously submitted job. */ if (job->call_info.size) { job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL); if (!job->done_fence) { ret = -ENOMEM; goto err_put_job; } } job->profiling.mask = pfile->ptdev->profile_mask; credits = calc_job_credits(job->profiling.mask); if (credits == 0) { ret = -EINVAL; goto err_put_job; } ret = drm_sched_job_init(&job->base, &job->group->queues[job->queue_idx]->entity, credits, job->group); if (ret) goto err_put_job; return &job->base; err_put_job: panthor_job_put(&job->base); return ERR_PTR(ret); } void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job) { struct panthor_job *job = container_of(sched_job, struct panthor_job, base); panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished, DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); } void panthor_sched_unplug(struct panthor_device *ptdev) { struct panthor_scheduler *sched = ptdev->scheduler; cancel_delayed_work_sync(&sched->tick_work); mutex_lock(&sched->lock); if (sched->pm.has_ref) { pm_runtime_put(ptdev->base.dev); sched->pm.has_ref = false; } mutex_unlock(&sched->lock); } static void panthor_sched_fini(struct drm_device *ddev, void *res) { struct panthor_scheduler *sched = res; int prio; if (!sched || !sched->csg_slot_count) return; cancel_delayed_work_sync(&sched->tick_work); if (sched->wq) destroy_workqueue(sched->wq); if (sched->heap_alloc_wq) destroy_workqueue(sched->heap_alloc_wq); for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio])); drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio])); } drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting)); } int panthor_sched_init(struct panthor_device *ptdev) { struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev); struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0); struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0); struct panthor_scheduler *sched; u32 gpu_as_count, num_groups; int prio, ret; sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL); if (!sched) return -ENOMEM; /* The highest bit in JOB_INT_* is reserved for globabl IRQs. That * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here. */ num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num); /* The FW-side scheduler might deadlock if two groups with the same * priority try to access a set of resources that overlaps, with part * of the resources being allocated to one group and the other part to * the other group, both groups waiting for the remaining resources to * be allocated. To avoid that, it is recommended to assign each CSG a * different priority. In theory we could allow several groups to have * the same CSG priority if they don't request the same resources, but * that makes the scheduling logic more complicated, so let's clamp * the number of CSG slots to MAX_CSG_PRIO + 1 for now. */ num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups); /* We need at least one AS for the MCU and one for the GPU contexts. */ gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1)); if (!gpu_as_count) { drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)", gpu_as_count + 1); return -EINVAL; } sched->ptdev = ptdev; sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features); sched->csg_slot_count = num_groups; sched->cs_slot_count = csg_iface->control->stream_num; sched->as_slot_count = gpu_as_count; ptdev->csif_info.csg_slot_count = sched->csg_slot_count; ptdev->csif_info.cs_slot_count = sched->cs_slot_count; ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count; sched->last_tick = 0; sched->resched_target = U64_MAX; sched->tick_period = msecs_to_jiffies(10); INIT_DELAYED_WORK(&sched->tick_work, tick_work); INIT_WORK(&sched->sync_upd_work, sync_upd_work); INIT_WORK(&sched->fw_events_work, process_fw_events_work); ret = drmm_mutex_init(&ptdev->base, &sched->lock); if (ret) return ret; for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) { INIT_LIST_HEAD(&sched->groups.runnable[prio]); INIT_LIST_HEAD(&sched->groups.idle[prio]); } INIT_LIST_HEAD(&sched->groups.waiting); ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock); if (ret) return ret; INIT_LIST_HEAD(&sched->reset.stopped_groups); /* sched->heap_alloc_wq will be used for heap chunk allocation on * tiler OOM events, which means we can't use the same workqueue for * the scheduler because works queued by the scheduler are in * the dma-signalling path. Allocate a dedicated heap_alloc_wq to * work around this limitation. * * FIXME: Ultimately, what we need is a failable/non-blocking GEM * allocation path that we can call when a heap OOM is reported. The * FW is smart enough to fall back on other methods if the kernel can't * allocate memory, and fail the tiling job if none of these * countermeasures worked. * * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the * system is running out of memory. */ sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0); sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0); if (!sched->wq || !sched->heap_alloc_wq) { panthor_sched_fini(&ptdev->base, sched); drm_err(&ptdev->base, "Failed to allocate the workqueues"); return -ENOMEM; } ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched); if (ret) return ret; ptdev->scheduler = sched; return 0; }