// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation * */ #include #include "i915_drv.h" #include "i915_irq.h" #include "i915_reg.h" #include "intel_crtc.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dsb.h" #include "intel_dsb_buffer.h" #include "intel_dsb_regs.h" #include "intel_vblank.h" #include "intel_vrr.h" #include "skl_watermark.h" #define CACHELINE_BYTES 64 struct intel_dsb { enum intel_dsb_id id; struct intel_dsb_buffer dsb_buf; struct intel_crtc *crtc; /* * maximum number of dwords the buffer will hold. */ unsigned int size; /* * free_pos will point the first free dword and * help in calculating tail of command buffer. */ unsigned int free_pos; /* * Previously emitted DSB instruction. Used to * identify/adjust the instruction for indexed * register writes. */ u32 ins[2]; /* * Start of the previously emitted DSB instruction. * Used to adjust the instruction for indexed * register writes. */ unsigned int ins_start_offset; u32 chicken; int hw_dewake_scanline; }; /** * DOC: DSB * * A DSB (Display State Buffer) is a queue of MMIO instructions in the memory * which can be offloaded to DSB HW in Display Controller. DSB HW is a DMA * engine that can be programmed to download the DSB from memory. * It allows driver to batch submit display HW programming. This helps to * reduce loading time and CPU activity, thereby making the context switch * faster. DSB Support added from Gen12 Intel graphics based platform. * * DSB's can access only the pipe, plane, and transcoder Data Island Packet * registers. * * DSB HW can support only register writes (both indexed and direct MMIO * writes). There are no registers reads possible with DSB HW engine. */ /* DSB opcodes. */ #define DSB_OPCODE_SHIFT 24 #define DSB_OPCODE_NOOP 0x0 #define DSB_OPCODE_MMIO_WRITE 0x1 #define DSB_BYTE_EN 0xf #define DSB_BYTE_EN_SHIFT 20 #define DSB_REG_VALUE_MASK 0xfffff #define DSB_OPCODE_WAIT_USEC 0x2 #define DSB_OPCODE_WAIT_SCANLINE 0x3 #define DSB_OPCODE_WAIT_VBLANKS 0x4 #define DSB_OPCODE_WAIT_DSL_IN 0x5 #define DSB_OPCODE_WAIT_DSL_OUT 0x6 #define DSB_SCANLINE_UPPER_SHIFT 20 #define DSB_SCANLINE_LOWER_SHIFT 0 #define DSB_OPCODE_INTERRUPT 0x7 #define DSB_OPCODE_INDEXED_WRITE 0x9 /* see DSB_REG_VALUE_MASK */ #define DSB_OPCODE_POLL 0xA /* see DSB_REG_VALUE_MASK */ static bool pre_commit_is_vrr_active(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); /* VRR will be enabled afterwards, if necessary */ if (intel_crtc_needs_modeset(new_crtc_state)) return false; /* VRR will have been disabled during intel_pre_plane_update() */ return old_crtc_state->vrr.enable && !intel_crtc_vrr_disabling(state, crtc); } static const struct intel_crtc_state * pre_commit_crtc_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); /* * During fastsets/etc. the transcoder is still * running with the old timings at this point. */ if (intel_crtc_needs_modeset(new_crtc_state)) return new_crtc_state; else return old_crtc_state; } static int dsb_vblank_delay(const struct intel_crtc_state *crtc_state) { return intel_mode_vblank_start(&crtc_state->hw.adjusted_mode) - intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); } static int dsb_vtotal(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); if (pre_commit_is_vrr_active(state, crtc)) return crtc_state->vrr.vmax; else return intel_mode_vtotal(&crtc_state->hw.adjusted_mode); } static int dsb_dewake_scanline_start(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); struct drm_i915_private *i915 = to_i915(state->base.dev); unsigned int latency = skl_watermark_max_latency(i915, 0); return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode) - intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, latency); } static int dsb_dewake_scanline_end(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); return intel_mode_vdisplay(&crtc_state->hw.adjusted_mode); } static int dsb_scanline_to_hw(struct intel_atomic_state *state, struct intel_crtc *crtc, int scanline) { const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); int vtotal = dsb_vtotal(state, crtc); return (scanline + vtotal - intel_crtc_scanline_offset(crtc_state)) % vtotal; } static u32 dsb_chicken(struct intel_atomic_state *state, struct intel_crtc *crtc) { if (pre_commit_is_vrr_active(state, crtc)) return DSB_SKIP_WAITS_EN | DSB_CTRL_WAIT_SAFE_WINDOW | DSB_CTRL_NO_WAIT_VBLANK | DSB_INST_WAIT_SAFE_WINDOW | DSB_INST_NO_WAIT_VBLANK; else return DSB_SKIP_WAITS_EN; } static bool assert_dsb_has_room(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct intel_display *display = to_intel_display(crtc->base.dev); /* each instruction is 2 dwords */ return !drm_WARN(display->drm, dsb->free_pos > dsb->size - 2, "[CRTC:%d:%s] DSB %d buffer overflow\n", crtc->base.base.id, crtc->base.name, dsb->id); } static void intel_dsb_dump(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct intel_display *display = to_intel_display(crtc->base.dev); int i; drm_dbg_kms(display->drm, "[CRTC:%d:%s] DSB %d commands {\n", crtc->base.base.id, crtc->base.name, dsb->id); for (i = 0; i < ALIGN(dsb->free_pos, 64 / 4); i += 4) drm_dbg_kms(display->drm, " 0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, intel_dsb_buffer_read(&dsb->dsb_buf, i), intel_dsb_buffer_read(&dsb->dsb_buf, i + 1), intel_dsb_buffer_read(&dsb->dsb_buf, i + 2), intel_dsb_buffer_read(&dsb->dsb_buf, i + 3)); drm_dbg_kms(display->drm, "}\n"); } static bool is_dsb_busy(struct intel_display *display, enum pipe pipe, enum intel_dsb_id dsb_id) { return intel_de_read_fw(display, DSB_CTRL(pipe, dsb_id)) & DSB_STATUS_BUSY; } static void intel_dsb_emit(struct intel_dsb *dsb, u32 ldw, u32 udw) { if (!assert_dsb_has_room(dsb)) return; /* Every instruction should be 8 byte aligned. */ dsb->free_pos = ALIGN(dsb->free_pos, 2); dsb->ins_start_offset = dsb->free_pos; dsb->ins[0] = ldw; dsb->ins[1] = udw; intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[0]); intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, dsb->ins[1]); } static bool intel_dsb_prev_ins_is_write(struct intel_dsb *dsb, u32 opcode, i915_reg_t reg) { u32 prev_opcode, prev_reg; /* * Nothing emitted yet? Must check before looking * at the actual data since i915_gem_object_create_internal() * does *not* give you zeroed memory! */ if (dsb->free_pos == 0) return false; prev_opcode = dsb->ins[1] & ~DSB_REG_VALUE_MASK; prev_reg = dsb->ins[1] & DSB_REG_VALUE_MASK; return prev_opcode == opcode && prev_reg == i915_mmio_reg_offset(reg); } static bool intel_dsb_prev_ins_is_mmio_write(struct intel_dsb *dsb, i915_reg_t reg) { /* only full byte-enables can be converted to indexed writes */ return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT | DSB_BYTE_EN << DSB_BYTE_EN_SHIFT, reg); } static bool intel_dsb_prev_ins_is_indexed_write(struct intel_dsb *dsb, i915_reg_t reg) { return intel_dsb_prev_ins_is_write(dsb, DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT, reg); } /** * intel_dsb_reg_write_indexed() - Emit register wriite to the DSB context * @dsb: DSB context * @reg: register address. * @val: value. * * This function is used for writing register-value pair in command * buffer of DSB. * * Note that indexed writes are slower than normal MMIO writes * for a small number (less than 5 or so) of writes to the same * register. */ void intel_dsb_reg_write_indexed(struct intel_dsb *dsb, i915_reg_t reg, u32 val) { /* * For example the buffer will look like below for 3 dwords for auto * increment register: * +--------------------------------------------------------+ * | size = 3 | offset &| value1 | value2 | value3 | zero | * | | opcode | | | | | * +--------------------------------------------------------+ * + + + + + + + * 0 4 8 12 16 20 24 * Byte * * As every instruction is 8 byte aligned the index of dsb instruction * will start always from even number while dealing with u32 array. If * we are writing odd no of dwords, Zeros will be added in the end for * padding. */ if (!intel_dsb_prev_ins_is_mmio_write(dsb, reg) && !intel_dsb_prev_ins_is_indexed_write(dsb, reg)) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } else { if (!assert_dsb_has_room(dsb)) return; /* convert to indexed write? */ if (intel_dsb_prev_ins_is_mmio_write(dsb, reg)) { u32 prev_val = dsb->ins[0]; dsb->ins[0] = 1; /* count */ dsb->ins[1] = (DSB_OPCODE_INDEXED_WRITE << DSB_OPCODE_SHIFT) | i915_mmio_reg_offset(reg); intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, dsb->ins[0]); intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 1, dsb->ins[1]); intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 2, prev_val); dsb->free_pos++; } intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos++, val); /* Update the count */ dsb->ins[0]++; intel_dsb_buffer_write(&dsb->dsb_buf, dsb->ins_start_offset + 0, dsb->ins[0]); /* if number of data words is odd, then the last dword should be 0.*/ if (dsb->free_pos & 0x1) intel_dsb_buffer_write(&dsb->dsb_buf, dsb->free_pos, 0); } } void intel_dsb_reg_write(struct intel_dsb *dsb, i915_reg_t reg, u32 val) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (DSB_BYTE_EN << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } static u32 intel_dsb_mask_to_byte_en(u32 mask) { return (!!(mask & 0xff000000) << 3 | !!(mask & 0x00ff0000) << 2 | !!(mask & 0x0000ff00) << 1 | !!(mask & 0x000000ff) << 0); } /* Note: mask implemented via byte enables! */ void intel_dsb_reg_write_masked(struct intel_dsb *dsb, i915_reg_t reg, u32 mask, u32 val) { intel_dsb_emit(dsb, val, (DSB_OPCODE_MMIO_WRITE << DSB_OPCODE_SHIFT) | (intel_dsb_mask_to_byte_en(mask) << DSB_BYTE_EN_SHIFT) | i915_mmio_reg_offset(reg)); } void intel_dsb_noop(struct intel_dsb *dsb, int count) { int i; for (i = 0; i < count; i++) intel_dsb_emit(dsb, 0, DSB_OPCODE_NOOP << DSB_OPCODE_SHIFT); } void intel_dsb_nonpost_start(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; enum pipe pipe = crtc->pipe; intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), DSB_NON_POSTED, DSB_NON_POSTED); intel_dsb_noop(dsb, 4); } void intel_dsb_nonpost_end(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; enum pipe pipe = crtc->pipe; intel_dsb_reg_write_masked(dsb, DSB_CTRL(pipe, dsb->id), DSB_NON_POSTED, 0); intel_dsb_noop(dsb, 4); } void intel_dsb_interrupt(struct intel_dsb *dsb) { intel_dsb_emit(dsb, 0, DSB_OPCODE_INTERRUPT << DSB_OPCODE_SHIFT); } void intel_dsb_wait_usec(struct intel_dsb *dsb, int count) { intel_dsb_emit(dsb, count, DSB_OPCODE_WAIT_USEC << DSB_OPCODE_SHIFT); } void intel_dsb_wait_vblanks(struct intel_dsb *dsb, int count) { intel_dsb_emit(dsb, count, DSB_OPCODE_WAIT_VBLANKS << DSB_OPCODE_SHIFT); } static void intel_dsb_emit_wait_dsl(struct intel_dsb *dsb, u32 opcode, int lower, int upper) { u64 window = ((u64)upper << DSB_SCANLINE_UPPER_SHIFT) | ((u64)lower << DSB_SCANLINE_LOWER_SHIFT); intel_dsb_emit(dsb, lower_32_bits(window), (opcode << DSB_OPCODE_SHIFT) | upper_32_bits(window)); } static void intel_dsb_wait_dsl(struct intel_atomic_state *state, struct intel_dsb *dsb, int lower_in, int upper_in, int lower_out, int upper_out) { struct intel_crtc *crtc = dsb->crtc; lower_in = dsb_scanline_to_hw(state, crtc, lower_in); upper_in = dsb_scanline_to_hw(state, crtc, upper_in); lower_out = dsb_scanline_to_hw(state, crtc, lower_out); upper_out = dsb_scanline_to_hw(state, crtc, upper_out); if (upper_in >= lower_in) intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_IN, lower_in, upper_in); else if (upper_out >= lower_out) intel_dsb_emit_wait_dsl(dsb, DSB_OPCODE_WAIT_DSL_OUT, lower_out, upper_out); else drm_WARN_ON(crtc->base.dev, 1); /* assert_dsl_ok() should have caught it already */ } static void assert_dsl_ok(struct intel_atomic_state *state, struct intel_dsb *dsb, int start, int end) { struct intel_crtc *crtc = dsb->crtc; int vtotal = dsb_vtotal(state, crtc); /* * Waiting for the entire frame doesn't make sense, * (IN==don't wait, OUT=wait forever). */ drm_WARN(crtc->base.dev, (end - start + vtotal) % vtotal == vtotal - 1, "[CRTC:%d:%s] DSB %d bad scanline window wait: %d-%d (vt=%d)\n", crtc->base.base.id, crtc->base.name, dsb->id, start, end, vtotal); } void intel_dsb_wait_scanline_in(struct intel_atomic_state *state, struct intel_dsb *dsb, int start, int end) { assert_dsl_ok(state, dsb, start, end); intel_dsb_wait_dsl(state, dsb, start, end, end + 1, start - 1); } void intel_dsb_wait_scanline_out(struct intel_atomic_state *state, struct intel_dsb *dsb, int start, int end) { assert_dsl_ok(state, dsb, start, end); intel_dsb_wait_dsl(state, dsb, end + 1, start - 1, start, end); } static void intel_dsb_align_tail(struct intel_dsb *dsb) { u32 aligned_tail, tail; tail = dsb->free_pos * 4; aligned_tail = ALIGN(tail, CACHELINE_BYTES); if (aligned_tail > tail) intel_dsb_buffer_memset(&dsb->dsb_buf, dsb->free_pos, 0, aligned_tail - tail); dsb->free_pos = aligned_tail / 4; } void intel_dsb_finish(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; /* * DSB_FORCE_DEWAKE remains active even after DSB is * disabled, so make sure to clear it (if set during * intel_dsb_commit()). And clear DSB_ENABLE_DEWAKE as * well for good measure. */ intel_dsb_reg_write(dsb, DSB_PMCTRL(crtc->pipe, dsb->id), 0); intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(crtc->pipe, dsb->id), DSB_FORCE_DEWAKE, 0); intel_dsb_align_tail(dsb); intel_dsb_buffer_flush_map(&dsb->dsb_buf); } static u32 dsb_error_int_status(struct intel_display *display) { u32 errors; errors = DSB_GTT_FAULT_INT_STATUS | DSB_RSPTIMEOUT_INT_STATUS | DSB_POLL_ERR_INT_STATUS; /* * All the non-existing status bits operate as * normal r/w bits, so any attempt to clear them * will just end up setting them. Never do that so * we won't mistake them for actual error interrupts. */ if (DISPLAY_VER(display) >= 14) errors |= DSB_ATS_FAULT_INT_STATUS; return errors; } static u32 dsb_error_int_en(struct intel_display *display) { u32 errors; errors = DSB_GTT_FAULT_INT_EN | DSB_RSPTIMEOUT_INT_EN | DSB_POLL_ERR_INT_EN; if (DISPLAY_VER(display) >= 14) errors |= DSB_ATS_FAULT_INT_EN; return errors; } void intel_dsb_vblank_evade(struct intel_atomic_state *state, struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); /* FIXME calibrate sensibly */ int latency = intel_usecs_to_scanlines(&crtc_state->hw.adjusted_mode, 20); int vblank_delay = dsb_vblank_delay(crtc_state); int start, end; if (pre_commit_is_vrr_active(state, crtc)) { end = intel_vrr_vmin_vblank_start(crtc_state); start = end - vblank_delay - latency; intel_dsb_wait_scanline_out(state, dsb, start, end); end = intel_vrr_vmax_vblank_start(crtc_state); start = end - vblank_delay - latency; intel_dsb_wait_scanline_out(state, dsb, start, end); } else { end = intel_mode_vblank_start(&crtc_state->hw.adjusted_mode); start = end - vblank_delay - latency; intel_dsb_wait_scanline_out(state, dsb, start, end); } } static void _intel_dsb_chain(struct intel_atomic_state *state, struct intel_dsb *dsb, struct intel_dsb *chained_dsb, u32 ctrl) { struct intel_display *display = to_intel_display(state->base.dev); struct intel_crtc *crtc = dsb->crtc; enum pipe pipe = crtc->pipe; u32 tail; if (drm_WARN_ON(display->drm, dsb->id == chained_dsb->id)) return; tail = chained_dsb->free_pos * 4; if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) return; intel_dsb_reg_write(dsb, DSB_CTRL(pipe, chained_dsb->id), ctrl | DSB_ENABLE); intel_dsb_reg_write(dsb, DSB_CHICKEN(pipe, chained_dsb->id), dsb_chicken(state, crtc)); intel_dsb_reg_write(dsb, DSB_INTERRUPT(pipe, chained_dsb->id), dsb_error_int_status(display) | DSB_PROG_INT_STATUS | dsb_error_int_en(display) | DSB_PROG_INT_EN); if (ctrl & DSB_WAIT_FOR_VBLANK) { int dewake_scanline = dsb_dewake_scanline_start(state, crtc); int hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dewake_scanline); intel_dsb_reg_write(dsb, DSB_PMCTRL(pipe, chained_dsb->id), DSB_ENABLE_DEWAKE | DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); } intel_dsb_reg_write(dsb, DSB_HEAD(pipe, chained_dsb->id), intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf)); intel_dsb_reg_write(dsb, DSB_TAIL(pipe, chained_dsb->id), intel_dsb_buffer_ggtt_offset(&chained_dsb->dsb_buf) + tail); if (ctrl & DSB_WAIT_FOR_VBLANK) { /* * Keep DEwake alive via the first DSB, in * case we're already past dewake_scanline, * and thus DSB_ENABLE_DEWAKE on the second * DSB won't do its job. */ intel_dsb_reg_write_masked(dsb, DSB_PMCTRL_2(pipe, dsb->id), DSB_FORCE_DEWAKE, DSB_FORCE_DEWAKE); intel_dsb_wait_scanline_out(state, dsb, dsb_dewake_scanline_start(state, crtc), dsb_dewake_scanline_end(state, crtc)); } } void intel_dsb_chain(struct intel_atomic_state *state, struct intel_dsb *dsb, struct intel_dsb *chained_dsb, bool wait_for_vblank) { _intel_dsb_chain(state, dsb, chained_dsb, wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0); } void intel_dsb_wait_vblank_delay(struct intel_atomic_state *state, struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; const struct intel_crtc_state *crtc_state = pre_commit_crtc_state(state, crtc); int usecs = intel_scanlines_to_usecs(&crtc_state->hw.adjusted_mode, dsb_vblank_delay(crtc_state)) + 1; intel_dsb_wait_usec(dsb, usecs); } static void _intel_dsb_commit(struct intel_dsb *dsb, u32 ctrl, int hw_dewake_scanline) { struct intel_crtc *crtc = dsb->crtc; struct intel_display *display = to_intel_display(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tail; tail = dsb->free_pos * 4; if (drm_WARN_ON(display->drm, !IS_ALIGNED(tail, CACHELINE_BYTES))) return; if (is_dsb_busy(display, pipe, dsb->id)) { drm_err(display->drm, "[CRTC:%d:%s] DSB %d is busy\n", crtc->base.base.id, crtc->base.name, dsb->id); return; } intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), ctrl | DSB_ENABLE); intel_de_write_fw(display, DSB_CHICKEN(pipe, dsb->id), dsb->chicken); intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), dsb_error_int_status(display) | DSB_PROG_INT_STATUS | dsb_error_int_en(display) | DSB_PROG_INT_EN); intel_de_write_fw(display, DSB_HEAD(pipe, dsb->id), intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf)); if (hw_dewake_scanline >= 0) { int diff, position; intel_de_write_fw(display, DSB_PMCTRL(pipe, dsb->id), DSB_ENABLE_DEWAKE | DSB_SCANLINE_FOR_DEWAKE(hw_dewake_scanline)); /* * Force DEwake immediately if we're already past * or close to racing past the target scanline. */ position = intel_de_read_fw(display, PIPEDSL(display, pipe)) & PIPEDSL_LINE_MASK; diff = hw_dewake_scanline - position; intel_de_write_fw(display, DSB_PMCTRL_2(pipe, dsb->id), (diff >= 0 && diff < 5 ? DSB_FORCE_DEWAKE : 0) | DSB_BLOCK_DEWAKE_EXTENSION); } intel_de_write_fw(display, DSB_TAIL(pipe, dsb->id), intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf) + tail); } /** * intel_dsb_commit() - Trigger workload execution of DSB. * @dsb: DSB context * @wait_for_vblank: wait for vblank before executing * * This function is used to do actual write to hardware using DSB. */ void intel_dsb_commit(struct intel_dsb *dsb, bool wait_for_vblank) { _intel_dsb_commit(dsb, wait_for_vblank ? DSB_WAIT_FOR_VBLANK : 0, wait_for_vblank ? dsb->hw_dewake_scanline : -1); } void intel_dsb_wait(struct intel_dsb *dsb) { struct intel_crtc *crtc = dsb->crtc; struct intel_display *display = to_intel_display(crtc->base.dev); enum pipe pipe = crtc->pipe; if (wait_for(!is_dsb_busy(display, pipe, dsb->id), 1)) { u32 offset = intel_dsb_buffer_ggtt_offset(&dsb->dsb_buf); intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), DSB_ENABLE | DSB_HALT); drm_err(display->drm, "[CRTC:%d:%s] DSB %d timed out waiting for idle (current head=0x%x, head=0x%x, tail=0x%x)\n", crtc->base.base.id, crtc->base.name, dsb->id, intel_de_read_fw(display, DSB_CURRENT_HEAD(pipe, dsb->id)) - offset, intel_de_read_fw(display, DSB_HEAD(pipe, dsb->id)) - offset, intel_de_read_fw(display, DSB_TAIL(pipe, dsb->id)) - offset); intel_dsb_dump(dsb); } /* Attempt to reset it */ dsb->free_pos = 0; dsb->ins_start_offset = 0; dsb->ins[0] = 0; dsb->ins[1] = 0; intel_de_write_fw(display, DSB_CTRL(pipe, dsb->id), 0); intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb->id), dsb_error_int_status(display) | DSB_PROG_INT_STATUS); } /** * intel_dsb_prepare() - Allocate, pin and map the DSB command buffer. * @state: the atomic state * @crtc: the CRTC * @dsb_id: the DSB engine to use * @max_cmds: number of commands we need to fit into command buffer * * This function prepare the command buffer which is used to store dsb * instructions with data. * * Returns: * DSB context, NULL on failure */ struct intel_dsb *intel_dsb_prepare(struct intel_atomic_state *state, struct intel_crtc *crtc, enum intel_dsb_id dsb_id, unsigned int max_cmds) { struct drm_i915_private *i915 = to_i915(state->base.dev); intel_wakeref_t wakeref; struct intel_dsb *dsb; unsigned int size; if (!HAS_DSB(i915)) return NULL; if (!i915->display.params.enable_dsb) return NULL; dsb = kzalloc(sizeof(*dsb), GFP_KERNEL); if (!dsb) goto out; wakeref = intel_runtime_pm_get(&i915->runtime_pm); /* ~1 qword per instruction, full cachelines */ size = ALIGN(max_cmds * 8, CACHELINE_BYTES); if (!intel_dsb_buffer_create(crtc, &dsb->dsb_buf, size)) goto out_put_rpm; intel_runtime_pm_put(&i915->runtime_pm, wakeref); dsb->id = dsb_id; dsb->crtc = crtc; dsb->size = size / 4; /* in dwords */ dsb->chicken = dsb_chicken(state, crtc); dsb->hw_dewake_scanline = dsb_scanline_to_hw(state, crtc, dsb_dewake_scanline_start(state, crtc)); return dsb; out_put_rpm: intel_runtime_pm_put(&i915->runtime_pm, wakeref); kfree(dsb); out: drm_info_once(&i915->drm, "[CRTC:%d:%s] DSB %d queue setup failed, will fallback to MMIO for display HW programming\n", crtc->base.base.id, crtc->base.name, dsb_id); return NULL; } /** * intel_dsb_cleanup() - To cleanup DSB context. * @dsb: DSB context * * This function cleanup the DSB context by unpinning and releasing * the VMA object associated with it. */ void intel_dsb_cleanup(struct intel_dsb *dsb) { intel_dsb_buffer_cleanup(&dsb->dsb_buf); kfree(dsb); } void intel_dsb_irq_handler(struct intel_display *display, enum pipe pipe, enum intel_dsb_id dsb_id) { struct intel_crtc *crtc = intel_crtc_for_pipe(display, pipe); u32 tmp, errors; tmp = intel_de_read_fw(display, DSB_INTERRUPT(pipe, dsb_id)); intel_de_write_fw(display, DSB_INTERRUPT(pipe, dsb_id), tmp); if (tmp & DSB_PROG_INT_STATUS) { spin_lock(&display->drm->event_lock); if (crtc->dsb_event) { /* * Update vblank counter/timestmap in case it * hasn't been done yet for this frame. */ drm_crtc_accurate_vblank_count(&crtc->base); drm_crtc_send_vblank_event(&crtc->base, crtc->dsb_event); crtc->dsb_event = NULL; } spin_unlock(&display->drm->event_lock); } errors = tmp & dsb_error_int_status(display); if (errors) drm_err(display->drm, "[CRTC:%d:%s] DSB %d error interrupt: 0x%x\n", crtc->base.base.id, crtc->base.name, dsb_id, errors); }