// SPDX-License-Identifier: MIT /* * Copyright © 2014-2019 Intel Corporation * * Authors: * Vinit Azad * Ben Widawsky * Dave Gordon * Alex Dai */ #include "gt/intel_gt.h" #include "gt/intel_gt_mcr.h" #include "gt/intel_gt_regs.h" #include "gt/intel_rps.h" #include "intel_guc_fw.h" #include "intel_guc_print.h" #include "i915_drv.h" static void guc_prepare_xfer(struct intel_gt *gt) { struct intel_uncore *uncore = gt->uncore; u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | GUC_ENABLE_MIA_CLOCK_GATING; if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 55)) shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | GUC_ENABLE_MIA_CACHING; /* Must program this register before loading the ucode with DMA */ intel_uncore_write(uncore, GUC_SHIM_CONTROL, shim_flags); if (IS_GEN9_LP(uncore->i915)) intel_uncore_write(uncore, GEN9LP_GT_PM_CONFIG, GT_DOORBELL_ENABLE); else intel_uncore_write(uncore, GEN9_GT_PM_CONFIG, GT_DOORBELL_ENABLE); if (GRAPHICS_VER(uncore->i915) == 9) { /* DOP Clock Gating Enable for GuC clocks */ intel_uncore_rmw(uncore, GEN7_MISCCPCTL, 0, GEN8_DOP_CLOCK_GATE_GUC_ENABLE); /* allows for 5us (in 10ns units) before GT can go to RC6 */ intel_uncore_write(uncore, GUC_ARAT_C6DIS, 0x1FF); } } static int guc_xfer_rsa_mmio(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { u32 rsa[UOS_RSA_SCRATCH_COUNT]; size_t copied; int i; copied = intel_uc_fw_copy_rsa(guc_fw, rsa, sizeof(rsa)); if (copied < sizeof(rsa)) return -ENOMEM; for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) intel_uncore_write(uncore, UOS_RSA_SCRATCH(i), rsa[i]); return 0; } static int guc_xfer_rsa_vma(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { struct intel_guc *guc = container_of(guc_fw, struct intel_guc, fw); intel_uncore_write(uncore, UOS_RSA_SCRATCH(0), intel_guc_ggtt_offset(guc, guc_fw->rsa_data)); return 0; } /* Copy RSA signature from the fw image to HW for verification */ static int guc_xfer_rsa(struct intel_uc_fw *guc_fw, struct intel_uncore *uncore) { if (guc_fw->rsa_data) return guc_xfer_rsa_vma(guc_fw, uncore); else return guc_xfer_rsa_mmio(guc_fw, uncore); } /* * Read the GuC status register (GUC_STATUS) and store it in the * specified location; then return a boolean indicating whether * the value matches either completion or a known failure code. * * This is used for polling the GuC status in a wait_for() * loop below. */ static inline bool guc_load_done(struct intel_uncore *uncore, u32 *status, bool *success) { u32 val = intel_uncore_read(uncore, GUC_STATUS); u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, val); u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, val); *status = val; switch (uk_val) { case INTEL_GUC_LOAD_STATUS_READY: *success = true; return true; case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH: case INTEL_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE: case INTEL_GUC_LOAD_STATUS_HWCONFIG_ERROR: case INTEL_GUC_LOAD_STATUS_DPC_ERROR: case INTEL_GUC_LOAD_STATUS_EXCEPTION: case INTEL_GUC_LOAD_STATUS_INIT_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_MPU_DATA_INVALID: case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: case INTEL_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR: *success = false; return true; } switch (br_val) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: case INTEL_BOOTROM_STATUS_RSA_FAILED: case INTEL_BOOTROM_STATUS_PAVPC_FAILED: case INTEL_BOOTROM_STATUS_WOPCM_FAILED: case INTEL_BOOTROM_STATUS_LOADLOC_FAILED: case INTEL_BOOTROM_STATUS_JUMP_FAILED: case INTEL_BOOTROM_STATUS_RC6CTXCONFIG_FAILED: case INTEL_BOOTROM_STATUS_MPUMAP_INCORRECT: case INTEL_BOOTROM_STATUS_EXCEPTION: case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: *success = false; return true; } return false; } /* * Use a longer timeout for debug builds so that problems can be detected * and analysed. But a shorter timeout for releases so that user's don't * wait forever to find out there is a problem. Note that the only reason * an end user should hit the timeout is in case of extreme thermal throttling. * And a system that is that hot during boot is probably dead anyway! */ #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) #define GUC_LOAD_RETRY_LIMIT 20 #else #define GUC_LOAD_RETRY_LIMIT 3 #endif static int guc_wait_ucode(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; ktime_t before, after, delta; bool success; u32 status; int ret, count; u64 delta_ms; u32 before_freq; /* * Wait for the GuC to start up. * * Measurements indicate this should take no more than 20ms * (assuming the GT clock is at maximum frequency). So, a * timeout here indicates that the GuC has failed and is unusable. * (Higher levels of the driver may decide to reset the GuC and * attempt the ucode load again if this happens.) * * FIXME: There is a known (but exceedingly unlikely) race condition * where the asynchronous frequency management code could reduce * the GT clock while a GuC reload is in progress (during a full * GT reset). A fix is in progress but there are complex locking * issues to be resolved. In the meantime bump the timeout to * 200ms. Even at slowest clock, this should be sufficient. And * in the working case, a larger timeout makes no difference. * * IFWI updates have also been seen to cause sporadic failures due to * the requested frequency not being granted and thus the firmware * load is attempted at minimum frequency. That can lead to load times * in the seconds range. However, there is a limit on how long an * individual wait_for() can wait. So wrap it in a loop. */ before_freq = intel_rps_read_actual_frequency(>->rps); before = ktime_get(); for (count = 0; count < GUC_LOAD_RETRY_LIMIT; count++) { ret = wait_for(guc_load_done(uncore, &status, &success), 1000); if (!ret || !success) break; guc_dbg(guc, "load still in progress, count = %d, freq = %dMHz, status = 0x%08X [0x%02X/%02X]\n", count, intel_rps_read_actual_frequency(>->rps), status, REG_FIELD_GET(GS_BOOTROM_MASK, status), REG_FIELD_GET(GS_UKERNEL_MASK, status)); } after = ktime_get(); delta = ktime_sub(after, before); delta_ms = ktime_to_ms(delta); if (ret || !success) { u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status); u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status); guc_info(guc, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz, ret = %d\n", status, delta_ms, intel_rps_read_actual_frequency(>->rps), ret); guc_info(guc, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", REG_FIELD_GET(GS_MIA_IN_RESET, status), bootrom, ukernel, REG_FIELD_GET(GS_MIA_MASK, status), REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); switch (bootrom) { case INTEL_BOOTROM_STATUS_NO_KEY_FOUND: guc_info(guc, "invalid key requested, header = 0x%08X\n", intel_uncore_read(uncore, GUC_HEADER_INFO)); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_RSA_FAILED: guc_info(guc, "firmware signature verification failed\n"); ret = -ENOEXEC; break; case INTEL_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: guc_info(guc, "firmware production part check failure\n"); ret = -ENOEXEC; break; } switch (ukernel) { case INTEL_GUC_LOAD_STATUS_EXCEPTION: guc_info(guc, "firmware exception. EIP: %#x\n", intel_uncore_read(uncore, SOFT_SCRATCH(13))); ret = -ENXIO; break; case INTEL_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: guc_info(guc, "illegal register in save/restore workaround list\n"); ret = -EPERM; break; case INTEL_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR: guc_info(guc, "invalid w/a KLV entry\n"); ret = -EINVAL; break; case INTEL_GUC_LOAD_STATUS_HWCONFIG_START: guc_info(guc, "still extracting hwconfig table.\n"); ret = -ETIMEDOUT; break; } /* Uncommon/unexpected error, see earlier status code print for details */ if (ret == 0) ret = -ENXIO; } else if (delta_ms > 200) { guc_warn(guc, "excessive init time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n", delta_ms, status, count, ret); guc_warn(guc, "excessive init time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n", intel_rps_read_actual_frequency(>->rps), before_freq, intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt))); } else { guc_dbg(guc, "init took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n", delta_ms, intel_rps_read_actual_frequency(>->rps), before_freq, status, count, ret); } return ret; } /** * intel_guc_fw_upload() - load GuC uCode to device * @guc: intel_guc structure * * Called from intel_uc_init_hw() during driver load, resume from sleep and * after a GPU reset. * * The firmware image should have already been fetched into memory, so only * check that fetch succeeded, and then transfer the image to the h/w. * * Return: non-zero code on error */ int intel_guc_fw_upload(struct intel_guc *guc) { struct intel_gt *gt = guc_to_gt(guc); struct intel_uncore *uncore = gt->uncore; int ret; guc_prepare_xfer(gt); /* * Note that GuC needs the CSS header plus uKernel code to be copied * by the DMA engine in one operation, whereas the RSA signature is * loaded separately, either by copying it to the UOS_RSA_SCRATCH * register (if key size <= 256) or through a ggtt-pinned vma (if key * size > 256). The RSA size and therefore the way we provide it to the * HW is fixed for each platform and hard-coded in the bootrom. */ ret = guc_xfer_rsa(&guc->fw, uncore); if (ret) goto out; /* * Current uCode expects the code to be loaded at 8k; locations below * this are used for the stack. */ ret = intel_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); if (ret) goto out; ret = guc_wait_ucode(guc); if (ret) goto out; intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_RUNNING); return 0; out: intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL); return ret; }