// SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ #include #include "gem/i915_gem_context.h" #include "gt/intel_context.h" #include "gt/intel_engine_pm.h" #include "gt/intel_gt.h" #include "gt/intel_gt_pm.h" #include "gt/intel_lrc_reg.h" #include "gt/intel_ring.h" #include "intel_guc_submission.h" #include "i915_drv.h" #include "i915_trace.h" enum { GUC_PREEMPT_NONE = 0, GUC_PREEMPT_INPROGRESS, GUC_PREEMPT_FINISHED, }; #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8 #define GUC_PREEMPT_BREADCRUMB_BYTES \ (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS) /** * DOC: GuC-based command submission * * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC * firmware is moving to an updated submission interface and we plan to * turn submission back on when that lands. The below documentation (and related * code) matches the old submission model and will be updated as part of the * upgrade to the new flow. * * GuC client: * A intel_guc_client refers to a submission path through GuC. Currently, there * is only one client, which is charged with all submissions to the GuC. This * struct is the owner of a doorbell, a process descriptor and a workqueue (all * of them inside a single gem object that contains all required pages for these * elements). * * GuC stage descriptor: * During initialization, the driver allocates a static pool of 1024 such * descriptors, and shares them with the GuC. * Currently, there exists a 1:1 mapping between a intel_guc_client and a * guc_stage_desc (via the client's stage_id), so effectively only one * gets used. This stage descriptor lets the GuC know about the doorbell, * workqueue and process descriptor. Theoretically, it also lets the GuC * know about our HW contexts (context ID, etc...), but we actually * employ a kind of submission where the GuC uses the LRCA sent via the work * item instead (the single guc_stage_desc associated to execbuf client * contains information about the default kernel context only, but this is * essentially unused). This is called a "proxy" submission. * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * See intel_guc_send() * * Doorbells: * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) * mapped into process space. * * Work Items: * There are several types of work items that the host may place into a * workqueue, each with its own requirements and limitations. Currently only * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which * represents in-order queue. The kernel driver packs ring tail pointer and an * ELSP context descriptor dword into Work Item. * See guc_add_request() * */ static inline struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static inline bool is_high_priority(struct intel_guc_client *client) { return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH || client->priority == GUC_CLIENT_PRIORITY_HIGH); } static int reserve_doorbell(struct intel_guc_client *client) { unsigned long offset; unsigned long end; u16 id; GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID); /* * The bitmap tracks which doorbell registers are currently in use. * It is split into two halves; the first half is used for normal * priority contexts, the second half for high-priority ones. */ offset = 0; end = GUC_NUM_DOORBELLS / 2; if (is_high_priority(client)) { offset = end; end += offset; } id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset); if (id == end) return -ENOSPC; __set_bit(id, client->guc->doorbell_bitmap); client->doorbell_id = id; DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n", client->stage_id, yesno(is_high_priority(client)), id); return 0; } static bool has_doorbell(struct intel_guc_client *client) { if (client->doorbell_id == GUC_DOORBELL_INVALID) return false; return test_bit(client->doorbell_id, client->guc->doorbell_bitmap); } static void unreserve_doorbell(struct intel_guc_client *client) { GEM_BUG_ON(!has_doorbell(client)); __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap); client->doorbell_id = GUC_DOORBELL_INVALID; } /* * Tell the GuC to allocate or deallocate a specific doorbell */ static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_ALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id) { u32 action[] = { INTEL_GUC_ACTION_DEALLOCATE_DOORBELL, stage_id }; return intel_guc_send(guc, action, ARRAY_SIZE(action)); } static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client) { struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr; return &base[client->stage_id]; } /* * Initialise, update, or clear doorbell data shared with the GuC * * These functions modify shared data and so need access to the mapped * client object which contains the page being used for the doorbell */ static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id) { struct guc_stage_desc *desc; /* Update the GuC's idea of the doorbell ID */ desc = __get_stage_desc(client); desc->db_id = new_id; } static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client) { return client->vaddr + client->doorbell_offset; } static bool __doorbell_valid(struct intel_guc *guc, u16 db_id) { struct intel_uncore *uncore = guc_to_gt(guc)->uncore; GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS); return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID; } static void __init_doorbell(struct intel_guc_client *client) { struct guc_doorbell_info *doorbell; doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_ENABLED; doorbell->cookie = 0; } static void __fini_doorbell(struct intel_guc_client *client) { struct guc_doorbell_info *doorbell; u16 db_id = client->doorbell_id; doorbell = __get_doorbell(client); doorbell->db_status = GUC_DOORBELL_DISABLED; /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit * to go to zero after updating db_status before we call the GuC to * release the doorbell */ if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10)) WARN_ONCE(true, "Doorbell never became invalid after disable\n"); } static int create_doorbell(struct intel_guc_client *client) { int ret; if (WARN_ON(!has_doorbell(client))) return -ENODEV; /* internal setup error, should never happen */ __update_doorbell_desc(client, client->doorbell_id); __init_doorbell(client); ret = __guc_allocate_doorbell(client->guc, client->stage_id); if (ret) { __fini_doorbell(client); __update_doorbell_desc(client, GUC_DOORBELL_INVALID); DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n", client->stage_id, ret); return ret; } return 0; } static int destroy_doorbell(struct intel_guc_client *client) { int ret; GEM_BUG_ON(!has_doorbell(client)); __fini_doorbell(client); ret = __guc_deallocate_doorbell(client->guc, client->stage_id); if (ret) DRM_ERROR("Couldn't destroy client %u doorbell: %d\n", client->stage_id, ret); __update_doorbell_desc(client, GUC_DOORBELL_INVALID); return ret; } static unsigned long __select_cacheline(struct intel_guc *guc) { unsigned long offset; /* Doorbell uses a single cache line within a page */ offset = offset_in_page(guc->db_cacheline); /* Moving to next cache line to reduce contention */ guc->db_cacheline += cache_line_size(); DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n", offset, guc->db_cacheline, cache_line_size()); return offset; } static inline struct guc_process_desc * __get_process_desc(struct intel_guc_client *client) { return client->vaddr + client->proc_desc_offset; } /* * Initialise the process descriptor shared with the GuC firmware. */ static void guc_proc_desc_init(struct intel_guc_client *client) { struct guc_process_desc *desc; desc = memset(__get_process_desc(client), 0, sizeof(*desc)); /* * XXX: pDoorbell and WQVBaseAddress are pointers in process address * space for ring3 clients (set them as in mmap_ioctl) or kernel * space for kernel clients (map on demand instead? May make debug * easier to have it mapped). */ desc->wq_base_addr = 0; desc->db_base_addr = 0; desc->stage_id = client->stage_id; desc->wq_size_bytes = GUC_WQ_SIZE; desc->wq_status = WQ_STATUS_ACTIVE; desc->priority = client->priority; } static void guc_proc_desc_fini(struct intel_guc_client *client) { struct guc_process_desc *desc; desc = __get_process_desc(client); memset(desc, 0, sizeof(*desc)); } static int guc_stage_desc_pool_create(struct intel_guc *guc) { struct i915_vma *vma; void *vaddr; vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(struct guc_stage_desc) * GUC_MAX_STAGE_DESCRIPTORS)); if (IS_ERR(vma)) return PTR_ERR(vma); vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { i915_vma_unpin_and_release(&vma, 0); return PTR_ERR(vaddr); } guc->stage_desc_pool = vma; guc->stage_desc_pool_vaddr = vaddr; ida_init(&guc->stage_ids); return 0; } static void guc_stage_desc_pool_destroy(struct intel_guc *guc) { ida_destroy(&guc->stage_ids); i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP); } /* * Initialise/clear the stage descriptor shared with the GuC firmware. * * This descriptor tells the GuC where (in GGTT space) to find the important * data structures relating to this client (doorbell, process descriptor, * write queue, etc). */ static void guc_stage_desc_init(struct intel_guc_client *client) { struct intel_guc *guc = client->guc; struct guc_stage_desc *desc; u32 gfx_addr; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL; if (is_high_priority(client)) desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT; desc->stage_id = client->stage_id; desc->priority = client->priority; desc->db_id = client->doorbell_id; /* * The doorbell, process descriptor, and workqueue are all parts * of the client object, which the GuC will reference via the GGTT */ gfx_addr = intel_guc_ggtt_offset(guc, client->vma); desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + client->doorbell_offset; desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client)); desc->db_trigger_uk = gfx_addr + client->doorbell_offset; desc->process_desc = gfx_addr + client->proc_desc_offset; desc->wq_addr = gfx_addr + GUC_DB_SIZE; desc->wq_size = GUC_WQ_SIZE; desc->desc_private = ptr_to_u64(client); } static void guc_stage_desc_fini(struct intel_guc_client *client) { struct guc_stage_desc *desc; desc = __get_stage_desc(client); memset(desc, 0, sizeof(*desc)); } /* Construct a Work Item and append it to the GuC's Work Queue */ static void guc_wq_item_append(struct intel_guc_client *client, u32 target_engine, u32 context_desc, u32 ring_tail, u32 fence_id) { /* wqi_len is in DWords, and does not include the one-word header */ const size_t wqi_size = sizeof(struct guc_wq_item); const u32 wqi_len = wqi_size / sizeof(u32) - 1; struct guc_process_desc *desc = __get_process_desc(client); struct guc_wq_item *wqi; u32 wq_off; lockdep_assert_held(&client->wq_lock); /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we * should not have the case where structure wqi is across page, neither * wrapped to the beginning. This simplifies the implementation below. * * XXX: if not the case, we need save data to a temp wqi and copy it to * workqueue buffer dw by dw. */ BUILD_BUG_ON(wqi_size != 16); /* We expect the WQ to be active if we're appending items to it */ GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE); /* Free space is guaranteed. */ wq_off = READ_ONCE(desc->tail); GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head), GUC_WQ_SIZE) < wqi_size); GEM_BUG_ON(wq_off & (wqi_size - 1)); /* WQ starts from the page after doorbell / process_desc */ wqi = client->vaddr + wq_off + GUC_DB_SIZE; if (I915_SELFTEST_ONLY(client->use_nop_wqi)) { wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT); } else { /* Now fill in the 4-word work queue item */ wqi->header = WQ_TYPE_INORDER | (wqi_len << WQ_LEN_SHIFT) | (target_engine << WQ_TARGET_SHIFT) | WQ_NO_WCFLUSH_WAIT; wqi->context_desc = context_desc; wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT; GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX); wqi->fence_id = fence_id; } /* Make the update visible to GuC */ WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1)); } static void guc_ring_doorbell(struct intel_guc_client *client) { struct guc_doorbell_info *db; u32 cookie; lockdep_assert_held(&client->wq_lock); /* pointer of current doorbell cacheline */ db = __get_doorbell(client); /* * We're not expecting the doorbell cookie to change behind our back, * we also need to treat 0 as a reserved value. */ cookie = READ_ONCE(db->cookie); WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie); /* XXX: doorbell was lost and need to acquire it again */ GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED); } static void guc_add_request(struct intel_guc *guc, struct i915_request *rq) { struct intel_guc_client *client = guc->execbuf_client; struct intel_engine_cs *engine = rq->engine; u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc); u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64); guc_wq_item_append(client, engine->guc_id, ctx_desc, ring_tail, rq->fence.seqno); guc_ring_doorbell(client); } /* * When we're doing submissions using regular execlists backend, writing to * ELSP from CPU side is enough to make sure that writes to ringbuffer pages * pinned in mappable aperture portion of GGTT are visible to command streamer. * Writes done by GuC on our behalf are not guaranteeing such ordering, * therefore, to ensure the flush, we're issuing a POSTING READ. */ static void flush_ggtt_writes(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; if (i915_vma_is_map_and_fenceable(vma)) intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS); } static void guc_submit(struct intel_engine_cs *engine, struct i915_request **out, struct i915_request **end) { struct intel_guc *guc = &engine->gt->uc.guc; struct intel_guc_client *client = guc->execbuf_client; spin_lock(&client->wq_lock); do { struct i915_request *rq = *out++; flush_ggtt_writes(rq->ring->vma); guc_add_request(guc, rq); } while (out != end); spin_unlock(&client->wq_lock); } static inline int rq_prio(const struct i915_request *rq) { return rq->sched.attr.priority | __NO_PREEMPTION; } static struct i915_request *schedule_in(struct i915_request *rq, int idx) { trace_i915_request_in(rq, idx); /* * Currently we are not tracking the rq->context being inflight * (ce->inflight = rq->engine). It is only used by the execlists * backend at the moment, a similar counting strategy would be * required if we generalise the inflight tracking. */ intel_gt_pm_get(rq->engine->gt); return i915_request_get(rq); } static void schedule_out(struct i915_request *rq) { trace_i915_request_out(rq); intel_gt_pm_put(rq->engine->gt); i915_request_put(rq); } static void __guc_dequeue(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request **first = execlists->inflight; struct i915_request ** const last_port = first + execlists->port_mask; struct i915_request *last = first[0]; struct i915_request **port; bool submit = false; struct rb_node *rb; lockdep_assert_held(&engine->active.lock); if (last) { if (*++first) return; last = NULL; } /* * We write directly into the execlists->inflight queue and don't use * the execlists->pending queue, as we don't have a distinct switch * event. */ port = first; while ((rb = rb_first_cached(&execlists->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; int i; priolist_for_each_request_consume(rq, rn, p, i) { if (last && rq->hw_context != last->hw_context) { if (port == last_port) goto done; *port = schedule_in(last, port - execlists->inflight); port++; } list_del_init(&rq->sched.link); __i915_request_submit(rq); submit = true; last = rq; } rb_erase_cached(&p->node, &execlists->queue); i915_priolist_free(p); } done: execlists->queue_priority_hint = rb ? to_priolist(rb)->priority : INT_MIN; if (submit) { *port = schedule_in(last, port - execlists->inflight); *++port = NULL; guc_submit(engine, first, port); } execlists->active = execlists->inflight; } static void guc_submission_tasklet(unsigned long data) { struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request **port, *rq; unsigned long flags; spin_lock_irqsave(&engine->active.lock, flags); for (port = execlists->inflight; (rq = *port); port++) { if (!i915_request_completed(rq)) break; schedule_out(rq); } if (port != execlists->inflight) { int idx = port - execlists->inflight; int rem = ARRAY_SIZE(execlists->inflight) - idx; memmove(execlists->inflight, port, rem * sizeof(*port)); } __guc_dequeue(engine); spin_unlock_irqrestore(&engine->active.lock, flags); } static void guc_reset_prepare(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; GEM_TRACE("%s\n", engine->name); /* * Prevent request submission to the hardware until we have * completed the reset in i915_gem_reset_finish(). If a request * is completed by one engine, it may then queue a request * to a second via its execlists->tasklet *just* as we are * calling engine->init_hw() and also writing the ELSP. * Turning off the execlists->tasklet until the reset is over * prevents the race. */ __tasklet_disable_sync_once(&execlists->tasklet); } static void cancel_port_requests(struct intel_engine_execlists * const execlists) { struct i915_request * const *port, *rq; /* Note we are only using the inflight and not the pending queue */ for (port = execlists->active; (rq = *port); port++) schedule_out(rq); execlists->active = memset(execlists->inflight, 0, sizeof(execlists->inflight)); } static void guc_reset(struct intel_engine_cs *engine, bool stalled) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request *rq; unsigned long flags; spin_lock_irqsave(&engine->active.lock, flags); cancel_port_requests(execlists); /* Push back any incomplete requests for replay after the reset. */ rq = execlists_unwind_incomplete_requests(execlists); if (!rq) goto out_unlock; if (!i915_request_started(rq)) stalled = false; __i915_request_reset(rq, stalled); intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled); out_unlock: spin_unlock_irqrestore(&engine->active.lock, flags); } static void guc_cancel_requests(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; GEM_TRACE("%s\n", engine->name); /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ spin_lock_irqsave(&engine->active.lock, flags); /* Cancel the requests on the HW and clear the ELSP tracker. */ cancel_port_requests(execlists); /* Mark all executing requests as skipped. */ list_for_each_entry(rq, &engine->active.requests, sched.link) { if (!i915_request_signaled(rq)) dma_fence_set_error(&rq->fence, -EIO); i915_request_mark_complete(rq); } /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&execlists->queue))) { struct i915_priolist *p = to_priolist(rb); int i; priolist_for_each_request_consume(rq, rn, p, i) { list_del_init(&rq->sched.link); __i915_request_submit(rq); dma_fence_set_error(&rq->fence, -EIO); i915_request_mark_complete(rq); } rb_erase_cached(&p->node, &execlists->queue); i915_priolist_free(p); } /* Remaining _unready_ requests will be nop'ed when submitted */ execlists->queue_priority_hint = INT_MIN; execlists->queue = RB_ROOT_CACHED; spin_unlock_irqrestore(&engine->active.lock, flags); } static void guc_reset_finish(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; if (__tasklet_enable(&execlists->tasklet)) /* And kick in case we missed a new request submission. */ tasklet_hi_schedule(&execlists->tasklet); GEM_TRACE("%s: depth->%d\n", engine->name, atomic_read(&execlists->tasklet.count)); } /* * Everything below here is concerned with setup & teardown, and is * therefore not part of the somewhat time-critical batch-submission * path of guc_submit() above. */ /* Check that a doorbell register is in the expected state */ static bool doorbell_ok(struct intel_guc *guc, u16 db_id) { bool valid; GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS); valid = __doorbell_valid(guc, db_id); if (test_bit(db_id, guc->doorbell_bitmap) == valid) return true; DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n", db_id, yesno(valid)); return false; } static bool guc_verify_doorbells(struct intel_guc *guc) { bool doorbells_ok = true; u16 db_id; for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id) if (!doorbell_ok(guc, db_id)) doorbells_ok = false; return doorbells_ok; } /** * guc_client_alloc() - Allocate an intel_guc_client * @guc: the intel_guc structure * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW * The kernel client to replace ExecList submission is created with * NORMAL priority. Priority of a client for scheduler can be HIGH, * while a preemption context can use CRITICAL. * * Return: An intel_guc_client object if success, else NULL. */ static struct intel_guc_client * guc_client_alloc(struct intel_guc *guc, u32 priority) { struct intel_guc_client *client; struct i915_vma *vma; void *vaddr; int ret; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return ERR_PTR(-ENOMEM); client->guc = guc; client->priority = priority; client->doorbell_id = GUC_DOORBELL_INVALID; spin_lock_init(&client->wq_lock); ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS, GFP_KERNEL); if (ret < 0) goto err_client; client->stage_id = ret; /* The first page is doorbell/proc_desc. Two followed pages are wq. */ vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto err_id; } /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ client->vma = vma; vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); if (IS_ERR(vaddr)) { ret = PTR_ERR(vaddr); goto err_vma; } client->vaddr = vaddr; ret = reserve_doorbell(client); if (ret) goto err_vaddr; client->doorbell_offset = __select_cacheline(guc); /* * Since the doorbell only requires a single cacheline, we can save * space by putting the application process descriptor in the same * page. Use the half of the page that doesn't include the doorbell. */ if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) client->proc_desc_offset = 0; else client->proc_desc_offset = (GUC_DB_SIZE / 2); DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n", priority, client, client->stage_id); DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n", client->doorbell_id, client->doorbell_offset); return client; err_vaddr: i915_gem_object_unpin_map(client->vma->obj); err_vma: i915_vma_unpin_and_release(&client->vma, 0); err_id: ida_simple_remove(&guc->stage_ids, client->stage_id); err_client: kfree(client); return ERR_PTR(ret); } static void guc_client_free(struct intel_guc_client *client) { unreserve_doorbell(client); i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP); ida_simple_remove(&client->guc->stage_ids, client->stage_id); kfree(client); } static inline bool ctx_save_restore_disabled(struct intel_context *ce) { u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1]; #define SR_DISABLED \ _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \ CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) return (sr & SR_DISABLED) == SR_DISABLED; #undef SR_DISABLED } static int guc_clients_create(struct intel_guc *guc) { struct intel_guc_client *client; GEM_BUG_ON(guc->execbuf_client); client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL); if (IS_ERR(client)) { DRM_ERROR("Failed to create GuC client for submission!\n"); return PTR_ERR(client); } guc->execbuf_client = client; return 0; } static void guc_clients_destroy(struct intel_guc *guc) { struct intel_guc_client *client; client = fetch_and_zero(&guc->execbuf_client); if (client) guc_client_free(client); } static int __guc_client_enable(struct intel_guc_client *client) { int ret; guc_proc_desc_init(client); guc_stage_desc_init(client); ret = create_doorbell(client); if (ret) goto fail; return 0; fail: guc_stage_desc_fini(client); guc_proc_desc_fini(client); return ret; } static void __guc_client_disable(struct intel_guc_client *client) { /* * By the time we're here, GuC may have already been reset. if that is * the case, instead of trying (in vain) to communicate with it, let's * just cleanup the doorbell HW and our internal state. */ if (intel_guc_is_running(client->guc)) destroy_doorbell(client); else __fini_doorbell(client); guc_stage_desc_fini(client); guc_proc_desc_fini(client); } static int guc_clients_enable(struct intel_guc *guc) { return __guc_client_enable(guc->execbuf_client); } static void guc_clients_disable(struct intel_guc *guc) { if (guc->execbuf_client) __guc_client_disable(guc->execbuf_client); } /* * Set up the memory resources to be shared with the GuC (via the GGTT) * at firmware loading time. */ int intel_guc_submission_init(struct intel_guc *guc) { int ret; if (guc->stage_desc_pool) return 0; ret = guc_stage_desc_pool_create(guc); if (ret) return ret; /* * Keep static analysers happy, let them know that we allocated the * vma after testing that it didn't exist earlier. */ GEM_BUG_ON(!guc->stage_desc_pool); WARN_ON(!guc_verify_doorbells(guc)); ret = guc_clients_create(guc); if (ret) goto err_pool; return 0; err_pool: guc_stage_desc_pool_destroy(guc); return ret; } void intel_guc_submission_fini(struct intel_guc *guc) { guc_clients_destroy(guc); WARN_ON(!guc_verify_doorbells(guc)); if (guc->stage_desc_pool) guc_stage_desc_pool_destroy(guc); } static void guc_interrupts_capture(struct intel_gt *gt) { struct intel_rps *rps = >->rps; struct intel_uncore *uncore = gt->uncore; struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* tell all command streamers to forward interrupts (but not vblank) * to GuC */ irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, gt, id) ENGINE_WRITE(engine, RING_MODE_GEN7, irqs); /* route USER_INTERRUPT to Host, all others are sent to GuC. */ irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; /* These three registers have the same bit definitions */ intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs); intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs); intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs); /* * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all * (unmasked) PM interrupts to the GuC. All other bits of this * register *disable* generation of a specific interrupt. * * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when * writing to the PM interrupt mask register, i.e. interrupts * that must not be disabled. * * If the GuC is handling these interrupts, then we must not let * the PM code disable ANY interrupt that the GuC is expecting. * So for each ENABLED (0) bit in this register, we must SET the * bit in pm_intrmsk_mbz so that it's left enabled for the GuC. * GuC needs ARAT expired interrupt unmasked hence it is set in * pm_intrmsk_mbz. * * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will * result in the register bit being left SET! */ rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; } static void guc_interrupts_release(struct intel_gt *gt) { struct intel_rps *rps = >->rps; struct intel_uncore *uncore = gt->uncore; struct intel_engine_cs *engine; enum intel_engine_id id; int irqs; /* * tell all command streamers NOT to forward interrupts or vblank * to GuC. */ irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); for_each_engine(engine, gt, id) ENGINE_WRITE(engine, RING_MODE_GEN7, irqs); /* route all GT interrupts to the host */ intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0); intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0); intel_uncore_write(uncore, GUC_WD_VECS_IER, 0); rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK; } static void guc_set_default_submission(struct intel_engine_cs *engine) { /* * We inherit a bunch of functions from execlists that we'd like * to keep using: * * engine->submit_request = execlists_submit_request; * engine->cancel_requests = execlists_cancel_requests; * engine->schedule = execlists_schedule; * * But we need to override the actual submission backend in order * to talk to the GuC. */ intel_execlists_set_default_submission(engine); engine->execlists.tasklet.func = guc_submission_tasklet; /* do not use execlists park/unpark */ engine->park = engine->unpark = NULL; engine->reset.prepare = guc_reset_prepare; engine->reset.reset = guc_reset; engine->reset.finish = guc_reset_finish; engine->cancel_requests = guc_cancel_requests; engine->flags &= ~I915_ENGINE_SUPPORTS_STATS; engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET; /* * For the breadcrumb irq to work we need the interrupts to stay * enabled. However, on all platforms on which we'll have support for * GuC submission we don't allow disabling the interrupts at runtime, so * we're always safe with the current flow. */ GEM_BUG_ON(engine->irq_enable || engine->irq_disable); } int intel_guc_submission_enable(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_engine_cs *engine; enum intel_engine_id id; int err; err = i915_inject_probe_error(gt->i915, -ENXIO); if (err) return err; /* * We're using GuC work items for submitting work through GuC. Since * we're coalescing multiple requests from a single context into a * single work item prior to assigning it to execlist_port, we can * never have more work items than the total number of ports (for all * engines). The GuC firmware is controlling the HEAD of work queue, * and it is guaranteed that it will remove the work item from the * queue before our request is completed. */ BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) * sizeof(struct guc_wq_item) * I915_NUM_ENGINES > GUC_WQ_SIZE); GEM_BUG_ON(!guc->execbuf_client); err = guc_clients_enable(guc); if (err) return err; /* Take over from manual control of ELSP (execlists) */ guc_interrupts_capture(gt); for_each_engine(engine, gt, id) { engine->set_default_submission = guc_set_default_submission; engine->set_default_submission(engine); } return 0; } void intel_guc_submission_disable(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); GEM_BUG_ON(gt->awake); /* GT should be parked first */ guc_interrupts_release(gt); guc_clients_disable(guc); } static bool __guc_submission_support(struct intel_guc *guc) { /* XXX: GuC submission is unavailable for now */ return false; if (!intel_guc_is_supported(guc)) return false; return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION; } void intel_guc_submission_init_early(struct intel_guc *guc) { guc->submission_supported = __guc_submission_support(guc); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_guc.c" #endif