// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Red Hat * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. * * Author: Rob Clark */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include #include #include "msm_drv.h" #include "msm_mmu.h" #include "msm_mdss.h" #include "msm_gem.h" #include "disp/msm_disp_snapshot.h" #include "dpu_core_irq.h" #include "dpu_crtc.h" #include "dpu_encoder.h" #include "dpu_formats.h" #include "dpu_hw_vbif.h" #include "dpu_kms.h" #include "dpu_plane.h" #include "dpu_vbif.h" #include "dpu_writeback.h" #define CREATE_TRACE_POINTS #include "dpu_trace.h" /* * To enable overall DRM driver logging * # echo 0x2 > /sys/module/drm/parameters/debug * * To enable DRM driver h/w logging * # echo > /sys/kernel/debug/dri/0/debug/hw_log_mask * * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_) */ #define DPU_DEBUGFS_DIR "msm_dpu" #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask" static int dpu_kms_hw_init(struct msm_kms *kms); static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms); #ifdef CONFIG_DEBUG_FS static int _dpu_danger_signal_status(struct seq_file *s, bool danger_status) { struct dpu_danger_safe_status status; struct dpu_kms *kms = s->private; int i; if (!kms->hw_mdp) { DPU_ERROR("invalid arg(s)\n"); return 0; } memset(&status, 0, sizeof(struct dpu_danger_safe_status)); pm_runtime_get_sync(&kms->pdev->dev); if (danger_status) { seq_puts(s, "\nDanger signal status:\n"); if (kms->hw_mdp->ops.get_danger_status) kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, &status); } else { seq_puts(s, "\nSafe signal status:\n"); if (kms->hw_mdp->ops.get_safe_status) kms->hw_mdp->ops.get_safe_status(kms->hw_mdp, &status); } pm_runtime_put_sync(&kms->pdev->dev); seq_printf(s, "MDP : 0x%x\n", status.mdp); for (i = SSPP_VIG0; i < SSPP_MAX; i++) seq_printf(s, "SSPP%d : 0x%x \n", i - SSPP_VIG0, status.sspp[i]); seq_puts(s, "\n"); return 0; } static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v) { return _dpu_danger_signal_status(s, true); } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats); static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v) { return _dpu_danger_signal_status(s, false); } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats); static ssize_t _dpu_plane_danger_read(struct file *file, char __user *buff, size_t count, loff_t *ppos) { struct dpu_kms *kms = file->private_data; int len; char buf[40]; len = scnprintf(buf, sizeof(buf), "%d\n", !kms->has_danger_ctrl); return simple_read_from_buffer(buff, count, ppos, buf, len); } static void _dpu_plane_set_danger_state(struct dpu_kms *kms, bool enable) { struct drm_plane *plane; drm_for_each_plane(plane, kms->dev) { if (plane->fb && plane->state) { dpu_plane_danger_signal_ctrl(plane, enable); DPU_DEBUG("plane:%d img:%dx%d ", plane->base.id, plane->fb->width, plane->fb->height); DPU_DEBUG("src[%d,%d,%d,%d] dst[%d,%d,%d,%d]\n", plane->state->src_x >> 16, plane->state->src_y >> 16, plane->state->src_w >> 16, plane->state->src_h >> 16, plane->state->crtc_x, plane->state->crtc_y, plane->state->crtc_w, plane->state->crtc_h); } else { DPU_DEBUG("Inactive plane:%d\n", plane->base.id); } } } static ssize_t _dpu_plane_danger_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct dpu_kms *kms = file->private_data; int disable_panic; int ret; ret = kstrtouint_from_user(user_buf, count, 0, &disable_panic); if (ret) return ret; if (disable_panic) { /* Disable panic signal for all active pipes */ DPU_DEBUG("Disabling danger:\n"); _dpu_plane_set_danger_state(kms, false); kms->has_danger_ctrl = false; } else { /* Enable panic signal for all active pipes */ DPU_DEBUG("Enabling danger:\n"); kms->has_danger_ctrl = true; _dpu_plane_set_danger_state(kms, true); } return count; } static const struct file_operations dpu_plane_danger_enable = { .open = simple_open, .read = _dpu_plane_danger_read, .write = _dpu_plane_danger_write, }; static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms, struct dentry *parent) { struct dentry *entry = debugfs_create_dir("danger", parent); debugfs_create_file("danger_status", 0600, entry, dpu_kms, &dpu_debugfs_danger_stats_fops); debugfs_create_file("safe_status", 0600, entry, dpu_kms, &dpu_debugfs_safe_stats_fops); debugfs_create_file("disable_danger", 0600, entry, dpu_kms, &dpu_plane_danger_enable); } /* * Companion structure for dpu_debugfs_create_regset32. */ struct dpu_debugfs_regset32 { uint32_t offset; uint32_t blk_len; struct dpu_kms *dpu_kms; }; static int dpu_regset32_show(struct seq_file *s, void *data) { struct dpu_debugfs_regset32 *regset = s->private; struct dpu_kms *dpu_kms = regset->dpu_kms; void __iomem *base; uint32_t i, addr; if (!dpu_kms->mmio) return 0; base = dpu_kms->mmio + regset->offset; /* insert padding spaces, if needed */ if (regset->offset & 0xF) { seq_printf(s, "[%x]", regset->offset & ~0xF); for (i = 0; i < (regset->offset & 0xF); i += 4) seq_puts(s, " "); } pm_runtime_get_sync(&dpu_kms->pdev->dev); /* main register output */ for (i = 0; i < regset->blk_len; i += 4) { addr = regset->offset + i; if ((addr & 0xF) == 0x0) seq_printf(s, i ? "\n[%x]" : "[%x]", addr); seq_printf(s, " %08x", readl_relaxed(base + i)); } seq_puts(s, "\n"); pm_runtime_put_sync(&dpu_kms->pdev->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(dpu_regset32); /** * dpu_debugfs_create_regset32 - Create register read back file for debugfs * * This function is almost identical to the standard debugfs_create_regset32() * function, with the main difference being that a list of register * names/offsets do not need to be provided. The 'read' function simply outputs * sequential register values over a specified range. * * @name: File name within debugfs * @mode: File mode within debugfs * @parent: Parent directory entry within debugfs, can be NULL * @offset: sub-block offset * @length: sub-block length, in bytes * @dpu_kms: pointer to dpu kms structure */ void dpu_debugfs_create_regset32(const char *name, umode_t mode, void *parent, uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms) { struct dpu_debugfs_regset32 *regset; if (WARN_ON(!name || !dpu_kms || !length)) return; regset = devm_kzalloc(&dpu_kms->pdev->dev, sizeof(*regset), GFP_KERNEL); if (!regset) return; /* make sure offset is a multiple of 4 */ regset->offset = round_down(offset, 4); regset->blk_len = length; regset->dpu_kms = dpu_kms; debugfs_create_file(name, mode, parent, regset, &dpu_regset32_fops); } static void dpu_debugfs_sspp_init(struct dpu_kms *dpu_kms, struct dentry *debugfs_root) { struct dentry *entry = debugfs_create_dir("sspp", debugfs_root); int i; if (IS_ERR(entry)) return; for (i = SSPP_NONE; i < SSPP_MAX; i++) { struct dpu_hw_sspp *hw = dpu_rm_get_sspp(&dpu_kms->rm, i); if (!hw) continue; _dpu_hw_sspp_init_debugfs(hw, dpu_kms, entry); } } static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); void *p = dpu_hw_util_get_log_mask_ptr(); struct dentry *entry; if (!p) return -EINVAL; /* Only create a set of debugfs for the primary node, ignore render nodes */ if (minor->type != DRM_MINOR_PRIMARY) return 0; entry = debugfs_create_dir("debug", minor->debugfs_root); debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p); dpu_debugfs_danger_init(dpu_kms, entry); dpu_debugfs_vbif_init(dpu_kms, entry); dpu_debugfs_core_irq_init(dpu_kms, entry); dpu_debugfs_sspp_init(dpu_kms, entry); return dpu_core_perf_debugfs_init(dpu_kms, entry); } #endif /* Global/shared object state funcs */ /* * This is a helper that returns the private state currently in operation. * Note that this would return the "old_state" if called in the atomic check * path, and the "new_state" after the atomic swap has been done. */ struct dpu_global_state * dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms) { return to_dpu_global_state(dpu_kms->global_state.state); } /* * This acquires the modeset lock set aside for global state, creates * a new duplicated private object state. */ struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s) { struct msm_drm_private *priv = s->dev->dev_private; struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_private_state *priv_state; priv_state = drm_atomic_get_private_obj_state(s, &dpu_kms->global_state); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_dpu_global_state(priv_state); } static struct drm_private_state * dpu_kms_global_duplicate_state(struct drm_private_obj *obj) { struct dpu_global_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void dpu_kms_global_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct dpu_global_state *dpu_state = to_dpu_global_state(state); kfree(dpu_state); } static void dpu_kms_global_print_state(struct drm_printer *p, const struct drm_private_state *state) { const struct dpu_global_state *global_state = to_dpu_global_state(state); dpu_rm_print_state(p, global_state); } static const struct drm_private_state_funcs dpu_kms_global_state_funcs = { .atomic_duplicate_state = dpu_kms_global_duplicate_state, .atomic_destroy_state = dpu_kms_global_destroy_state, .atomic_print_state = dpu_kms_global_print_state, }; static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms) { struct dpu_global_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state, &state->base, &dpu_kms_global_state_funcs); state->rm = &dpu_kms->rm; return 0; } static void dpu_kms_global_obj_fini(struct dpu_kms *dpu_kms) { drm_atomic_private_obj_fini(&dpu_kms->global_state); } static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms) { struct icc_path *path0; struct icc_path *path1; struct device *dpu_dev = &dpu_kms->pdev->dev; path0 = msm_icc_get(dpu_dev, "mdp0-mem"); path1 = msm_icc_get(dpu_dev, "mdp1-mem"); if (IS_ERR_OR_NULL(path0)) return PTR_ERR_OR_ZERO(path0); dpu_kms->path[0] = path0; dpu_kms->num_paths = 1; if (!IS_ERR_OR_NULL(path1)) { dpu_kms->path[1] = path1; dpu_kms->num_paths++; } return 0; } static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) { return dpu_crtc_vblank(crtc, true); } static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) { dpu_crtc_vblank(crtc, false); } static void dpu_kms_enable_commit(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); pm_runtime_get_sync(&dpu_kms->pdev->dev); } static void dpu_kms_disable_commit(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); } static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) { if (!crtc->state->active) continue; trace_dpu_kms_commit(DRMID(crtc)); dpu_crtc_commit_kickoff(crtc); } } static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; DPU_ATRACE_BEGIN("kms_complete_commit"); for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) dpu_crtc_complete_commit(crtc); DPU_ATRACE_END("kms_complete_commit"); } static void dpu_kms_wait_for_commit_done(struct msm_kms *kms, struct drm_crtc *crtc) { struct drm_encoder *encoder; struct drm_device *dev; int ret; if (!kms || !crtc || !crtc->state) { DPU_ERROR("invalid params\n"); return; } dev = crtc->dev; if (!crtc->state->enable) { DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id); return; } if (!drm_atomic_crtc_effectively_active(crtc->state)) { DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id); return; } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc != crtc) continue; /* * Wait for post-flush if necessary to delay before * plane_cleanup. For example, wait for vsync in case of video * mode panels. This may be a no-op for command mode panels. */ trace_dpu_kms_wait_for_commit_done(DRMID(crtc)); ret = dpu_encoder_wait_for_commit_done(encoder); if (ret && ret != -EWOULDBLOCK) { DPU_ERROR("wait for commit done returned %d\n", ret); break; } } } static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) dpu_kms_wait_for_commit_done(kms, crtc); } static const char *dpu_vsync_sources[] = { [DPU_VSYNC_SOURCE_GPIO_0] = "mdp_vsync_p", [DPU_VSYNC_SOURCE_GPIO_1] = "mdp_vsync_s", [DPU_VSYNC_SOURCE_GPIO_2] = "mdp_vsync_e", [DPU_VSYNC_SOURCE_INTF_0] = "mdp_intf0", [DPU_VSYNC_SOURCE_INTF_1] = "mdp_intf1", [DPU_VSYNC_SOURCE_INTF_2] = "mdp_intf2", [DPU_VSYNC_SOURCE_INTF_3] = "mdp_intf3", [DPU_VSYNC_SOURCE_WD_TIMER_0] = "timer0", [DPU_VSYNC_SOURCE_WD_TIMER_1] = "timer1", [DPU_VSYNC_SOURCE_WD_TIMER_2] = "timer2", [DPU_VSYNC_SOURCE_WD_TIMER_3] = "timer3", [DPU_VSYNC_SOURCE_WD_TIMER_4] = "timer4", }; static int dpu_kms_dsi_set_te_source(struct msm_display_info *info, struct msm_dsi *dsi) { const char *te_source = msm_dsi_get_te_source(dsi); int i; if (!te_source) { info->vsync_source = DPU_VSYNC_SOURCE_GPIO_0; return 0; } /* we can not use match_string since dpu_vsync_sources is a sparse array */ for (i = 0; i < ARRAY_SIZE(dpu_vsync_sources); i++) { if (dpu_vsync_sources[i] && !strcmp(dpu_vsync_sources[i], te_source)) { info->vsync_source = i; return 0; } } return -EINVAL; } static int _dpu_kms_initialize_dsi(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { struct drm_encoder *encoder = NULL; struct msm_display_info info; int i, rc = 0; if (!(priv->dsi[0] || priv->dsi[1])) return rc; /* * We support following confiurations: * - Single DSI host (dsi0 or dsi1) * - Two independent DSI hosts * - Bonded DSI0 and DSI1 hosts * * TODO: Support swapping DSI0 and DSI1 in the bonded setup. */ for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { int other = (i + 1) % 2; if (!priv->dsi[i]) continue; if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && !msm_dsi_is_master_dsi(priv->dsi[i])) continue; memset(&info, 0, sizeof(info)); info.intf_type = INTF_DSI; info.h_tile_instance[info.num_of_h_tiles++] = i; if (msm_dsi_is_bonded_dsi(priv->dsi[i])) info.h_tile_instance[info.num_of_h_tiles++] = other; info.is_cmd_mode = msm_dsi_is_cmd_mode(priv->dsi[i]); rc = dpu_kms_dsi_set_te_source(&info, priv->dsi[i]); if (rc) { DPU_ERROR("failed to identify TE source for dsi display\n"); return rc; } encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI, &info); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for dsi display\n"); return PTR_ERR(encoder); } rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", i, rc); break; } if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) { rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", other, rc); break; } } } return rc; } static int _dpu_kms_initialize_displayport(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { struct drm_encoder *encoder = NULL; struct msm_display_info info; bool yuv_supported; int rc; int i; for (i = 0; i < ARRAY_SIZE(priv->dp); i++) { if (!priv->dp[i]) continue; memset(&info, 0, sizeof(info)); info.num_of_h_tiles = 1; info.h_tile_instance[0] = i; info.intf_type = INTF_DP; encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for dsi display\n"); return PTR_ERR(encoder); } yuv_supported = !!dpu_kms->catalog->cdm; rc = msm_dp_modeset_init(priv->dp[i], dev, encoder, yuv_supported); if (rc) { DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc); return rc; } } return 0; } static int _dpu_kms_initialize_hdmi(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { struct drm_encoder *encoder = NULL; struct msm_display_info info; int rc; if (!priv->hdmi) return 0; memset(&info, 0, sizeof(info)); info.num_of_h_tiles = 1; info.h_tile_instance[0] = 0; info.intf_type = INTF_HDMI; encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS, &info); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for HDMI display\n"); return PTR_ERR(encoder); } rc = msm_hdmi_modeset_init(priv->hdmi, dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc); return rc; } return 0; } static int _dpu_kms_initialize_writeback(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms, const u32 *wb_formats, int n_formats) { struct drm_encoder *encoder = NULL; struct msm_display_info info; const enum dpu_wb wb_idx = WB_2; u32 maxlinewidth; int rc; memset(&info, 0, sizeof(info)); info.num_of_h_tiles = 1; /* use only WB idx 2 instance for DPU */ info.h_tile_instance[0] = wb_idx; info.intf_type = INTF_WB; maxlinewidth = dpu_rm_get_wb(&dpu_kms->rm, info.h_tile_instance[0])->caps->maxlinewidth; encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_VIRTUAL, &info); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for dsi display\n"); return PTR_ERR(encoder); } rc = dpu_writeback_init(dev, encoder, wb_formats, n_formats, maxlinewidth); if (rc) { DPU_ERROR("dpu_writeback_init, rc = %d\n", rc); return rc; } return 0; } /** * _dpu_kms_setup_displays - create encoders, bridges and connectors * for underlying displays * @dev: Pointer to drm device structure * @priv: Pointer to private drm device data * @dpu_kms: Pointer to dpu kms structure * Returns: Zero on success */ static int _dpu_kms_setup_displays(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { int rc = 0; int i; rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms); if (rc) { DPU_ERROR("initialize_dsi failed, rc = %d\n", rc); return rc; } rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms); if (rc) { DPU_ERROR("initialize_DP failed, rc = %d\n", rc); return rc; } rc = _dpu_kms_initialize_hdmi(dev, priv, dpu_kms); if (rc) { DPU_ERROR("initialize HDMI failed, rc = %d\n", rc); return rc; } /* Since WB isn't a driver check the catalog before initializing */ if (dpu_kms->catalog->wb_count) { for (i = 0; i < dpu_kms->catalog->wb_count; i++) { if (dpu_kms->catalog->wb[i].id == WB_2) { rc = _dpu_kms_initialize_writeback(dev, priv, dpu_kms, dpu_kms->catalog->wb[i].format_list, dpu_kms->catalog->wb[i].num_formats); if (rc) { DPU_ERROR("initialize_WB failed, rc = %d\n", rc); return rc; } } } } return rc; } #define MAX_PLANES 20 static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms) { struct drm_device *dev; struct drm_plane *primary_planes[MAX_PLANES], *plane; struct drm_plane *cursor_planes[MAX_PLANES] = { NULL }; struct drm_crtc *crtc; struct drm_encoder *encoder; unsigned int num_encoders; struct msm_drm_private *priv; const struct dpu_mdss_cfg *catalog; int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret; int max_crtc_count; dev = dpu_kms->dev; priv = dev->dev_private; catalog = dpu_kms->catalog; /* * Create encoder and query display drivers to create * bridges and connectors */ ret = _dpu_kms_setup_displays(dev, priv, dpu_kms); if (ret) return ret; num_encoders = 0; drm_for_each_encoder(encoder, dev) num_encoders++; max_crtc_count = min(catalog->mixer_count, num_encoders); /* Create the planes, keeping track of one primary/cursor per crtc */ for (i = 0; i < catalog->sspp_count; i++) { enum drm_plane_type type; if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)) && cursor_planes_idx < max_crtc_count) type = DRM_PLANE_TYPE_CURSOR; else if (primary_planes_idx < max_crtc_count) type = DRM_PLANE_TYPE_PRIMARY; else type = DRM_PLANE_TYPE_OVERLAY; DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n", type, catalog->sspp[i].features, catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)); plane = dpu_plane_init(dev, catalog->sspp[i].id, type, (1UL << max_crtc_count) - 1); if (IS_ERR(plane)) { DPU_ERROR("dpu_plane_init failed\n"); ret = PTR_ERR(plane); return ret; } if (type == DRM_PLANE_TYPE_CURSOR) cursor_planes[cursor_planes_idx++] = plane; else if (type == DRM_PLANE_TYPE_PRIMARY) primary_planes[primary_planes_idx++] = plane; } max_crtc_count = min(max_crtc_count, primary_planes_idx); /* Create one CRTC per encoder */ for (i = 0; i < max_crtc_count; i++) { crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]); if (IS_ERR(crtc)) { ret = PTR_ERR(crtc); return ret; } priv->num_crtcs++; } /* All CRTCs are compatible with all encoders */ drm_for_each_encoder(encoder, dev) encoder->possible_crtcs = (1 << priv->num_crtcs) - 1; return 0; } static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms) { int i; dpu_kms->hw_intr = NULL; /* safe to call these more than once during shutdown */ _dpu_kms_mmu_destroy(dpu_kms); for (i = 0; i < ARRAY_SIZE(dpu_kms->hw_vbif); i++) { dpu_kms->hw_vbif[i] = NULL; } dpu_kms_global_obj_fini(dpu_kms); dpu_kms->catalog = NULL; dpu_kms->hw_mdp = NULL; } static void dpu_kms_destroy(struct msm_kms *kms) { struct dpu_kms *dpu_kms; if (!kms) { DPU_ERROR("invalid kms\n"); return; } dpu_kms = to_dpu_kms(kms); _dpu_kms_hw_destroy(dpu_kms); msm_kms_destroy(&dpu_kms->base); if (dpu_kms->rpm_enabled) pm_runtime_disable(&dpu_kms->pdev->dev); } static int dpu_irq_postinstall(struct msm_kms *kms) { struct msm_drm_private *priv; struct dpu_kms *dpu_kms = to_dpu_kms(kms); if (!dpu_kms || !dpu_kms->dev) return -EINVAL; priv = dpu_kms->dev->dev_private; if (!priv) return -EINVAL; return 0; } static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms) { int i; struct dpu_kms *dpu_kms; const struct dpu_mdss_cfg *cat; void __iomem *base; dpu_kms = to_dpu_kms(kms); cat = dpu_kms->catalog; pm_runtime_get_sync(&dpu_kms->pdev->dev); /* dump CTL sub-blocks HW regs info */ for (i = 0; i < cat->ctl_count; i++) msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len, dpu_kms->mmio + cat->ctl[i].base, cat->ctl[i].name); /* dump DSPP sub-blocks HW regs info */ for (i = 0; i < cat->dspp_count; i++) { base = dpu_kms->mmio + cat->dspp[i].base; msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len, base, cat->dspp[i].name); if (cat->dspp[i].sblk && cat->dspp[i].sblk->pcc.len > 0) msm_disp_snapshot_add_block(disp_state, cat->dspp[i].sblk->pcc.len, base + cat->dspp[i].sblk->pcc.base, "%s_%s", cat->dspp[i].name, cat->dspp[i].sblk->pcc.name); } /* dump INTF sub-blocks HW regs info */ for (i = 0; i < cat->intf_count; i++) msm_disp_snapshot_add_block(disp_state, cat->intf[i].len, dpu_kms->mmio + cat->intf[i].base, cat->intf[i].name); /* dump PP sub-blocks HW regs info */ for (i = 0; i < cat->pingpong_count; i++) { base = dpu_kms->mmio + cat->pingpong[i].base; msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len, base, cat->pingpong[i].name); /* TE2 sub-block has length of 0, so will not print it */ if (cat->pingpong[i].sblk && cat->pingpong[i].sblk->dither.len > 0) msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].sblk->dither.len, base + cat->pingpong[i].sblk->dither.base, "%s_%s", cat->pingpong[i].name, cat->pingpong[i].sblk->dither.name); } /* dump SSPP sub-blocks HW regs info */ for (i = 0; i < cat->sspp_count; i++) { base = dpu_kms->mmio + cat->sspp[i].base; msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len, base, cat->sspp[i].name); if (cat->sspp[i].sblk && cat->sspp[i].sblk->scaler_blk.len > 0) msm_disp_snapshot_add_block(disp_state, cat->sspp[i].sblk->scaler_blk.len, base + cat->sspp[i].sblk->scaler_blk.base, "%s_%s", cat->sspp[i].name, cat->sspp[i].sblk->scaler_blk.name); if (cat->sspp[i].sblk && cat->sspp[i].sblk->csc_blk.len > 0) msm_disp_snapshot_add_block(disp_state, cat->sspp[i].sblk->csc_blk.len, base + cat->sspp[i].sblk->csc_blk.base, "%s_%s", cat->sspp[i].name, cat->sspp[i].sblk->csc_blk.name); } /* dump LM sub-blocks HW regs info */ for (i = 0; i < cat->mixer_count; i++) msm_disp_snapshot_add_block(disp_state, cat->mixer[i].len, dpu_kms->mmio + cat->mixer[i].base, cat->mixer[i].name); /* dump WB sub-blocks HW regs info */ for (i = 0; i < cat->wb_count; i++) msm_disp_snapshot_add_block(disp_state, cat->wb[i].len, dpu_kms->mmio + cat->wb[i].base, cat->wb[i].name); if (cat->mdp[0].features & BIT(DPU_MDP_PERIPH_0_REMOVED)) { msm_disp_snapshot_add_block(disp_state, MDP_PERIPH_TOP0, dpu_kms->mmio + cat->mdp[0].base, "top"); msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len - MDP_PERIPH_TOP0_END, dpu_kms->mmio + cat->mdp[0].base + MDP_PERIPH_TOP0_END, "top_2"); } else { msm_disp_snapshot_add_block(disp_state, cat->mdp[0].len, dpu_kms->mmio + cat->mdp[0].base, "top"); } /* dump DSC sub-blocks HW regs info */ for (i = 0; i < cat->dsc_count; i++) { base = dpu_kms->mmio + cat->dsc[i].base; msm_disp_snapshot_add_block(disp_state, cat->dsc[i].len, base, cat->dsc[i].name); if (cat->dsc[i].features & BIT(DPU_DSC_HW_REV_1_2)) { struct dpu_dsc_blk enc = cat->dsc[i].sblk->enc; struct dpu_dsc_blk ctl = cat->dsc[i].sblk->ctl; msm_disp_snapshot_add_block(disp_state, enc.len, base + enc.base, "%s_%s", cat->dsc[i].name, enc.name); msm_disp_snapshot_add_block(disp_state, ctl.len, base + ctl.base, "%s_%s", cat->dsc[i].name, ctl.name); } } if (cat->cdm) msm_disp_snapshot_add_block(disp_state, cat->cdm->len, dpu_kms->mmio + cat->cdm->base, cat->cdm->name); pm_runtime_put_sync(&dpu_kms->pdev->dev); } static const struct msm_kms_funcs kms_funcs = { .hw_init = dpu_kms_hw_init, .irq_preinstall = dpu_core_irq_preinstall, .irq_postinstall = dpu_irq_postinstall, .irq_uninstall = dpu_core_irq_uninstall, .irq = dpu_core_irq, .enable_commit = dpu_kms_enable_commit, .disable_commit = dpu_kms_disable_commit, .flush_commit = dpu_kms_flush_commit, .wait_flush = dpu_kms_wait_flush, .complete_commit = dpu_kms_complete_commit, .enable_vblank = dpu_kms_enable_vblank, .disable_vblank = dpu_kms_disable_vblank, .destroy = dpu_kms_destroy, .snapshot = dpu_kms_mdp_snapshot, #ifdef CONFIG_DEBUG_FS .debugfs_init = dpu_kms_debugfs_init, #endif }; static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms) { struct msm_mmu *mmu; if (!dpu_kms->base.aspace) return; mmu = dpu_kms->base.aspace->mmu; mmu->funcs->detach(mmu); msm_gem_address_space_put(dpu_kms->base.aspace); dpu_kms->base.aspace = NULL; } static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms) { struct msm_gem_address_space *aspace; aspace = msm_kms_init_aspace(dpu_kms->dev); if (IS_ERR(aspace)) return PTR_ERR(aspace); dpu_kms->base.aspace = aspace; return 0; } /** * dpu_kms_get_clk_rate() - get the clock rate * @dpu_kms: pointer to dpu_kms structure * @clock_name: clock name to get the rate * * Return: current clock rate */ unsigned long dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name) { struct clk *clk; clk = msm_clk_bulk_get_clock(dpu_kms->clocks, dpu_kms->num_clocks, clock_name); if (!clk) return 0; return clk_get_rate(clk); } #define DPU_PERF_DEFAULT_MAX_CORE_CLK_RATE 412500000 static int dpu_kms_hw_init(struct msm_kms *kms) { struct dpu_kms *dpu_kms; struct drm_device *dev; int i, rc = -EINVAL; unsigned long max_core_clk_rate; u32 core_rev; if (!kms) { DPU_ERROR("invalid kms\n"); return rc; } dpu_kms = to_dpu_kms(kms); dev = dpu_kms->dev; dev->mode_config.cursor_width = 512; dev->mode_config.cursor_height = 512; rc = dpu_kms_global_obj_init(dpu_kms); if (rc) return rc; atomic_set(&dpu_kms->bandwidth_ref, 0); rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev); if (rc < 0) goto error; core_rev = readl_relaxed(dpu_kms->mmio + 0x0); pr_info("dpu hardware revision:0x%x\n", core_rev); dpu_kms->catalog = of_device_get_match_data(dev->dev); if (!dpu_kms->catalog) { DPU_ERROR("device config not known!\n"); rc = -EINVAL; goto err_pm_put; } /* * Now we need to read the HW catalog and initialize resources such as * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc */ rc = _dpu_kms_mmu_init(dpu_kms); if (rc) { DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc); goto err_pm_put; } dpu_kms->mdss = msm_mdss_get_mdss_data(dpu_kms->pdev->dev.parent); if (IS_ERR(dpu_kms->mdss)) { rc = PTR_ERR(dpu_kms->mdss); DPU_ERROR("failed to get MDSS data: %d\n", rc); goto err_pm_put; } if (!dpu_kms->mdss) { rc = -EINVAL; DPU_ERROR("NULL MDSS data\n"); goto err_pm_put; } rc = dpu_rm_init(dev, &dpu_kms->rm, dpu_kms->catalog, dpu_kms->mdss, dpu_kms->mmio); if (rc) { DPU_ERROR("rm init failed: %d\n", rc); goto err_pm_put; } dpu_kms->hw_mdp = dpu_hw_mdptop_init(dev, dpu_kms->catalog->mdp, dpu_kms->mmio, dpu_kms->catalog->mdss_ver); if (IS_ERR(dpu_kms->hw_mdp)) { rc = PTR_ERR(dpu_kms->hw_mdp); DPU_ERROR("failed to get hw_mdp: %d\n", rc); dpu_kms->hw_mdp = NULL; goto err_pm_put; } for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { struct dpu_hw_vbif *hw; const struct dpu_vbif_cfg *vbif = &dpu_kms->catalog->vbif[i]; hw = dpu_hw_vbif_init(dev, vbif, dpu_kms->vbif[vbif->id]); if (IS_ERR(hw)) { rc = PTR_ERR(hw); DPU_ERROR("failed to init vbif %d: %d\n", vbif->id, rc); goto err_pm_put; } dpu_kms->hw_vbif[vbif->id] = hw; } /* TODO: use the same max_freq as in dpu_kms_hw_init */ max_core_clk_rate = dpu_kms_get_clk_rate(dpu_kms, "core"); if (!max_core_clk_rate) { DPU_DEBUG("max core clk rate not determined, using default\n"); max_core_clk_rate = DPU_PERF_DEFAULT_MAX_CORE_CLK_RATE; } rc = dpu_core_perf_init(&dpu_kms->perf, dpu_kms->catalog->perf, max_core_clk_rate); if (rc) { DPU_ERROR("failed to init perf %d\n", rc); goto err_pm_put; } /* * We need to program DP <-> PHY relationship only for SC8180X since it * has fewer DP controllers than DP PHYs. * If any other platform requires the same kind of programming, or if * the INTF <->DP relationship isn't static anymore, this needs to be * configured through the DT. */ if (of_device_is_compatible(dpu_kms->pdev->dev.of_node, "qcom,sc8180x-dpu")) dpu_kms->hw_mdp->ops.dp_phy_intf_sel(dpu_kms->hw_mdp, (unsigned int[]){ 1, 2, }); dpu_kms->hw_intr = dpu_hw_intr_init(dev, dpu_kms->mmio, dpu_kms->catalog); if (IS_ERR(dpu_kms->hw_intr)) { rc = PTR_ERR(dpu_kms->hw_intr); DPU_ERROR("hw_intr init failed: %d\n", rc); dpu_kms->hw_intr = NULL; goto err_pm_put; } dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.max_width = DPU_MAX_IMG_WIDTH; dev->mode_config.max_height = DPU_MAX_IMG_HEIGHT; dev->max_vblank_count = 0xffffffff; /* Disable vblank irqs aggressively for power-saving */ dev->vblank_disable_immediate = true; /* * _dpu_kms_drm_obj_init should create the DRM related objects * i.e. CRTCs, planes, encoders, connectors and so forth */ rc = _dpu_kms_drm_obj_init(dpu_kms); if (rc) { DPU_ERROR("modeset init failed: %d\n", rc); goto err_pm_put; } dpu_vbif_init_memtypes(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); return 0; err_pm_put: pm_runtime_put_sync(&dpu_kms->pdev->dev); error: _dpu_kms_hw_destroy(dpu_kms); return rc; } static int dpu_kms_init(struct drm_device *ddev) { struct msm_drm_private *priv = ddev->dev_private; struct device *dev = ddev->dev; struct platform_device *pdev = to_platform_device(dev); struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct dev_pm_opp *opp; int ret = 0; unsigned long max_freq = ULONG_MAX; opp = dev_pm_opp_find_freq_floor(dev, &max_freq); if (!IS_ERR(opp)) dev_pm_opp_put(opp); dev_pm_opp_set_rate(dev, max_freq); ret = msm_kms_init(&dpu_kms->base, &kms_funcs); if (ret) { DPU_ERROR("failed to init kms, ret=%d\n", ret); return ret; } dpu_kms->dev = ddev; pm_runtime_enable(&pdev->dev); dpu_kms->rpm_enabled = true; return 0; } static int dpu_kms_mmap_mdp5(struct dpu_kms *dpu_kms) { struct platform_device *pdev = dpu_kms->pdev; struct platform_device *mdss_dev; int ret; if (!dev_is_platform(dpu_kms->pdev->dev.parent)) return -EINVAL; mdss_dev = to_platform_device(dpu_kms->pdev->dev.parent); dpu_kms->mmio = msm_ioremap(pdev, "mdp_phys"); if (IS_ERR(dpu_kms->mmio)) { ret = PTR_ERR(dpu_kms->mmio); DPU_ERROR("mdp register memory map failed: %d\n", ret); dpu_kms->mmio = NULL; return ret; } DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); dpu_kms->vbif[VBIF_RT] = msm_ioremap_mdss(mdss_dev, dpu_kms->pdev, "vbif_phys"); if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { ret = PTR_ERR(dpu_kms->vbif[VBIF_RT]); DPU_ERROR("vbif register memory map failed: %d\n", ret); dpu_kms->vbif[VBIF_RT] = NULL; return ret; } dpu_kms->vbif[VBIF_NRT] = msm_ioremap_mdss(mdss_dev, dpu_kms->pdev, "vbif_nrt_phys"); if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { dpu_kms->vbif[VBIF_NRT] = NULL; DPU_DEBUG("VBIF NRT is not defined"); } return 0; } static int dpu_kms_mmap_dpu(struct dpu_kms *dpu_kms) { struct platform_device *pdev = dpu_kms->pdev; int ret; dpu_kms->mmio = msm_ioremap(pdev, "mdp"); if (IS_ERR(dpu_kms->mmio)) { ret = PTR_ERR(dpu_kms->mmio); DPU_ERROR("mdp register memory map failed: %d\n", ret); dpu_kms->mmio = NULL; return ret; } DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); dpu_kms->vbif[VBIF_RT] = msm_ioremap(pdev, "vbif"); if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { ret = PTR_ERR(dpu_kms->vbif[VBIF_RT]); DPU_ERROR("vbif register memory map failed: %d\n", ret); dpu_kms->vbif[VBIF_RT] = NULL; return ret; } dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(pdev, "vbif_nrt"); if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { dpu_kms->vbif[VBIF_NRT] = NULL; DPU_DEBUG("VBIF NRT is not defined"); } return 0; } static int dpu_dev_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct dpu_kms *dpu_kms; int irq; int ret = 0; if (!msm_disp_drv_should_bind(&pdev->dev, true)) return -ENODEV; dpu_kms = devm_kzalloc(dev, sizeof(*dpu_kms), GFP_KERNEL); if (!dpu_kms) return -ENOMEM; dpu_kms->pdev = pdev; ret = devm_pm_opp_set_clkname(dev, "core"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(dev); if (ret && ret != -ENODEV) return dev_err_probe(dev, ret, "invalid OPP table in device tree\n"); ret = devm_clk_bulk_get_all(&pdev->dev, &dpu_kms->clocks); if (ret < 0) return dev_err_probe(dev, ret, "failed to parse clocks\n"); dpu_kms->num_clocks = ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return dev_err_probe(dev, irq, "failed to get irq\n"); dpu_kms->base.irq = irq; if (of_device_is_compatible(dpu_kms->pdev->dev.of_node, "qcom,mdp5")) ret = dpu_kms_mmap_mdp5(dpu_kms); else ret = dpu_kms_mmap_dpu(dpu_kms); if (ret) return ret; ret = dpu_kms_parse_data_bus_icc_path(dpu_kms); if (ret) return ret; return msm_drv_probe(&pdev->dev, dpu_kms_init, &dpu_kms->base); } static void dpu_dev_remove(struct platform_device *pdev) { component_master_del(&pdev->dev, &msm_drm_ops); } static int __maybe_unused dpu_runtime_suspend(struct device *dev) { int i; struct platform_device *pdev = to_platform_device(dev); struct msm_drm_private *priv = platform_get_drvdata(pdev); struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); /* Drop the performance state vote */ dev_pm_opp_set_rate(dev, 0); clk_bulk_disable_unprepare(dpu_kms->num_clocks, dpu_kms->clocks); for (i = 0; i < dpu_kms->num_paths; i++) icc_set_bw(dpu_kms->path[i], 0, 0); return 0; } static int __maybe_unused dpu_runtime_resume(struct device *dev) { int rc = -1; struct platform_device *pdev = to_platform_device(dev); struct msm_drm_private *priv = platform_get_drvdata(pdev); struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_encoder *encoder; struct drm_device *ddev; ddev = dpu_kms->dev; rc = clk_bulk_prepare_enable(dpu_kms->num_clocks, dpu_kms->clocks); if (rc) { DPU_ERROR("clock enable failed rc:%d\n", rc); return rc; } dpu_vbif_init_memtypes(dpu_kms); drm_for_each_encoder(encoder, ddev) dpu_encoder_virt_runtime_resume(encoder); return rc; } static const struct dev_pm_ops dpu_pm_ops = { SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) .prepare = msm_kms_pm_prepare, .complete = msm_kms_pm_complete, }; static const struct of_device_id dpu_dt_match[] = { { .compatible = "qcom,msm8917-mdp5", .data = &dpu_msm8917_cfg, }, { .compatible = "qcom,msm8937-mdp5", .data = &dpu_msm8937_cfg, }, { .compatible = "qcom,msm8953-mdp5", .data = &dpu_msm8953_cfg, }, { .compatible = "qcom,msm8996-mdp5", .data = &dpu_msm8996_cfg, }, { .compatible = "qcom,msm8998-dpu", .data = &dpu_msm8998_cfg, }, { .compatible = "qcom,qcm2290-dpu", .data = &dpu_qcm2290_cfg, }, { .compatible = "qcom,sa8775p-dpu", .data = &dpu_sa8775p_cfg, }, { .compatible = "qcom,sdm630-mdp5", .data = &dpu_sdm630_cfg, }, { .compatible = "qcom,sdm660-mdp5", .data = &dpu_sdm660_cfg, }, { .compatible = "qcom,sdm670-dpu", .data = &dpu_sdm670_cfg, }, { .compatible = "qcom,sdm845-dpu", .data = &dpu_sdm845_cfg, }, { .compatible = "qcom,sc7180-dpu", .data = &dpu_sc7180_cfg, }, { .compatible = "qcom,sc7280-dpu", .data = &dpu_sc7280_cfg, }, { .compatible = "qcom,sc8180x-dpu", .data = &dpu_sc8180x_cfg, }, { .compatible = "qcom,sc8280xp-dpu", .data = &dpu_sc8280xp_cfg, }, { .compatible = "qcom,sm6115-dpu", .data = &dpu_sm6115_cfg, }, { .compatible = "qcom,sm6125-dpu", .data = &dpu_sm6125_cfg, }, { .compatible = "qcom,sm6350-dpu", .data = &dpu_sm6350_cfg, }, { .compatible = "qcom,sm6375-dpu", .data = &dpu_sm6375_cfg, }, { .compatible = "qcom,sm7150-dpu", .data = &dpu_sm7150_cfg, }, { .compatible = "qcom,sm8150-dpu", .data = &dpu_sm8150_cfg, }, { .compatible = "qcom,sm8250-dpu", .data = &dpu_sm8250_cfg, }, { .compatible = "qcom,sm8350-dpu", .data = &dpu_sm8350_cfg, }, { .compatible = "qcom,sm8450-dpu", .data = &dpu_sm8450_cfg, }, { .compatible = "qcom,sm8550-dpu", .data = &dpu_sm8550_cfg, }, { .compatible = "qcom,sm8650-dpu", .data = &dpu_sm8650_cfg, }, { .compatible = "qcom,x1e80100-dpu", .data = &dpu_x1e80100_cfg, }, {} }; MODULE_DEVICE_TABLE(of, dpu_dt_match); static struct platform_driver dpu_driver = { .probe = dpu_dev_probe, .remove = dpu_dev_remove, .shutdown = msm_kms_shutdown, .driver = { .name = "msm_dpu", .of_match_table = dpu_dt_match, .pm = &dpu_pm_ops, }, }; void __init msm_dpu_register(void) { platform_driver_register(&dpu_driver); } void __exit msm_dpu_unregister(void) { platform_driver_unregister(&dpu_driver); }