/* * Copyright 2006 Dave Airlie * Copyright © 2006-2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Jesse Barnes */ #include #include #include #include #include #include #include #include #include #include #include #include #include "i915_debugfs.h" #include "i915_drv.h" #include "intel_atomic.h" #include "intel_connector.h" #include "intel_ddi.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_gmbus.h" #include "intel_hdcp.h" #include "intel_hdmi.h" #include "intel_lspcon.h" #include "intel_panel.h" #include "intel_snps_phy.h" static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi) { return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev); } static void assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) { struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi); u32 enabled_bits; enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; drm_WARN(&dev_priv->drm, intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits, "HDMI port enabled, expecting disabled\n"); } static void assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { drm_WARN(&dev_priv->drm, intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) & TRANS_DDI_FUNC_ENABLE, "HDMI transcoder function enabled, expecting disabled\n"); } static u32 g4x_infoframe_index(unsigned int type) { switch (type) { case HDMI_PACKET_TYPE_GAMUT_METADATA: return VIDEO_DIP_SELECT_GAMUT; case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_SELECT_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_SELECT_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_SELECT_VENDOR; default: MISSING_CASE(type); return 0; } } static u32 g4x_infoframe_enable(unsigned int type) { switch (type) { case HDMI_PACKET_TYPE_GENERAL_CONTROL: return VIDEO_DIP_ENABLE_GCP; case HDMI_PACKET_TYPE_GAMUT_METADATA: return VIDEO_DIP_ENABLE_GAMUT; case DP_SDP_VSC: return 0; case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VENDOR; case HDMI_INFOFRAME_TYPE_DRM: return 0; default: MISSING_CASE(type); return 0; } } static u32 hsw_infoframe_enable(unsigned int type) { switch (type) { case HDMI_PACKET_TYPE_GENERAL_CONTROL: return VIDEO_DIP_ENABLE_GCP_HSW; case HDMI_PACKET_TYPE_GAMUT_METADATA: return VIDEO_DIP_ENABLE_GMP_HSW; case DP_SDP_VSC: return VIDEO_DIP_ENABLE_VSC_HSW; case DP_SDP_PPS: return VDIP_ENABLE_PPS; case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI_HSW; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD_HSW; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VS_HSW; case HDMI_INFOFRAME_TYPE_DRM: return VIDEO_DIP_ENABLE_DRM_GLK; default: MISSING_CASE(type); return 0; } } static i915_reg_t hsw_dip_data_reg(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, unsigned int type, int i) { switch (type) { case HDMI_PACKET_TYPE_GAMUT_METADATA: return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i); case DP_SDP_VSC: return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); case DP_SDP_PPS: return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_AVI: return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_SPD: return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_VENDOR: return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_DRM: return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i); default: MISSING_CASE(type); return INVALID_MMIO_REG; } } static int hsw_dip_data_size(struct drm_i915_private *dev_priv, unsigned int type) { switch (type) { case DP_SDP_VSC: return VIDEO_DIP_VSC_DATA_SIZE; case DP_SDP_PPS: return VIDEO_DIP_PPS_DATA_SIZE; case HDMI_PACKET_TYPE_GAMUT_METADATA: if (DISPLAY_VER(dev_priv) >= 11) return VIDEO_DIP_GMP_DATA_SIZE; else return VIDEO_DIP_DATA_SIZE; default: return VIDEO_DIP_DATA_SIZE; } } static void g4x_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); int i; drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); intel_de_write(dev_priv, VIDEO_DIP_CTL, val); for (i = 0; i < len; i += 4) { intel_de_write(dev_priv, VIDEO_DIP_DATA, *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) intel_de_write(dev_priv, VIDEO_DIP_DATA, 0); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; intel_de_write(dev_priv, VIDEO_DIP_CTL, val); intel_de_posting_read(dev_priv, VIDEO_DIP_CTL); } static void g4x_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val, *data = frame; int i; val = intel_de_read(dev_priv, VIDEO_DIP_CTL); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); intel_de_write(dev_priv, VIDEO_DIP_CTL, val); for (i = 0; i < len; i += 4) *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA); } static u32 g4x_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL); if ((val & VIDEO_DIP_ENABLE) == 0) return 0; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) return 0; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); } static void ibx_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); int i; drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); intel_de_write(dev_priv, reg, val); for (i = 0; i < len; i += 4) { intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); } static void ibx_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); u32 val, *data = frame; int i; val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); for (i = 0; i < len; i += 4) *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); } static u32 ibx_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; i915_reg_t reg = TVIDEO_DIP_CTL(pipe); u32 val = intel_de_read(dev_priv, reg); if ((val & VIDEO_DIP_ENABLE) == 0) return 0; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) return 0; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } static void cpt_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); int i; drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); /* The DIP control register spec says that we need to update the AVI * infoframe without clearing its enable bit */ if (type != HDMI_INFOFRAME_TYPE_AVI) val &= ~g4x_infoframe_enable(type); intel_de_write(dev_priv, reg, val); for (i = 0; i < len; i += 4) { intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); } static void cpt_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); u32 val, *data = frame; int i; val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe)); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val); for (i = 0; i < len; i += 4) *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe)); } static u32 cpt_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe)); if ((val & VIDEO_DIP_ENABLE) == 0) return 0; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } static void vlv_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); int i; drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); intel_de_write(dev_priv, reg, val); for (i = 0; i < len; i += 4) { intel_de_write(dev_priv, VLV_TVIDEO_DIP_DATA(crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) intel_de_write(dev_priv, VLV_TVIDEO_DIP_DATA(crtc->pipe), 0); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); } static void vlv_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); u32 val, *data = frame; int i; val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe)); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val); for (i = 0; i < len; i += 4) *data++ = intel_de_read(dev_priv, VLV_TVIDEO_DIP_DATA(crtc->pipe)); } static u32 vlv_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe; u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe)); if ((val & VIDEO_DIP_ENABLE) == 0) return 0; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port)) return 0; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } void hsw_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); int data_size; int i; u32 val = intel_de_read(dev_priv, ctl_reg); data_size = hsw_dip_data_size(dev_priv, type); drm_WARN_ON(&dev_priv->drm, len > data_size); val &= ~hsw_infoframe_enable(type); intel_de_write(dev_priv, ctl_reg, val); for (i = 0; i < len; i += 4) { intel_de_write(dev_priv, hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < data_size; i += 4) intel_de_write(dev_priv, hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 0); /* Wa_14013475917 */ if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr && type == DP_SDP_VSC) return; val |= hsw_infoframe_enable(type); intel_de_write(dev_priv, ctl_reg, val); intel_de_posting_read(dev_priv, ctl_reg); } void hsw_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, void *frame, ssize_t len) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 *data = frame; int i; for (i = 0; i < len; i += 4) *data++ = intel_de_read(dev_priv, hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2)); } static u32 hsw_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 val = intel_de_read(dev_priv, HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); u32 mask; mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); if (DISPLAY_VER(dev_priv) >= 10) mask |= VIDEO_DIP_ENABLE_DRM_GLK; return val & mask; } static const u8 infoframe_type_to_idx[] = { HDMI_PACKET_TYPE_GENERAL_CONTROL, HDMI_PACKET_TYPE_GAMUT_METADATA, DP_SDP_VSC, HDMI_INFOFRAME_TYPE_AVI, HDMI_INFOFRAME_TYPE_SPD, HDMI_INFOFRAME_TYPE_VENDOR, HDMI_INFOFRAME_TYPE_DRM, }; u32 intel_hdmi_infoframe_enable(unsigned int type) { int i; for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { if (infoframe_type_to_idx[i] == type) return BIT(i); } return 0; } u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); u32 val, ret = 0; int i; val = dig_port->infoframes_enabled(encoder, crtc_state); /* map from hardware bits to dip idx */ for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) { unsigned int type = infoframe_type_to_idx[i]; if (HAS_DDI(dev_priv)) { if (val & hsw_infoframe_enable(type)) ret |= BIT(i); } else { if (val & g4x_infoframe_enable(type)) ret |= BIT(i); } } return ret; } /* * The data we write to the DIP data buffer registers is 1 byte bigger than the * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting * at 0). It's also a byte used by DisplayPort so the same DIP registers can be * used for both technologies. * * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 * DW1: DB3 | DB2 | DB1 | DB0 * DW2: DB7 | DB6 | DB5 | DB4 * DW3: ... * * (HB is Header Byte, DB is Data Byte) * * The hdmi pack() functions don't know about that hardware specific hole so we * trick them by giving an offset into the buffer and moving back the header * bytes by one. */ static void intel_write_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, enum hdmi_infoframe_type type, const union hdmi_infoframe *frame) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); u8 buffer[VIDEO_DIP_DATA_SIZE]; ssize_t len; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; if (drm_WARN_ON(encoder->base.dev, frame->any.type != type)) return; /* see comment above for the reason for this offset */ len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1); if (drm_WARN_ON(encoder->base.dev, len < 0)) return; /* Insert the 'hole' (see big comment above) at position 3 */ memmove(&buffer[0], &buffer[1], 3); buffer[3] = 0; len++; dig_port->write_infoframe(encoder, crtc_state, type, buffer, len); } void intel_read_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, enum hdmi_infoframe_type type, union hdmi_infoframe *frame) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); u8 buffer[VIDEO_DIP_DATA_SIZE]; int ret; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(type)) == 0) return; dig_port->read_infoframe(encoder, crtc_state, type, buffer, sizeof(buffer)); /* Fill the 'hole' (see big comment above) at position 3 */ memmove(&buffer[1], &buffer[0], 3); /* see comment above for the reason for this offset */ ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1); if (ret) { drm_dbg_kms(encoder->base.dev, "Failed to unpack infoframe type 0x%02x\n", type); return; } if (frame->any.type != type) drm_dbg_kms(encoder->base.dev, "Found the wrong infoframe type 0x%x (expected 0x%02x)\n", frame->any.type, type); } static bool intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; struct drm_connector *connector = conn_state->connector; int ret; if (!crtc_state->has_infoframe) return true; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI); ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector, adjusted_mode); if (ret) return false; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) frame->colorspace = HDMI_COLORSPACE_YUV420; else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) frame->colorspace = HDMI_COLORSPACE_YUV444; else frame->colorspace = HDMI_COLORSPACE_RGB; drm_hdmi_avi_infoframe_colorimetry(frame, conn_state); /* nonsense combination */ drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) { drm_hdmi_avi_infoframe_quant_range(frame, connector, adjusted_mode, crtc_state->limited_color_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL); } else { frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; } drm_hdmi_avi_infoframe_content_type(frame, conn_state); /* TODO: handle pixel repetition for YCBCR420 outputs */ ret = hdmi_avi_infoframe_check(frame); if (drm_WARN_ON(encoder->base.dev, ret)) return false; return true; } static bool intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd; int ret; if (!crtc_state->has_infoframe) return true; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD); ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx"); if (drm_WARN_ON(encoder->base.dev, ret)) return false; frame->sdi = HDMI_SPD_SDI_PC; ret = hdmi_spd_infoframe_check(frame); if (drm_WARN_ON(encoder->base.dev, ret)) return false; return true; } static bool intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct hdmi_vendor_infoframe *frame = &crtc_state->infoframes.hdmi.vendor.hdmi; const struct drm_display_info *info = &conn_state->connector->display_info; int ret; if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe) return true; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR); ret = drm_hdmi_vendor_infoframe_from_display_mode(frame, conn_state->connector, &crtc_state->hw.adjusted_mode); if (drm_WARN_ON(encoder->base.dev, ret)) return false; ret = hdmi_vendor_infoframe_check(frame); if (drm_WARN_ON(encoder->base.dev, ret)) return false; return true; } static bool intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int ret; if (DISPLAY_VER(dev_priv) < 10) return true; if (!crtc_state->has_infoframe) return true; if (!conn_state->hdr_output_metadata) return true; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM); ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state); if (ret < 0) { drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n"); return false; } ret = hdmi_drm_infoframe_check(frame); if (drm_WARN_ON(&dev_priv->drm, ret)) return false; return true; } static void g4x_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &dig_port->hdmi; i915_reg_t reg = VIDEO_DIP_CTL; u32 val = intel_de_read(dev_priv, reg); u32 port = VIDEO_DIP_PORT(encoder->port); assert_hdmi_port_disabled(intel_hdmi); /* If the registers were not initialized yet, they might be zeroes, * which means we're selecting the AVI DIP and we're setting its * frequency to once. This seems to really confuse the HW and make * things stop working (the register spec says the AVI always needs to * be sent every VSync). So here we avoid writing to the register more * than we need and also explicitly select the AVI DIP and explicitly * set its frequency to every VSync. Avoiding to write it twice seems to * be enough to solve the problem, but being defensive shouldn't hurt us * either. */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; if (port != (val & VIDEO_DIP_PORT_MASK)) { drm_dbg_kms(&dev_priv->drm, "video DIP still enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); return; } val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { drm_dbg_kms(&dev_priv->drm, "video DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); return; } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_AVI, &crtc_state->infoframes.avi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_SPD, &crtc_state->infoframes.spd); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_VENDOR, &crtc_state->infoframes.hdmi); } /* * Determine if default_phase=1 can be indicated in the GCP infoframe. * * From HDMI specification 1.4a: * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing * phase of 0 */ static bool gcp_default_phase_possible(int pipe_bpp, const struct drm_display_mode *mode) { unsigned int pixels_per_group; switch (pipe_bpp) { case 30: /* 4 pixels in 5 clocks */ pixels_per_group = 4; break; case 36: /* 2 pixels in 3 clocks */ pixels_per_group = 2; break; case 48: /* 1 pixel in 2 clocks */ pixels_per_group = 1; break; default: /* phase information not relevant for 8bpc */ return false; } return mode->crtc_hdisplay % pixels_per_group == 0 && mode->crtc_htotal % pixels_per_group == 0 && mode->crtc_hblank_start % pixels_per_group == 0 && mode->crtc_hblank_end % pixels_per_group == 0 && mode->crtc_hsync_start % pixels_per_group == 0 && mode->crtc_hsync_end % pixels_per_group == 0 && ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || mode->crtc_htotal/2 % pixels_per_group == 0); } static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); i915_reg_t reg; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) return false; if (HAS_DDI(dev_priv)) reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); else if (HAS_PCH_SPLIT(dev_priv)) reg = TVIDEO_DIP_GCP(crtc->pipe); else return false; intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp); return true; } void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); i915_reg_t reg; if ((crtc_state->infoframes.enable & intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0) return; if (HAS_DDI(dev_priv)) reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); else if (HAS_PCH_SPLIT(dev_priv)) reg = TVIDEO_DIP_GCP(crtc->pipe); else return; crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg); } static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (IS_G4X(dev_priv) || !crtc_state->has_infoframe) return; crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL); /* Indicate color indication for deep color mode */ if (crtc_state->pipe_bpp > 24) crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION; /* Enable default_phase whenever the display mode is suitably aligned */ if (gcp_default_phase_possible(crtc_state->pipe_bpp, &crtc_state->hw.adjusted_mode)) crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE; } static void ibx_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &dig_port->hdmi; i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); u32 port = VIDEO_DIP_PORT(encoder->port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, "DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_AVI, &crtc_state->infoframes.avi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_SPD, &crtc_state->infoframes.spd); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_VENDOR, &crtc_state->infoframes.hdmi); } static void cpt_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } /* Set both together, unset both together: see the spec. */ val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_AVI, &crtc_state->infoframes.avi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_SPD, &crtc_state->infoframes.spd); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_VENDOR, &crtc_state->infoframes.hdmi); } static void vlv_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe); u32 val = intel_de_read(dev_priv, reg); u32 port = VIDEO_DIP_PORT(encoder->port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE, "DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_AVI, &crtc_state->infoframes.avi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_SPD, &crtc_state->infoframes.spd); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_VENDOR, &crtc_state->infoframes.hdmi); } static void hsw_set_infoframes(struct intel_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); u32 val = intel_de_read(dev_priv, reg); assert_hdmi_transcoder_func_disabled(dev_priv, crtc_state->cpu_transcoder); val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK); if (!enable) { intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); return; } if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP_HSW; intel_de_write(dev_priv, reg, val); intel_de_posting_read(dev_priv, reg); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_AVI, &crtc_state->infoframes.avi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_SPD, &crtc_state->infoframes.spd); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_VENDOR, &crtc_state->infoframes.hdmi); intel_write_infoframe(encoder, crtc_state, HDMI_INFOFRAME_TYPE_DRM, &crtc_state->infoframes.drm); } void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) { struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); struct i2c_adapter *adapter; if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) return; adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n", enable ? "Enabling" : "Disabling"); drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable); } static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port, unsigned int offset, void *buffer, size_t size) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_hdmi *hdmi = &dig_port->hdmi; struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, hdmi->ddc_bus); int ret; u8 start = offset & 0xff; struct i2c_msg msgs[] = { { .addr = DRM_HDCP_DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DRM_HDCP_DDC_ADDR, .flags = I2C_M_RD, .len = size, .buf = buffer } }; ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); if (ret == ARRAY_SIZE(msgs)) return 0; return ret >= 0 ? -EIO : ret; } static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port, unsigned int offset, void *buffer, size_t size) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_hdmi *hdmi = &dig_port->hdmi; struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, hdmi->ddc_bus); int ret; u8 *write_buf; struct i2c_msg msg; write_buf = kzalloc(size + 1, GFP_KERNEL); if (!write_buf) return -ENOMEM; write_buf[0] = offset & 0xff; memcpy(&write_buf[1], buffer, size); msg.addr = DRM_HDCP_DDC_ADDR; msg.flags = 0, msg.len = size + 1, msg.buf = write_buf; ret = i2c_transfer(adapter, &msg, 1); if (ret == 1) ret = 0; else if (ret >= 0) ret = -EIO; kfree(write_buf); return ret; } static int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port, u8 *an) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_hdmi *hdmi = &dig_port->hdmi; struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915, hdmi->ddc_bus); int ret; ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an, DRM_HDCP_AN_LEN); if (ret) { drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n", ret); return ret; } ret = intel_gmbus_output_aksv(adapter); if (ret < 0) { drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret); return ret; } return 0; } static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port, u8 *bksv) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv, DRM_HDCP_KSV_LEN); if (ret) drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port, u8 *bstatus) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS, bstatus, DRM_HDCP_BSTATUS_LEN); if (ret) drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port, bool *repeater_present) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; u8 val; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); if (ret) { drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", ret); return ret; } *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; return 0; } static int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port, u8 *ri_prime) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME, ri_prime, DRM_HDCP_RI_LEN); if (ret) drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port, bool *ksv_ready) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; u8 val; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); if (ret) { drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n", ret); return ret; } *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; return 0; } static int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port, int num_downstream, u8 *ksv_fifo) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO, ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); if (ret) { drm_dbg_kms(&i915->drm, "Read ksv fifo over DDC failed (%d)\n", ret); return ret; } return 0; } static int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port, int i, u32 *part) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int ret; if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) return -EINVAL; ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i), part, DRM_HDCP_V_PRIME_PART_LEN); if (ret) drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n", i, ret); return ret; } static int kbl_repositioning_enc_en_signal(struct intel_connector *connector, enum transcoder cpu_transcoder) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_digital_port *dig_port = intel_attached_dig_port(connector); struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc); u32 scanline; int ret; for (;;) { scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe)); if (scanline > 100 && scanline < 200) break; usleep_range(25, 50); } ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, false, TRANS_DDI_HDCP_SIGNALLING); if (ret) { drm_err(&dev_priv->drm, "Disable HDCP signalling failed (%d)\n", ret); return ret; } ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, true, TRANS_DDI_HDCP_SIGNALLING); if (ret) { drm_err(&dev_priv->drm, "Enable HDCP signalling failed (%d)\n", ret); return ret; } return 0; } static int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port, enum transcoder cpu_transcoder, bool enable) { struct intel_hdmi *hdmi = &dig_port->hdmi; struct intel_connector *connector = hdmi->attached_connector; struct drm_i915_private *dev_priv = to_i915(connector->base.dev); int ret; if (!enable) usleep_range(6, 60); /* Bspec says >= 6us */ ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder, enable, TRANS_DDI_HDCP_SIGNALLING); if (ret) { drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n", enable ? "Enable" : "Disable", ret); return ret; } /* * WA: To fix incorrect positioning of the window of * opportunity and enc_en signalling in KABYLAKE. */ if (IS_KABYLAKE(dev_priv) && enable) return kbl_repositioning_enc_en_signal(connector, cpu_transcoder); return 0; } static bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port, struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); enum port port = dig_port->base.port; enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder; int ret; union { u32 reg; u8 shim[DRM_HDCP_RI_LEN]; } ri; ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim); if (ret) return false; intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg); /* Wait for Ri prime match */ if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) & (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) == (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n", intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port))); return false; } return true; } static bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port, struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); int retry; for (retry = 0; retry < 3; retry++) if (intel_hdmi_hdcp_check_link_once(dig_port, connector)) return true; drm_err(&i915->drm, "Link check failed\n"); return false; } struct hdcp2_hdmi_msg_timeout { u8 msg_id; u16 timeout; }; static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = { { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, }, { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, }, { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, }, { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, }, { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, }, }; static int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port, u8 *rx_status) { return intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET, rx_status, HDCP_2_2_HDMI_RXSTATUS_LEN); } static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired) { int i; if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) { if (is_paired) return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS; else return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS; } for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) { if (hdcp2_msg_timeout[i].msg_id == msg_id) return hdcp2_msg_timeout[i].timeout; } return -EINVAL; } static int hdcp2_detect_msg_availability(struct intel_digital_port *dig_port, u8 msg_id, bool *msg_ready, ssize_t *msg_sz) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; int ret; ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); if (ret < 0) { drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n", ret); return ret; } *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) | rx_status[0]); if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) && *msg_sz); else *msg_ready = *msg_sz; return 0; } static ssize_t intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port, u8 msg_id, bool paired) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); bool msg_ready = false; int timeout, ret; ssize_t msg_sz = 0; timeout = get_hdcp2_msg_timeout(msg_id, paired); if (timeout < 0) return timeout; ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port, msg_id, &msg_ready, &msg_sz), !ret && msg_ready && msg_sz, timeout * 1000, 1000, 5 * 1000); if (ret) drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n", msg_id, ret, timeout); return ret ? ret : msg_sz; } static int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port, void *buf, size_t size) { unsigned int offset; offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET; return intel_hdmi_hdcp_write(dig_port, offset, buf, size); } static int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port, u8 msg_id, void *buf, size_t size) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); struct intel_hdmi *hdmi = &dig_port->hdmi; struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp; unsigned int offset; ssize_t ret; ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id, hdcp->is_paired); if (ret < 0) return ret; /* * Available msg size should be equal to or lesser than the * available buffer. */ if (ret > size) { drm_dbg_kms(&i915->drm, "msg_sz(%zd) is more than exp size(%zu)\n", ret, size); return -EINVAL; } offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET; ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret); if (ret) drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n", msg_id, ret); return ret; } static int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port, struct intel_connector *connector) { u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN]; int ret; ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status); if (ret) return ret; /* * Re-auth request and Link Integrity Failures are represented by * same bit. i.e reauth_req. */ if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1])) ret = HDCP_REAUTH_REQUEST; else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1])) ret = HDCP_TOPOLOGY_CHANGE; return ret; } static int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port, bool *capable) { u8 hdcp2_version; int ret; *capable = false; ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET, &hdcp2_version, sizeof(hdcp2_version)); if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK) *capable = true; return ret; } static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, .read_bksv = intel_hdmi_hdcp_read_bksv, .read_bstatus = intel_hdmi_hdcp_read_bstatus, .repeater_present = intel_hdmi_hdcp_repeater_present, .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, .check_link = intel_hdmi_hdcp_check_link, .write_2_2_msg = intel_hdmi_hdcp2_write_msg, .read_2_2_msg = intel_hdmi_hdcp2_read_msg, .check_2_2_link = intel_hdmi_hdcp2_check_link, .hdcp_2_2_capable = intel_hdmi_hdcp2_capable, .protocol = HDCP_PROTOCOL_HDMI, }; static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int max_tmds_clock, vbt_max_tmds_clock; if (DISPLAY_VER(dev_priv) >= 10) max_tmds_clock = 594000; else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) max_tmds_clock = 300000; else if (DISPLAY_VER(dev_priv) >= 5) max_tmds_clock = 225000; else max_tmds_clock = 165000; vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder); if (vbt_max_tmds_clock) max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock); return max_tmds_clock; } static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi, const struct drm_connector_state *conn_state) { return hdmi->has_hdmi_sink && READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI; } static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state) { return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420; } static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_downstream_limits, bool has_hdmi_sink) { struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); if (respect_downstream_limits) { struct intel_connector *connector = hdmi->attached_connector; const struct drm_display_info *info = &connector->base.display_info; if (hdmi->dp_dual_mode.max_tmds_clock) max_tmds_clock = min(max_tmds_clock, hdmi->dp_dual_mode.max_tmds_clock); if (info->max_tmds_clock) max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); else if (!has_hdmi_sink) max_tmds_clock = min(max_tmds_clock, 165000); } return max_tmds_clock; } static enum drm_mode_status hdmi_port_clock_valid(struct intel_hdmi *hdmi, int clock, bool respect_downstream_limits, bool has_hdmi_sink) { struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port); if (clock < 25000) return MODE_CLOCK_LOW; if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, has_hdmi_sink)) return MODE_CLOCK_HIGH; /* GLK DPLL can't generate 446-480 MHz */ if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000) return MODE_CLOCK_RANGE; /* BXT/GLK DPLL can't generate 223-240 MHz */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && clock > 223333 && clock < 240000) return MODE_CLOCK_RANGE; /* CHV DPLL can't generate 216-240 MHz */ if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) return MODE_CLOCK_RANGE; /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */ if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200) return MODE_CLOCK_RANGE; /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */ if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800) return MODE_CLOCK_RANGE; /* * SNPS PHYs' MPLLB table-based programming can only handle a fixed * set of link rates. * * FIXME: We will hopefully get an algorithmic way of programming * the MPLLB for HDMI in the future. */ if (IS_DG2(dev_priv)) return intel_snps_phy_check_hdmi_link_rate(clock); return MODE_OK; } int intel_hdmi_tmds_clock(int clock, int bpc, bool ycbcr420_output) { /* YCBCR420 TMDS rate requirement is half the pixel clock */ if (ycbcr420_output) clock /= 2; /* * Need to adjust the port link by: * 1.5x for 12bpc * 1.25x for 10bpc */ return clock * bpc / 8; } static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc) { switch (bpc) { case 12: return !HAS_GMCH(i915); case 10: return DISPLAY_VER(i915) >= 11; case 8: return true; default: MISSING_CASE(bpc); return false; } } static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector, int bpc, bool has_hdmi_sink, bool ycbcr420_output) { const struct drm_display_info *info = &connector->display_info; const struct drm_hdmi_info *hdmi = &info->hdmi; switch (bpc) { case 12: if (!has_hdmi_sink) return false; if (ycbcr420_output) return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36; else return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36; case 10: if (!has_hdmi_sink) return false; if (ycbcr420_output) return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30; else return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30; case 8: return true; default: MISSING_CASE(bpc); return false; } } static enum drm_mode_status intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock, bool has_hdmi_sink, bool ycbcr420_output) { struct drm_i915_private *i915 = to_i915(connector->dev); struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); enum drm_mode_status status = MODE_OK; int bpc; /* * Try all color depths since valid port clock range * can have holes. Any mode that can be used with at * least one color depth is accepted. */ for (bpc = 12; bpc >= 8; bpc -= 2) { int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); if (!intel_hdmi_source_bpc_possible(i915, bpc)) continue; if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) continue; status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink); if (status == MODE_OK) return MODE_OK; } /* can never happen */ drm_WARN_ON(&i915->drm, status == MODE_OK); return status; } static enum drm_mode_status intel_hdmi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi); enum drm_mode_status status; int clock = mode->clock; int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state); bool ycbcr_420_only; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) clock *= 2; if (clock > max_dotclk) return MODE_CLOCK_HIGH; if (mode->flags & DRM_MODE_FLAG_DBLCLK) { if (!has_hdmi_sink) return MODE_CLOCK_LOW; clock *= 2; } ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode); status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only); if (status != MODE_OK) { if (ycbcr_420_only || !connector->ycbcr_420_allowed || !drm_mode_is_420_also(&connector->display_info, mode)) return status; status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true); if (status != MODE_OK) return status; } return intel_mode_valid_max_plane_size(dev_priv, mode, false); } bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc, bool has_hdmi_sink, bool ycbcr420_output) { struct drm_atomic_state *state = crtc_state->uapi.state; struct drm_connector_state *connector_state; struct drm_connector *connector; int i; for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->crtc != crtc_state->uapi.crtc) continue; if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output)) return false; } return true; } static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; if (!intel_hdmi_source_bpc_possible(dev_priv, bpc)) return false; /* * HDMI deep color affects the clocks, so it's only possible * when not cloning with other encoder types. */ if (bpc > 8 && crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI)) return false; /* Display Wa_1405510057:icl,ehl */ if (intel_hdmi_is_ycbcr420(crtc_state) && bpc == 10 && DISPLAY_VER(dev_priv) == 11 && (adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start) % 8 == 2) return false; return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink, intel_hdmi_is_ycbcr420(crtc_state)); } static int intel_hdmi_compute_bpc(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, int clock, bool respect_downstream_limits) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); bool ycbcr420_output = intel_hdmi_is_ycbcr420(crtc_state); int bpc; /* * pipe_bpp could already be below 8bpc due to FDI * bandwidth constraints. HDMI minimum is 8bpc however. */ bpc = max(crtc_state->pipe_bpp / 3, 8); /* * We will never exceed downstream TMDS clock limits while * attempting deep color. If the user insists on forcing an * out of spec mode they will have to be satisfied with 8bpc. */ if (!respect_downstream_limits) bpc = 8; for (; bpc >= 8; bpc -= 2) { int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, ycbcr420_output); if (hdmi_bpc_possible(crtc_state, bpc) && hdmi_port_clock_valid(intel_hdmi, tmds_clock, respect_downstream_limits, crtc_state->has_hdmi_sink) == MODE_OK) return bpc; } return -EINVAL; } static int intel_hdmi_compute_clock(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, bool respect_downstream_limits) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int bpc, clock = adjusted_mode->crtc_clock; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) clock *= 2; bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock, respect_downstream_limits); if (bpc < 0) return bpc; crtc_state->port_clock = intel_hdmi_tmds_clock(clock, bpc, intel_hdmi_is_ycbcr420(crtc_state)); /* * pipe_bpp could already be below 8bpc due to * FDI bandwidth constraints. We shouldn't bump it * back up to the HDMI minimum 8bpc in that case. */ crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3); drm_dbg_kms(&i915->drm, "picking %d bpc for HDMI output (pipe bpp: %d)\n", bpc, crtc_state->pipe_bpp); return 0; } bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Our YCbCr output is always limited range. * crtc_state->limited_color_range only applies to RGB, * and it must never be set for YCbCr or we risk setting * some conflicting bits in PIPECONF which will mess up * the colors on the monitor. */ if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) return false; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* See CEA-861-E - 5.1 Default Encoding Parameters */ return crtc_state->has_hdmi_sink && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } } static bool intel_hdmi_has_audio(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); const struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); if (!crtc_state->has_hdmi_sink) return false; if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) return intel_hdmi->has_audio; else return intel_conn_state->force_audio == HDMI_AUDIO_ON; } static enum intel_output_format intel_hdmi_output_format(struct intel_connector *connector, bool ycbcr_420_output) { if (connector->base.ycbcr_420_allowed && ycbcr_420_output) return INTEL_OUTPUT_FORMAT_YCBCR420; else return INTEL_OUTPUT_FORMAT_RGB; } static int intel_hdmi_compute_output_format(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state, bool respect_downstream_limits) { struct intel_connector *connector = to_intel_connector(conn_state->connector); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; const struct drm_display_info *info = &connector->base.display_info; struct drm_i915_private *i915 = to_i915(connector->base.dev); bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode); int ret; crtc_state->output_format = intel_hdmi_output_format(connector, ycbcr_420_only); if (ycbcr_420_only && !intel_hdmi_is_ycbcr420(crtc_state)) { drm_dbg_kms(&i915->drm, "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n"); crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB; } ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); if (ret) { if (intel_hdmi_is_ycbcr420(crtc_state) || !connector->base.ycbcr_420_allowed || !drm_mode_is_420_also(info, adjusted_mode)) return ret; crtc_state->output_format = intel_hdmi_output_format(connector, true); ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits); } return ret; } int intel_hdmi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; struct drm_connector *connector = conn_state->connector; struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; int ret; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi, conn_state); if (pipe_config->has_hdmi_sink) pipe_config->has_infoframe = true; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) pipe_config->pixel_multiplier = 2; if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv)) pipe_config->has_pch_encoder = true; pipe_config->has_audio = intel_hdmi_has_audio(encoder, pipe_config, conn_state); /* * Try to respect downstream TMDS clock limits first, if * that fails assume the user might know something we don't. */ ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true); if (ret) ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false); if (ret) { drm_dbg_kms(&dev_priv->drm, "unsupported HDMI clock (%d kHz), rejecting mode\n", pipe_config->hw.adjusted_mode.crtc_clock); return ret; } if (intel_hdmi_is_ycbcr420(pipe_config)) { ret = intel_panel_fitting(pipe_config, conn_state); if (ret) return ret; } pipe_config->limited_color_range = intel_hdmi_limited_color_range(pipe_config, conn_state); if (conn_state->picture_aspect_ratio) adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio; pipe_config->lane_count = 4; if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) { if (scdc->scrambling.low_rates) pipe_config->hdmi_scrambling = true; if (pipe_config->port_clock > 340000) { pipe_config->hdmi_scrambling = true; pipe_config->hdmi_high_tmds_clock_ratio = true; } } intel_hdmi_compute_gcp_infoframe(encoder, pipe_config, conn_state); if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) { drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n"); return -EINVAL; } if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) { drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n"); return -EINVAL; } if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) { drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n"); return -EINVAL; } if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) { drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n"); return -EINVAL; } return 0; } void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); /* * Give a hand to buggy BIOSen which forget to turn * the TMDS output buffers back on after a reboot. */ intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); } static void intel_hdmi_unset_edid(struct drm_connector *connector) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); intel_hdmi->has_hdmi_sink = false; intel_hdmi->has_audio = false; intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; intel_hdmi->dp_dual_mode.max_tmds_clock = 0; kfree(to_intel_connector(connector)->detect_edid); to_intel_connector(connector)->detect_edid = NULL; } static void intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector)); enum port port = hdmi_to_dig_port(hdmi)->base.port; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter); /* * Type 1 DVI adaptors are not required to implement any * registers, so we can't always detect their presence. * Ideally we should be able to check the state of the * CONFIG1 pin, but no such luck on our hardware. * * The only method left to us is to check the VBT to see * if the port is a dual mode capable DP port. But let's * only do that when we sucesfully read the EDID, to avoid * confusing log messages about DP dual mode adaptors when * there's nothing connected to the port. */ if (type == DRM_DP_DUAL_MODE_UNKNOWN) { /* An overridden EDID imply that we want this port for testing. * Make sure not to set limits for that port. */ if (has_edid && !connector->override_edid && intel_bios_is_port_dp_dual_mode(dev_priv, port)) { drm_dbg_kms(&dev_priv->drm, "Assuming DP dual mode adaptor presence based on VBT\n"); type = DRM_DP_DUAL_MODE_TYPE1_DVI; } else { type = DRM_DP_DUAL_MODE_NONE; } } if (type == DRM_DP_DUAL_MODE_NONE) return; hdmi->dp_dual_mode.type = type; hdmi->dp_dual_mode.max_tmds_clock = drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter); drm_dbg_kms(&dev_priv->drm, "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", drm_dp_get_dual_mode_type_name(type), hdmi->dp_dual_mode.max_tmds_clock); /* Older VBTs are often buggy and can't be trusted :( Play it safe. */ if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) && !intel_bios_is_port_dp_dual_mode(dev_priv, port)) { drm_dbg_kms(&dev_priv->drm, "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n"); hdmi->dp_dual_mode.max_tmds_clock = 0; } } static bool intel_hdmi_set_edid(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); intel_wakeref_t wakeref; struct edid *edid; bool connected = false; struct i2c_adapter *i2c; wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); edid = drm_get_edid(connector, i2c); if (!edid && !intel_gmbus_is_forced_bit(i2c)) { drm_dbg_kms(&dev_priv->drm, "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); intel_gmbus_force_bit(i2c, true); edid = drm_get_edid(connector, i2c); intel_gmbus_force_bit(i2c, false); } intel_hdmi_dp_dual_mode_detect(connector, edid != NULL); intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); to_intel_connector(connector)->detect_edid = edid; if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { intel_hdmi->has_audio = drm_detect_monitor_audio(edid); intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); connected = true; } cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); return connected; } static enum drm_connector_status intel_hdmi_detect(struct drm_connector *connector, bool force) { enum drm_connector_status status = connector_status_disconnected; struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; intel_wakeref_t wakeref; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); if (!INTEL_DISPLAY_ENABLED(dev_priv)) return connector_status_disconnected; wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); if (DISPLAY_VER(dev_priv) >= 11 && !intel_digital_port_connected(encoder)) goto out; intel_hdmi_unset_edid(connector); if (intel_hdmi_set_edid(connector)) status = connector_status_connected; out: intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref); if (status != connector_status_connected) cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); /* * Make sure the refs for power wells enabled during detect are * dropped to avoid a new detect cycle triggered by HPD polling. */ intel_display_power_flush_work(dev_priv); return status; } static void intel_hdmi_force(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_hdmi_unset_edid(connector); if (connector->status != connector_status_connected) return; intel_hdmi_set_edid(connector); } static int intel_hdmi_get_modes(struct drm_connector *connector) { struct edid *edid; edid = to_intel_connector(connector)->detect_edid; if (edid == NULL) return 0; return intel_connector_update_modes(connector, edid); } static struct i2c_adapter * intel_hdmi_get_i2c_adapter(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector)); return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); } static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->dev); struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); struct kobject *i2c_kobj = &adapter->dev.kobj; struct kobject *connector_kobj = &connector->kdev->kobj; int ret; ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name); if (ret) drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret); } static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector) { struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector); struct kobject *i2c_kobj = &adapter->dev.kobj; struct kobject *connector_kobj = &connector->kdev->kobj; sysfs_remove_link(connector_kobj, i2c_kobj->name); } static int intel_hdmi_connector_register(struct drm_connector *connector) { int ret; ret = intel_connector_register(connector); if (ret) return ret; intel_hdmi_create_i2c_symlink(connector); return ret; } static void intel_hdmi_connector_unregister(struct drm_connector *connector) { struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier; cec_notifier_conn_unregister(n); intel_hdmi_remove_i2c_symlink(connector); intel_connector_unregister(connector); } static const struct drm_connector_funcs intel_hdmi_connector_funcs = { .detect = intel_hdmi_detect, .force = intel_hdmi_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_hdmi_connector_register, .early_unregister = intel_hdmi_connector_unregister, .destroy = intel_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { .get_modes = intel_hdmi_get_modes, .mode_valid = intel_hdmi_mode_valid, .atomic_check = intel_digital_connector_atomic_check, }; static void intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); intel_attach_aspect_ratio_property(connector); intel_attach_hdmi_colorspace_property(connector); drm_connector_attach_content_type_property(connector); if (DISPLAY_VER(dev_priv) >= 10) drm_connector_attach_hdr_output_metadata_property(connector); if (!HAS_GMCH(dev_priv)) drm_connector_attach_max_bpc_property(connector, 8, 12); } /* * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup * @encoder: intel_encoder * @connector: drm_connector * @high_tmds_clock_ratio = bool to indicate if the function needs to set * or reset the high tmds clock ratio for scrambling * @scrambling: bool to Indicate if the function needs to set or reset * sink scrambling * * This function handles scrambling on HDMI 2.0 capable sinks. * If required clock rate is > 340 Mhz && scrambling is supported by sink * it enables scrambling. This should be called before enabling the HDMI * 2.0 port, as the sink can choose to disable the scrambling if it doesn't * detect a scrambled clock within 100 ms. * * Returns: * True on success, false on failure. */ bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, struct drm_connector *connector, bool high_tmds_clock_ratio, bool scrambling) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); struct drm_scrambling *sink_scrambling = &connector->display_info.hdmi.scdc.scrambling; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); if (!sink_scrambling->supported) return true; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", connector->base.id, connector->name, str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10); /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ return drm_scdc_set_high_tmds_clock_ratio(adapter, high_tmds_clock_ratio) && drm_scdc_set_scrambling(adapter, scrambling); } static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_DPB; break; case PORT_C: ddc_pin = GMBUS_PIN_DPC; break; case PORT_D: ddc_pin = GMBUS_PIN_DPD_CHV; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_DPB; break; } return ddc_pin; } static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_1_BXT; break; case PORT_C: ddc_pin = GMBUS_PIN_2_BXT; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_1_BXT; break; } return ddc_pin; } static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_1_BXT; break; case PORT_C: ddc_pin = GMBUS_PIN_2_BXT; break; case PORT_D: ddc_pin = GMBUS_PIN_4_CNP; break; case PORT_F: ddc_pin = GMBUS_PIN_3_BXT; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_1_BXT; break; } return ddc_pin; } static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { enum phy phy = intel_port_to_phy(dev_priv, port); if (intel_phy_is_combo(dev_priv, phy)) return GMBUS_PIN_1_BXT + port; else if (intel_phy_is_tc(dev_priv, phy)) return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port); drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port)); return GMBUS_PIN_2_BXT; } static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { enum phy phy = intel_port_to_phy(dev_priv, port); u8 ddc_pin; switch (phy) { case PHY_A: ddc_pin = GMBUS_PIN_1_BXT; break; case PHY_B: ddc_pin = GMBUS_PIN_2_BXT; break; case PHY_C: ddc_pin = GMBUS_PIN_9_TC1_ICP; break; default: MISSING_CASE(phy); ddc_pin = GMBUS_PIN_1_BXT; break; } return ddc_pin; } static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { enum phy phy = intel_port_to_phy(dev_priv, port); WARN_ON(port == PORT_C); /* * Pin mapping for RKL depends on which PCH is present. With TGP, the * final two outputs use type-c pins, even though they're actually * combo outputs. With CMP, the traditional DDI A-D pins are used for * all outputs. */ if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C) return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; return GMBUS_PIN_1_BXT + phy; } static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port) { enum phy phy = intel_port_to_phy(i915, port); drm_WARN_ON(&i915->drm, port == PORT_A); /* * Pin mapping for GEN9 BC depends on which PCH is present. With TGP, * final two outputs use type-c pins, even though they're actually * combo outputs. With CMP, the traditional DDI A-D pins are used for * all outputs. */ if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C) return GMBUS_PIN_9_TC1_ICP + phy - PHY_C; return GMBUS_PIN_1_BXT + phy; } static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { return intel_port_to_phy(dev_priv, port) + 1; } static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { enum phy phy = intel_port_to_phy(dev_priv, port); WARN_ON(port == PORT_B || port == PORT_C); /* * Pin mapping for ADL-S requires TC pins for all combo phy outputs * except first combo output. */ if (phy == PHY_A) return GMBUS_PIN_1_BXT; return GMBUS_PIN_9_TC1_ICP + phy - PHY_B; } static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_DPB; break; case PORT_C: ddc_pin = GMBUS_PIN_DPC; break; case PORT_D: ddc_pin = GMBUS_PIN_DPD; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_DPB; break; } return ddc_pin; } static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; u8 ddc_pin; ddc_pin = intel_bios_alternate_ddc_pin(encoder); if (ddc_pin) { drm_dbg_kms(&dev_priv->drm, "Using DDC pin 0x%x for port %c (VBT)\n", ddc_pin, port_name(port)); return ddc_pin; } if (IS_ALDERLAKE_S(dev_priv)) ddc_pin = adls_port_to_ddc_pin(dev_priv, port); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1) ddc_pin = dg1_port_to_ddc_pin(dev_priv, port); else if (IS_ROCKETLAKE(dev_priv)) ddc_pin = rkl_port_to_ddc_pin(dev_priv, port); else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv)) ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port); else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv)) ddc_pin = mcc_port_to_ddc_pin(dev_priv, port); else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) ddc_pin = icl_port_to_ddc_pin(dev_priv, port); else if (HAS_PCH_CNP(dev_priv)) ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); else if (IS_CHERRYVIEW(dev_priv)) ddc_pin = chv_port_to_ddc_pin(dev_priv, port); else ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); drm_dbg_kms(&dev_priv->drm, "Using DDC pin 0x%x for port %c (platform default)\n", ddc_pin, port_name(port)); return ddc_pin; } void intel_infoframe_init(struct intel_digital_port *dig_port) { struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { dig_port->write_infoframe = vlv_write_infoframe; dig_port->read_infoframe = vlv_read_infoframe; dig_port->set_infoframes = vlv_set_infoframes; dig_port->infoframes_enabled = vlv_infoframes_enabled; } else if (IS_G4X(dev_priv)) { dig_port->write_infoframe = g4x_write_infoframe; dig_port->read_infoframe = g4x_read_infoframe; dig_port->set_infoframes = g4x_set_infoframes; dig_port->infoframes_enabled = g4x_infoframes_enabled; } else if (HAS_DDI(dev_priv)) { if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) { dig_port->write_infoframe = lspcon_write_infoframe; dig_port->read_infoframe = lspcon_read_infoframe; dig_port->set_infoframes = lspcon_set_infoframes; dig_port->infoframes_enabled = lspcon_infoframes_enabled; } else { dig_port->write_infoframe = hsw_write_infoframe; dig_port->read_infoframe = hsw_read_infoframe; dig_port->set_infoframes = hsw_set_infoframes; dig_port->infoframes_enabled = hsw_infoframes_enabled; } } else if (HAS_PCH_IBX(dev_priv)) { dig_port->write_infoframe = ibx_write_infoframe; dig_port->read_infoframe = ibx_read_infoframe; dig_port->set_infoframes = ibx_set_infoframes; dig_port->infoframes_enabled = ibx_infoframes_enabled; } else { dig_port->write_infoframe = cpt_write_infoframe; dig_port->read_infoframe = cpt_read_infoframe; dig_port->set_infoframes = cpt_set_infoframes; dig_port->infoframes_enabled = cpt_infoframes_enabled; } } void intel_hdmi_init_connector(struct intel_digital_port *dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_hdmi *intel_hdmi = &dig_port->hdmi; struct intel_encoder *intel_encoder = &dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct i2c_adapter *ddc; enum port port = intel_encoder->port; struct cec_connector_info conn_info; drm_dbg_kms(&dev_priv->drm, "Adding HDMI connector on [ENCODER:%d:%s]\n", intel_encoder->base.base.id, intel_encoder->base.name); if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A)) return; if (drm_WARN(dev, dig_port->max_lanes < 4, "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n", dig_port->max_lanes, intel_encoder->base.base.id, intel_encoder->base.name)) return; intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder); ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); drm_connector_init_with_ddc(dev, connector, &intel_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA, ddc); drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; connector->stereo_allowed = 1; if (DISPLAY_VER(dev_priv) >= 10) connector->ycbcr_420_allowed = true; intel_connector->polled = DRM_CONNECTOR_POLL_HPD; if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_hdmi_add_properties(intel_hdmi, connector); intel_connector_attach_encoder(intel_connector, intel_encoder); intel_hdmi->attached_connector = intel_connector; if (is_hdcp_supported(dev_priv, port)) { int ret = intel_hdcp_init(intel_connector, dig_port, &intel_hdmi_hdcp_shim); if (ret) drm_dbg_kms(&dev_priv->drm, "HDCP init failed, skipping.\n"); } /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G45(dev_priv)) { u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA); intel_de_write(dev_priv, PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } cec_fill_conn_info_from_drm(&conn_info, connector); intel_hdmi->cec_notifier = cec_notifier_conn_register(dev->dev, port_identifier(port), &conn_info); if (!intel_hdmi->cec_notifier) drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n"); } /* * intel_hdmi_dsc_get_slice_height - get the dsc slice_height * @vactive: Vactive of a display mode * * @return: appropriate dsc slice height for a given mode. */ int intel_hdmi_dsc_get_slice_height(int vactive) { int slice_height; /* * Slice Height determination : HDMI2.1 Section 7.7.5.2 * Select smallest slice height >=96, that results in a valid PPS and * requires minimum padding lines required for final slice. * * Assumption : Vactive is even. */ for (slice_height = 96; slice_height <= vactive; slice_height += 2) if (vactive % slice_height == 0) return slice_height; return 0; } /* * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder * and dsc decoder capabilities * * @crtc_state: intel crtc_state * @src_max_slices: maximum slices supported by the DSC encoder * @src_max_slice_width: maximum slice width supported by DSC encoder * @hdmi_max_slices: maximum slices supported by sink DSC decoder * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink * * @return: num of dsc slices that can be supported by the dsc encoder * and decoder. */ int intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state, int src_max_slices, int src_max_slice_width, int hdmi_max_slices, int hdmi_throughput) { /* Pixel rates in KPixels/sec */ #define HDMI_DSC_PEAK_PIXEL_RATE 2720000 /* * Rates at which the source and sink are required to process pixels in each * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz. */ #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000 /* Spec limits the slice width to 2720 pixels */ #define MAX_HDMI_SLICE_WIDTH 2720 int kslice_adjust; int adjusted_clk_khz; int min_slices; int target_slices; int max_throughput; /* max clock freq. in khz per slice */ int max_slice_width; int slice_width; int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock; if (!hdmi_throughput) return 0; /* * Slice Width determination : HDMI2.1 Section 7.7.5.1 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as * for 4:4:4 is 1.0. Multiplying these factors by 10 and later * dividing adjusted clock value by 10. */ if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) kslice_adjust = 10; else kslice_adjust = 5; /* * As per spec, the rate at which the source and the sink process * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz. * This depends upon the pixel clock rate and output formats * (kslice adjust). * If pixel clock * kslice adjust >= 2720MHz slices can be processed * at max 340MHz, otherwise they can be processed at max 400MHz. */ adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10); if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE) max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0; else max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1; /* * Taking into account the sink's capability for maximum * clock per slice (in MHz) as read from HF-VSDB. */ max_throughput = min(max_throughput, hdmi_throughput * 1000); min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput); max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width); /* * Keep on increasing the num of slices/line, starting from min_slices * per line till we get such a number, for which the slice_width is * just less than max_slice_width. The slices/line selected should be * less than or equal to the max horizontal slices that the combination * of PCON encoder and HDMI decoder can support. */ slice_width = max_slice_width; do { if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1) target_slices = 1; else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2) target_slices = 2; else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4) target_slices = 4; else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8) target_slices = 8; else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12) target_slices = 12; else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16) target_slices = 16; else return 0; slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices); if (slice_width >= max_slice_width) min_slices = target_slices + 1; } while (slice_width >= max_slice_width); return target_slices; } /* * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on * source and sink capabilities. * * @src_fraction_bpp: fractional bpp supported by the source * @slice_width: dsc slice width supported by the source and sink * @num_slices: num of slices supported by the source and sink * @output_format: video output format * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink * * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel */ int intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices, int output_format, bool hdmi_all_bpp, int hdmi_max_chunk_bytes) { int max_dsc_bpp, min_dsc_bpp; int target_bytes; bool bpp_found = false; int bpp_decrement_x16; int bpp_target; int bpp_target_x16; /* * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec * Start with the max bpp and keep on decrementing with * fractional bpp, if supported by PCON DSC encoder * * for each bpp we check if no of bytes can be supported by HDMI sink */ /* Assuming: bpc as 8*/ if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) { min_dsc_bpp = 6; max_dsc_bpp = 3 * 4; /* 3*bpc/2 */ } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 || output_format == INTEL_OUTPUT_FORMAT_RGB) { min_dsc_bpp = 8; max_dsc_bpp = 3 * 8; /* 3*bpc */ } else { /* Assuming 4:2:2 encoding */ min_dsc_bpp = 7; max_dsc_bpp = 2 * 8; /* 2*bpc */ } /* * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink * Section 7.7.34 : Source shall not enable compressed Video * Transport with bpp_target settings above 12 bpp unless * DSC_all_bpp is set to 1. */ if (!hdmi_all_bpp) max_dsc_bpp = min(max_dsc_bpp, 12); /* * The Sink has a limit of compressed data in bytes for a scanline, * as described in max_chunk_bytes field in HFVSDB block of edid. * The no. of bytes depend on the target bits per pixel that the * source configures. So we start with the max_bpp and calculate * the target_chunk_bytes. We keep on decrementing the target_bpp, * till we get the target_chunk_bytes just less than what the sink's * max_chunk_bytes, or else till we reach the min_dsc_bpp. * * The decrement is according to the fractional support from PCON DSC * encoder. For fractional BPP we use bpp_target as a multiple of 16. * * bpp_target_x16 = bpp_target * 16 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps * {1/16, 1/8, 1/4, 1/2, 1} respectively. */ bpp_target = max_dsc_bpp; /* src does not support fractional bpp implies decrement by 16 for bppx16 */ if (!src_fractional_bpp) src_fractional_bpp = 1; bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp); bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16; while (bpp_target_x16 > (min_dsc_bpp * 16)) { int bpp; bpp = DIV_ROUND_UP(bpp_target_x16, 16); target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8); if (target_bytes <= hdmi_max_chunk_bytes) { bpp_found = true; break; } bpp_target_x16 -= bpp_decrement_x16; } if (bpp_found) return bpp_target_x16; return 0; }