/* * Copyright 2006 Dave Airlie * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include "i915_drv.h" #include "i915_reg.h" #include "intel_connector.h" #include "intel_de.h" #include "intel_display_driver.h" #include "intel_display_types.h" #include "intel_dvo.h" #include "intel_dvo_dev.h" #include "intel_dvo_regs.h" #include "intel_gmbus.h" #include "intel_panel.h" #define INTEL_DVO_CHIP_NONE 0 #define INTEL_DVO_CHIP_LVDS 1 #define INTEL_DVO_CHIP_TMDS 2 #define INTEL_DVO_CHIP_TVOUT 4 #define INTEL_DVO_CHIP_LVDS_NO_FIXED 5 #define SIL164_ADDR 0x38 #define CH7xxx_ADDR 0x76 #define TFP410_ADDR 0x38 #define NS2501_ADDR 0x38 static const struct intel_dvo_device intel_dvo_devices[] = { { .type = INTEL_DVO_CHIP_TMDS, .name = "sil164", .port = PORT_C, .target_addr = SIL164_ADDR, .dev_ops = &sil164_ops, }, { .type = INTEL_DVO_CHIP_TMDS, .name = "ch7xxx", .port = PORT_C, .target_addr = CH7xxx_ADDR, .dev_ops = &ch7xxx_ops, }, { .type = INTEL_DVO_CHIP_TMDS, .name = "ch7xxx", .port = PORT_C, .target_addr = 0x75, /* For some ch7010 */ .dev_ops = &ch7xxx_ops, }, { .type = INTEL_DVO_CHIP_LVDS, .name = "ivch", .port = PORT_A, .target_addr = 0x02, /* Might also be 0x44, 0x84, 0xc4 */ .dev_ops = &ivch_ops, }, { .type = INTEL_DVO_CHIP_TMDS, .name = "tfp410", .port = PORT_C, .target_addr = TFP410_ADDR, .dev_ops = &tfp410_ops, }, { .type = INTEL_DVO_CHIP_LVDS, .name = "ch7017", .port = PORT_C, .target_addr = 0x75, .gpio = GMBUS_PIN_DPB, .dev_ops = &ch7017_ops, }, { .type = INTEL_DVO_CHIP_LVDS_NO_FIXED, .name = "ns2501", .port = PORT_B, .target_addr = NS2501_ADDR, .dev_ops = &ns2501_ops, }, }; struct intel_dvo { struct intel_encoder base; struct intel_dvo_device dev; struct intel_connector *attached_connector; }; static struct intel_dvo *enc_to_dvo(struct intel_encoder *encoder) { return container_of(encoder, struct intel_dvo, base); } static struct intel_dvo *intel_attached_dvo(struct intel_connector *connector) { return enc_to_dvo(intel_attached_encoder(connector)); } static bool intel_dvo_connector_get_hw_state(struct intel_connector *connector) { struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_encoder *encoder = intel_attached_encoder(connector); struct intel_dvo *intel_dvo = enc_to_dvo(encoder); enum port port = encoder->port; u32 tmp; tmp = intel_de_read(i915, DVO(port)); if (!(tmp & DVO_ENABLE)) return false; return intel_dvo->dev.dev_ops->get_hw_state(&intel_dvo->dev); } static bool intel_dvo_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; u32 tmp; tmp = intel_de_read(i915, DVO(port)); *pipe = REG_FIELD_GET(DVO_PIPE_SEL_MASK, tmp); return tmp & DVO_ENABLE; } static void intel_dvo_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; u32 tmp, flags = 0; pipe_config->output_types |= BIT(INTEL_OUTPUT_DVO); tmp = intel_de_read(i915, DVO(port)); if (tmp & DVO_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DVO_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; pipe_config->hw.adjusted_mode.flags |= flags; pipe_config->hw.adjusted_mode.crtc_clock = pipe_config->port_clock; } static void intel_disable_dvo(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dvo *intel_dvo = enc_to_dvo(encoder); enum port port = encoder->port; intel_dvo->dev.dev_ops->dpms(&intel_dvo->dev, false); intel_de_rmw(i915, DVO(port), DVO_ENABLE, 0); intel_de_posting_read(i915, DVO(port)); } static void intel_enable_dvo(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dvo *intel_dvo = enc_to_dvo(encoder); enum port port = encoder->port; intel_dvo->dev.dev_ops->mode_set(&intel_dvo->dev, &pipe_config->hw.mode, &pipe_config->hw.adjusted_mode); intel_de_rmw(i915, DVO(port), 0, DVO_ENABLE); intel_de_posting_read(i915, DVO(port)); intel_dvo->dev.dev_ops->dpms(&intel_dvo->dev, true); } static enum drm_mode_status intel_dvo_mode_valid(struct drm_connector *_connector, struct drm_display_mode *mode) { struct intel_connector *connector = to_intel_connector(_connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_dvo *intel_dvo = intel_attached_dvo(connector); const struct drm_display_mode *fixed_mode = intel_panel_fixed_mode(connector, mode); int max_dotclk = to_i915(connector->base.dev)->display.cdclk.max_dotclk_freq; int target_clock = mode->clock; enum drm_mode_status status; status = intel_cpu_transcoder_mode_valid(i915, mode); if (status != MODE_OK) return status; /* XXX: Validate clock range */ if (fixed_mode) { enum drm_mode_status status; status = intel_panel_mode_valid(connector, mode); if (status != MODE_OK) return status; target_clock = fixed_mode->clock; } if (target_clock > max_dotclk) return MODE_CLOCK_HIGH; return intel_dvo->dev.dev_ops->mode_valid(&intel_dvo->dev, mode); } static int intel_dvo_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_dvo *intel_dvo = enc_to_dvo(encoder); struct intel_connector *connector = to_intel_connector(conn_state->connector); struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; const struct drm_display_mode *fixed_mode = intel_panel_fixed_mode(intel_dvo->attached_connector, adjusted_mode); /* * If we have timings from the BIOS for the panel, put them in * to the adjusted mode. The CRTC will be set up for this mode, * with the panel scaling set up to source from the H/VDisplay * of the original mode. */ if (fixed_mode) { int ret; ret = intel_panel_compute_config(connector, adjusted_mode); if (ret) return ret; } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return -EINVAL; pipe_config->sink_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; return 0; } static void intel_dvo_pre_enable(struct intel_atomic_state *state, struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode; enum port port = encoder->port; enum pipe pipe = crtc->pipe; u32 dvo_val; /* Save the active data order, since I don't know what it should be set to. */ dvo_val = intel_de_read(i915, DVO(port)) & (DVO_DEDICATED_INT_ENABLE | DVO_PRESERVE_MASK | DVO_ACT_DATA_ORDER_MASK); dvo_val |= DVO_DATA_ORDER_FP | DVO_BORDER_ENABLE | DVO_BLANK_ACTIVE_HIGH; dvo_val |= DVO_PIPE_SEL(pipe); dvo_val |= DVO_PIPE_STALL; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) dvo_val |= DVO_HSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) dvo_val |= DVO_VSYNC_ACTIVE_HIGH; intel_de_write(i915, DVO_SRCDIM(port), DVO_SRCDIM_HORIZONTAL(adjusted_mode->crtc_hdisplay) | DVO_SRCDIM_VERTICAL(adjusted_mode->crtc_vdisplay)); intel_de_write(i915, DVO(port), dvo_val); } static enum drm_connector_status intel_dvo_detect(struct drm_connector *_connector, bool force) { struct intel_connector *connector = to_intel_connector(_connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); struct intel_dvo *intel_dvo = intel_attached_dvo(connector); drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n", connector->base.base.id, connector->base.name); if (!intel_display_device_enabled(i915)) return connector_status_disconnected; if (!intel_display_driver_check_access(i915)) return connector->base.status; return intel_dvo->dev.dev_ops->detect(&intel_dvo->dev); } static int intel_dvo_get_modes(struct drm_connector *_connector) { struct intel_connector *connector = to_intel_connector(_connector); struct drm_i915_private *i915 = to_i915(connector->base.dev); int num_modes; if (!intel_display_driver_check_access(i915)) return drm_edid_connector_add_modes(&connector->base); /* * We should probably have an i2c driver get_modes function for those * devices which will have a fixed set of modes determined by the chip * (TV-out, for example), but for now with just TMDS and LVDS, * that's not the case. */ num_modes = intel_ddc_get_modes(&connector->base, connector->base.ddc); if (num_modes) return num_modes; return intel_panel_get_modes(connector); } static const struct drm_connector_funcs intel_dvo_connector_funcs = { .detect = intel_dvo_detect, .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_connector_destroy, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_dvo_connector_helper_funcs = { .mode_valid = intel_dvo_mode_valid, .get_modes = intel_dvo_get_modes, }; static void intel_dvo_enc_destroy(struct drm_encoder *encoder) { struct intel_dvo *intel_dvo = enc_to_dvo(to_intel_encoder(encoder)); if (intel_dvo->dev.dev_ops->destroy) intel_dvo->dev.dev_ops->destroy(&intel_dvo->dev); intel_encoder_destroy(encoder); } static const struct drm_encoder_funcs intel_dvo_enc_funcs = { .destroy = intel_dvo_enc_destroy, }; static int intel_dvo_encoder_type(const struct intel_dvo_device *dvo) { switch (dvo->type) { case INTEL_DVO_CHIP_TMDS: return DRM_MODE_ENCODER_TMDS; case INTEL_DVO_CHIP_LVDS_NO_FIXED: case INTEL_DVO_CHIP_LVDS: return DRM_MODE_ENCODER_LVDS; default: MISSING_CASE(dvo->type); return DRM_MODE_ENCODER_NONE; } } static int intel_dvo_connector_type(const struct intel_dvo_device *dvo) { switch (dvo->type) { case INTEL_DVO_CHIP_TMDS: return DRM_MODE_CONNECTOR_DVII; case INTEL_DVO_CHIP_LVDS_NO_FIXED: case INTEL_DVO_CHIP_LVDS: return DRM_MODE_CONNECTOR_LVDS; default: MISSING_CASE(dvo->type); return DRM_MODE_CONNECTOR_Unknown; } } static bool intel_dvo_init_dev(struct drm_i915_private *dev_priv, struct intel_dvo *intel_dvo, const struct intel_dvo_device *dvo) { struct i2c_adapter *i2c; u32 dpll[I915_MAX_PIPES]; enum pipe pipe; int gpio; bool ret; /* * Allow the I2C driver info to specify the GPIO to be used in * special cases, but otherwise default to what's defined * in the spec. */ if (intel_gmbus_is_valid_pin(dev_priv, dvo->gpio)) gpio = dvo->gpio; else if (dvo->type == INTEL_DVO_CHIP_LVDS) gpio = GMBUS_PIN_SSC; else gpio = GMBUS_PIN_DPB; /* * Set up the I2C bus necessary for the chip we're probing. * It appears that everything is on GPIOE except for panels * on i830 laptops, which are on GPIOB (DVOA). */ i2c = intel_gmbus_get_adapter(dev_priv, gpio); intel_dvo->dev = *dvo; /* * GMBUS NAK handling seems to be unstable, hence let the * transmitter detection run in bit banging mode for now. */ intel_gmbus_force_bit(i2c, true); /* * ns2501 requires the DVO 2x clock before it will * respond to i2c accesses, so make sure we have * the clock enabled before we attempt to initialize * the device. */ for_each_pipe(dev_priv, pipe) dpll[pipe] = intel_de_rmw(dev_priv, DPLL(dev_priv, pipe), 0, DPLL_DVO_2X_MODE); ret = dvo->dev_ops->init(&intel_dvo->dev, i2c); /* restore the DVO 2x clock state to original */ for_each_pipe(dev_priv, pipe) { intel_de_write(dev_priv, DPLL(dev_priv, pipe), dpll[pipe]); } intel_gmbus_force_bit(i2c, false); return ret; } static bool intel_dvo_probe(struct drm_i915_private *i915, struct intel_dvo *intel_dvo) { int i; /* Now, try to find a controller */ for (i = 0; i < ARRAY_SIZE(intel_dvo_devices); i++) { if (intel_dvo_init_dev(i915, intel_dvo, &intel_dvo_devices[i])) return true; } return false; } void intel_dvo_init(struct drm_i915_private *i915) { struct intel_connector *connector; struct intel_encoder *encoder; struct intel_dvo *intel_dvo; intel_dvo = kzalloc(sizeof(*intel_dvo), GFP_KERNEL); if (!intel_dvo) return; connector = intel_connector_alloc(); if (!connector) { kfree(intel_dvo); return; } intel_dvo->attached_connector = connector; encoder = &intel_dvo->base; encoder->disable = intel_disable_dvo; encoder->enable = intel_enable_dvo; encoder->get_hw_state = intel_dvo_get_hw_state; encoder->get_config = intel_dvo_get_config; encoder->compute_config = intel_dvo_compute_config; encoder->pre_enable = intel_dvo_pre_enable; connector->get_hw_state = intel_dvo_connector_get_hw_state; if (!intel_dvo_probe(i915, intel_dvo)) { kfree(intel_dvo); intel_connector_free(connector); return; } assert_port_valid(i915, intel_dvo->dev.port); encoder->type = INTEL_OUTPUT_DVO; encoder->power_domain = POWER_DOMAIN_PORT_OTHER; encoder->port = intel_dvo->dev.port; encoder->pipe_mask = ~0; if (intel_dvo->dev.type != INTEL_DVO_CHIP_LVDS) encoder->cloneable = BIT(INTEL_OUTPUT_ANALOG) | BIT(INTEL_OUTPUT_DVO); drm_encoder_init(&i915->drm, &encoder->base, &intel_dvo_enc_funcs, intel_dvo_encoder_type(&intel_dvo->dev), "DVO %c", port_name(encoder->port)); drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] detected %s\n", encoder->base.base.id, encoder->base.name, intel_dvo->dev.name); if (intel_dvo->dev.type == INTEL_DVO_CHIP_TMDS) connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; connector->base.polled = connector->polled; drm_connector_init_with_ddc(&i915->drm, &connector->base, &intel_dvo_connector_funcs, intel_dvo_connector_type(&intel_dvo->dev), intel_gmbus_get_adapter(i915, GMBUS_PIN_DPC)); drm_connector_helper_add(&connector->base, &intel_dvo_connector_helper_funcs); connector->base.display_info.subpixel_order = SubPixelHorizontalRGB; intel_connector_attach_encoder(connector, encoder); if (intel_dvo->dev.type == INTEL_DVO_CHIP_LVDS) { /* * For our LVDS chipsets, we should hopefully be able * to dig the fixed panel mode out of the BIOS data. * However, it's in a different format from the BIOS * data on chipsets with integrated LVDS (stored in AIM * headers, likely), so for now, just get the current * mode being output through DVO. */ intel_panel_add_encoder_fixed_mode(connector, encoder); intel_panel_init(connector, NULL); } }