// SPDX-License-Identifier: MIT /* * Copyright © 2023 Intel Corporation */ #include #include #include "i915_reg.h" #include "intel_cx0_phy.h" #include "intel_cx0_phy_regs.h" #include "intel_ddi.h" #include "intel_ddi_buf_trans.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dp.h" #include "intel_hdmi.h" #include "intel_panel.h" #include "intel_psr.h" #include "intel_tc.h" #define MB_WRITE_COMMITTED true #define MB_WRITE_UNCOMMITTED false #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \ for ((__lane) = 0; (__lane) < 2; (__lane)++) \ for_each_if((__lane_mask) & BIT(__lane)) #define INTEL_CX0_LANE0 BIT(0) #define INTEL_CX0_LANE1 BIT(1) #define INTEL_CX0_BOTH_LANES (INTEL_CX0_LANE1 | INTEL_CX0_LANE0) bool intel_encoder_is_c10phy(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); if ((IS_LUNARLAKE(i915) || IS_METEORLAKE(i915)) && phy < PHY_C) return true; return false; } static int lane_mask_to_lane(u8 lane_mask) { if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) || hweight8(lane_mask) != 1)) return 0; return ilog2(lane_mask); } static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (!intel_tc_port_in_dp_alt_mode(dig_port)) return INTEL_CX0_BOTH_LANES; /* * In DP-alt with pin assignment D, only PHY lane 0 is owned * by display and lane 1 is owned by USB. */ return intel_tc_port_max_lane_count(dig_port) > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0; } static void assert_dc_off(struct drm_i915_private *i915) { bool enabled; enabled = intel_display_power_is_enabled(i915, POWER_DOMAIN_DC_OFF); drm_WARN_ON(&i915->drm, !enabled); } static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder) { int lane; struct drm_i915_private *i915 = to_i915(encoder->base.dev); for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane) intel_de_rmw(i915, XELPDP_PORT_MSGBUS_TIMER(i915, encoder->port, lane), XELPDP_PORT_MSGBUS_TIMER_VAL_MASK, XELPDP_PORT_MSGBUS_TIMER_VAL); } /* * Prepare HW for CX0 phy transactions. * * It is required that PSR and DC5/6 are disabled before any CX0 message * bus transaction is executed. * * We also do the msgbus timer programming here to ensure that the timer * is already programmed before any access to the msgbus. */ static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder) { intel_wakeref_t wakeref; struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_psr_pause(intel_dp); wakeref = intel_display_power_get(i915, POWER_DOMAIN_DC_OFF); intel_cx0_program_msgbus_timer(encoder); return wakeref; } static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); intel_psr_resume(intel_dp); intel_display_power_put(i915, POWER_DOMAIN_DC_OFF, wakeref); } static void intel_clear_response_ready_flag(struct intel_encoder *encoder, int lane) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); intel_de_rmw(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, encoder->port, lane), 0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET); } static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_RESET); if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_RESET, XELPDP_MSGBUS_TIMEOUT_SLOW)) { drm_err_once(&i915->drm, "Failed to bring PHY %c to idle.\n", phy_name(phy)); return; } intel_clear_response_ready_flag(encoder, lane); } static int intel_cx0_wait_for_ack(struct intel_encoder *encoder, int command, int lane, u32 *val) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); if (intel_de_wait_custom(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane), XELPDP_PORT_P2M_RESPONSE_READY, XELPDP_PORT_P2M_RESPONSE_READY, XELPDP_MSGBUS_TIMEOUT_FAST_US, XELPDP_MSGBUS_TIMEOUT_SLOW, val)) { drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for message ACK. Status: 0x%x\n", phy_name(phy), *val); if (!(intel_de_read(i915, XELPDP_PORT_MSGBUS_TIMER(i915, port, lane)) & XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT)) drm_dbg_kms(&i915->drm, "PHY %c Hardware did not detect a timeout\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); return -ETIMEDOUT; } if (*val & XELPDP_PORT_P2M_ERROR_SET) { drm_dbg_kms(&i915->drm, "PHY %c Error occurred during %s command. Status: 0x%x\n", phy_name(phy), command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val); intel_cx0_bus_reset(encoder, lane); return -EINVAL; } if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) { drm_dbg_kms(&i915->drm, "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n", phy_name(phy), command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val); intel_cx0_bus_reset(encoder, lane); return -EINVAL; } return 0; } static int __intel_cx0_read_once(struct intel_encoder *encoder, int lane, u16 addr) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); int ack; u32 val; if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING, XELPDP_MSGBUS_TIMEOUT_SLOW)) { drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); return -ETIMEDOUT; } intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING | XELPDP_PORT_M2P_COMMAND_READ | XELPDP_PORT_M2P_ADDRESS(addr)); ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val); if (ack < 0) return ack; intel_clear_response_ready_flag(encoder, lane); /* * FIXME: Workaround to let HW to settle * down and let the message bus to end up * in a known state */ intel_cx0_bus_reset(encoder, lane); return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val); } static u8 __intel_cx0_read(struct intel_encoder *encoder, int lane, u16 addr) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); int i, status; assert_dc_off(i915); /* 3 tries is assumed to be enough to read successfully */ for (i = 0; i < 3; i++) { status = __intel_cx0_read_once(encoder, lane, addr); if (status >= 0) return status; } drm_err_once(&i915->drm, "PHY %c Read %04x failed after %d retries.\n", phy_name(phy), addr, i); return 0; } static u8 intel_cx0_read(struct intel_encoder *encoder, u8 lane_mask, u16 addr) { int lane = lane_mask_to_lane(lane_mask); return __intel_cx0_read(encoder, lane, addr); } static int __intel_cx0_write_once(struct intel_encoder *encoder, int lane, u16 addr, u8 data, bool committed) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); int ack; u32 val; if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING, XELPDP_MSGBUS_TIMEOUT_SLOW)) { drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); return -ETIMEDOUT; } intel_de_write(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING | (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED : XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) | XELPDP_PORT_M2P_DATA(data) | XELPDP_PORT_M2P_ADDRESS(addr)); if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING, XELPDP_MSGBUS_TIMEOUT_SLOW)) { drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); return -ETIMEDOUT; } if (committed) { ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val); if (ack < 0) return ack; } else if ((intel_de_read(i915, XELPDP_PORT_P2M_MSGBUS_STATUS(i915, port, lane)) & XELPDP_PORT_P2M_ERROR_SET)) { drm_dbg_kms(&i915->drm, "PHY %c Error occurred during write command.\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); return -EINVAL; } intel_clear_response_ready_flag(encoder, lane); /* * FIXME: Workaround to let HW to settle * down and let the message bus to end up * in a known state */ intel_cx0_bus_reset(encoder, lane); return 0; } static void __intel_cx0_write(struct intel_encoder *encoder, int lane, u16 addr, u8 data, bool committed) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); int i, status; assert_dc_off(i915); /* 3 tries is assumed to be enough to write successfully */ for (i = 0; i < 3; i++) { status = __intel_cx0_write_once(encoder, lane, addr, data, committed); if (status == 0) return; } drm_err_once(&i915->drm, "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i); } static void intel_cx0_write(struct intel_encoder *encoder, u8 lane_mask, u16 addr, u8 data, bool committed) { int lane; for_each_cx0_lane_in_mask(lane_mask, lane) __intel_cx0_write(encoder, lane, addr, data, committed); } static void intel_c20_sram_write(struct intel_encoder *encoder, int lane, u16 addr, u16 data) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); assert_dc_off(i915); intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0); intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0); intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0); intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1); } static u16 intel_c20_sram_read(struct intel_encoder *encoder, int lane, u16 addr) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); u16 val; assert_dc_off(i915); intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0); intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1); val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H); val <<= 8; val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L); return val; } static void __intel_cx0_rmw(struct intel_encoder *encoder, int lane, u16 addr, u8 clear, u8 set, bool committed) { u8 old, val; old = __intel_cx0_read(encoder, lane, addr); val = (old & ~clear) | set; if (val != old) __intel_cx0_write(encoder, lane, addr, val, committed); } static void intel_cx0_rmw(struct intel_encoder *encoder, u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed) { u8 lane; for_each_cx0_lane_in_mask(lane_mask, lane) __intel_cx0_rmw(encoder, lane, addr, clear, set, committed); } static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) { if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) && (crtc_state->port_clock == 540000 || crtc_state->port_clock == 810000)) return 5; else return 4; } else { return 5; } } static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state) { if (intel_crtc_has_dp_encoder(crtc_state)) { if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) && (crtc_state->port_clock == 540000 || crtc_state->port_clock == 810000)) return 5; else return 2; } else { return 6; } } void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); const struct intel_ddi_buf_trans *trans; u8 owned_lane_mask; intel_wakeref_t wakeref; int n_entries, ln; struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (intel_tc_port_in_tbt_alt_mode(dig_port)) return; owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder); wakeref = intel_cx0_phy_transaction_begin(encoder); trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries); if (drm_WARN_ON_ONCE(&i915->drm, !trans)) { intel_cx0_phy_transaction_end(encoder, wakeref); return; } if (intel_encoder_is_c10phy(encoder)) { intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED); intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3), C10_CMN3_TXVBOOST_MASK, C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)), MB_WRITE_UNCOMMITTED); intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1), C10_TX1_TERMCTL_MASK, C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)), MB_WRITE_COMMITTED); } for (ln = 0; ln < crtc_state->lane_count; ln++) { int level = intel_ddi_level(encoder, crtc_state, ln); int lane = ln / 2; int tx = ln % 2; u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1; if (!(lane_mask & owned_lane_mask)) continue; intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0), C10_PHY_OVRD_LEVEL_MASK, C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor), MB_WRITE_COMMITTED); intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1), C10_PHY_OVRD_LEVEL_MASK, C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing), MB_WRITE_COMMITTED); intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2), C10_PHY_OVRD_LEVEL_MASK, C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor), MB_WRITE_COMMITTED); } /* Write Override enables in 0xD71 */ intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD, 0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2, MB_WRITE_COMMITTED); if (intel_encoder_is_c10phy(encoder)) intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED); intel_cx0_phy_transaction_end(encoder, wakeref); } /* * Basic DP link rates with 38.4 MHz reference clock. * Note: The tables below are with SSC. In non-ssc * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be * programmed 0. */ static const struct intel_c10pll_state mtl_c10_dp_rbr = { .clock = 162000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0xB4, .pll[1] = 0, .pll[2] = 0x30, .pll[3] = 0x1, .pll[4] = 0x26, .pll[5] = 0x0C, .pll[6] = 0x98, .pll[7] = 0x46, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xC0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x2, .pll[16] = 0x84, .pll[17] = 0x4F, .pll[18] = 0xE5, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_edp_r216 = { .clock = 216000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0x4, .pll[1] = 0, .pll[2] = 0xA2, .pll[3] = 0x1, .pll[4] = 0x33, .pll[5] = 0x10, .pll[6] = 0x75, .pll[7] = 0xB3, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x2, .pll[16] = 0x85, .pll[17] = 0x0F, .pll[18] = 0xE6, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_edp_r243 = { .clock = 243000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0x34, .pll[1] = 0, .pll[2] = 0xDA, .pll[3] = 0x1, .pll[4] = 0x39, .pll[5] = 0x12, .pll[6] = 0xE3, .pll[7] = 0xE9, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0x20, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x2, .pll[16] = 0x85, .pll[17] = 0x8F, .pll[18] = 0xE6, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_dp_hbr1 = { .clock = 270000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0xF4, .pll[1] = 0, .pll[2] = 0xF8, .pll[3] = 0x0, .pll[4] = 0x20, .pll[5] = 0x0A, .pll[6] = 0x29, .pll[7] = 0x10, .pll[8] = 0x1, /* Verify */ .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xA0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x1, .pll[16] = 0x84, .pll[17] = 0x4F, .pll[18] = 0xE5, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_edp_r324 = { .clock = 324000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0xB4, .pll[1] = 0, .pll[2] = 0x30, .pll[3] = 0x1, .pll[4] = 0x26, .pll[5] = 0x0C, .pll[6] = 0x98, .pll[7] = 0x46, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xC0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x1, .pll[16] = 0x85, .pll[17] = 0x4F, .pll[18] = 0xE6, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_edp_r432 = { .clock = 432000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0x4, .pll[1] = 0, .pll[2] = 0xA2, .pll[3] = 0x1, .pll[4] = 0x33, .pll[5] = 0x10, .pll[6] = 0x75, .pll[7] = 0xB3, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x1, .pll[16] = 0x85, .pll[17] = 0x0F, .pll[18] = 0xE6, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_dp_hbr2 = { .clock = 540000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0xF4, .pll[1] = 0, .pll[2] = 0xF8, .pll[3] = 0, .pll[4] = 0x20, .pll[5] = 0x0A, .pll[6] = 0x29, .pll[7] = 0x10, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xA0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0, .pll[16] = 0x84, .pll[17] = 0x4F, .pll[18] = 0xE5, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_edp_r675 = { .clock = 675000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0xB4, .pll[1] = 0, .pll[2] = 0x3E, .pll[3] = 0x1, .pll[4] = 0xA8, .pll[5] = 0x0C, .pll[6] = 0x33, .pll[7] = 0x54, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xC8, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0, .pll[16] = 0x85, .pll[17] = 0x8F, .pll[18] = 0xE6, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_dp_hbr3 = { .clock = 810000, .tx = 0x10, .cmn = 0x21, .pll[0] = 0x34, .pll[1] = 0, .pll[2] = 0x84, .pll[3] = 0x1, .pll[4] = 0x30, .pll[5] = 0x0F, .pll[6] = 0x3D, .pll[7] = 0x98, .pll[8] = 0x1, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0xF0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0, .pll[16] = 0x84, .pll[17] = 0x0F, .pll[18] = 0xE5, .pll[19] = 0x23, }; static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = { &mtl_c10_dp_rbr, &mtl_c10_dp_hbr1, &mtl_c10_dp_hbr2, &mtl_c10_dp_hbr3, NULL, }; static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = { &mtl_c10_dp_rbr, &mtl_c10_edp_r216, &mtl_c10_edp_r243, &mtl_c10_dp_hbr1, &mtl_c10_edp_r324, &mtl_c10_edp_r432, &mtl_c10_dp_hbr2, &mtl_c10_edp_r675, &mtl_c10_dp_hbr3, NULL, }; /* C20 basic DP 1.4 tables */ static const struct intel_c20pll_state mtl_c20_dp_rbr = { .clock = 162000, .tx = { 0xbe88, /* tx cfg0 */ 0x5800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x50a8, /* mpllb cfg0 */ 0x2120, /* mpllb cfg1 */ 0xcd9a, /* mpllb cfg2 */ 0xbfc1, /* mpllb cfg3 */ 0x5ab8, /* mpllb cfg4 */ 0x4c34, /* mpllb cfg5 */ 0x2000, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x6000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0000, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_dp_hbr1 = { .clock = 270000, .tx = { 0xbe88, /* tx cfg0 */ 0x4800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x308c, /* mpllb cfg0 */ 0x2110, /* mpllb cfg1 */ 0xcc9c, /* mpllb cfg2 */ 0xbfc1, /* mpllb cfg3 */ 0x4b9a, /* mpllb cfg4 */ 0x3f81, /* mpllb cfg5 */ 0x2000, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x5000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0000, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_dp_hbr2 = { .clock = 540000, .tx = { 0xbe88, /* tx cfg0 */ 0x4800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x108c, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0xcc9c, /* mpllb cfg2 */ 0xbfc1, /* mpllb cfg3 */ 0x4b9a, /* mpllb cfg4 */ 0x3f81, /* mpllb cfg5 */ 0x2000, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x5000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0000, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_dp_hbr3 = { .clock = 810000, .tx = { 0xbe88, /* tx cfg0 */ 0x4800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x10d2, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0x8d98, /* mpllb cfg2 */ 0xbfc1, /* mpllb cfg3 */ 0x7166, /* mpllb cfg4 */ 0x5f42, /* mpllb cfg5 */ 0x2000, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x7800, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0000, /* mpllb cfg10 */ }, }; /* C20 basic DP 2.0 tables */ static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = { .clock = 1000000, /* 10 Gbps */ .tx = { 0xbe21, /* tx cfg0 */ 0xe800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0700, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mplla = { 0x3104, /* mplla cfg0 */ 0xd105, /* mplla cfg1 */ 0xc025, /* mplla cfg2 */ 0xc025, /* mplla cfg3 */ 0x8c00, /* mplla cfg4 */ 0x759a, /* mplla cfg5 */ 0x4000, /* mplla cfg6 */ 0x0003, /* mplla cfg7 */ 0x3555, /* mplla cfg8 */ 0x0001, /* mplla cfg9 */ }, }; static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = { .clock = 1350000, /* 13.5 Gbps */ .tx = { 0xbea0, /* tx cfg0 */ 0x4800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x015f, /* mpllb cfg0 */ 0x2205, /* mpllb cfg1 */ 0x1b17, /* mpllb cfg2 */ 0xffc1, /* mpllb cfg3 */ 0xe100, /* mpllb cfg4 */ 0xbd00, /* mpllb cfg5 */ 0x2000, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x4800, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0000, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = { .clock = 2000000, /* 20 Gbps */ .tx = { 0xbe20, /* tx cfg0 */ 0x4800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = {0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mplla = { 0x3104, /* mplla cfg0 */ 0xd105, /* mplla cfg1 */ 0xc025, /* mplla cfg2 */ 0xc025, /* mplla cfg3 */ 0xa6ab, /* mplla cfg4 */ 0x8c00, /* mplla cfg5 */ 0x4000, /* mplla cfg6 */ 0x0003, /* mplla cfg7 */ 0x3555, /* mplla cfg8 */ 0x0001, /* mplla cfg9 */ }, }; static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = { &mtl_c20_dp_rbr, &mtl_c20_dp_hbr1, &mtl_c20_dp_hbr2, &mtl_c20_dp_hbr3, &mtl_c20_dp_uhbr10, &mtl_c20_dp_uhbr13_5, &mtl_c20_dp_uhbr20, NULL, }; /* * HDMI link rates with 38.4 MHz reference clock. */ static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = { .clock = 25200, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x4, .pll[1] = 0, .pll[2] = 0xB2, .pll[3] = 0, .pll[4] = 0, .pll[5] = 0, .pll[6] = 0, .pll[7] = 0, .pll[8] = 0x20, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0xD, .pll[16] = 0x6, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = { .clock = 27000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0, .pll[2] = 0xC0, .pll[3] = 0, .pll[4] = 0, .pll[5] = 0, .pll[6] = 0, .pll[7] = 0, .pll[8] = 0x20, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0x80, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0xD, .pll[16] = 0x6, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = { .clock = 74250, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0, .pll[2] = 0x7A, .pll[3] = 0, .pll[4] = 0, .pll[5] = 0, .pll[6] = 0, .pll[7] = 0, .pll[8] = 0x20, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0x58, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0xB, .pll[16] = 0x6, .pll[17] = 0xF, .pll[18] = 0x85, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = { .clock = 148500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0, .pll[2] = 0x7A, .pll[3] = 0, .pll[4] = 0, .pll[5] = 0, .pll[6] = 0, .pll[7] = 0, .pll[8] = 0x20, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0x58, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0xA, .pll[16] = 0x6, .pll[17] = 0xF, .pll[18] = 0x85, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_594 = { .clock = 594000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0, .pll[2] = 0x7A, .pll[3] = 0, .pll[4] = 0, .pll[5] = 0, .pll[6] = 0, .pll[7] = 0, .pll[8] = 0x20, .pll[9] = 0x1, .pll[10] = 0, .pll[11] = 0, .pll[12] = 0x58, .pll[13] = 0, .pll[14] = 0, .pll[15] = 0x8, .pll[16] = 0x6, .pll[17] = 0xF, .pll[18] = 0x85, .pll[19] = 0x23, }; /* Precomputed C10 HDMI PLL tables */ static const struct intel_c10pll_state mtl_c10_hdmi_27027 = { .clock = 27027, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC, .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_28320 = { .clock = 28320, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_30240 = { .clock = 30240, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_31500 = { .clock = 31500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_36000 = { .clock = 36000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_40000 = { .clock = 40000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_49500 = { .clock = 49500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_50000 = { .clock = 50000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_57284 = { .clock = 57284, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_58000 = { .clock = 58000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_65000 = { .clock = 65000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_71000 = { .clock = 71000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_74176 = { .clock = 74176, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_75000 = { .clock = 75000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_78750 = { .clock = 78750, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_85500 = { .clock = 85500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_88750 = { .clock = 88750, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_106500 = { .clock = 106500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_108000 = { .clock = 108000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_115500 = { .clock = 115500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_119000 = { .clock = 119000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_135000 = { .clock = 135000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_138500 = { .clock = 138500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_147160 = { .clock = 147160, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_148352 = { .clock = 148352, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_154000 = { .clock = 154000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_162000 = { .clock = 162000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_167000 = { .clock = 167000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_197802 = { .clock = 197802, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_198000 = { .clock = 198000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_209800 = { .clock = 209800, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_241500 = { .clock = 241500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_262750 = { .clock = 262750, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_268500 = { .clock = 268500, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_296703 = { .clock = 296703, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33, .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_297000 = { .clock = 297000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00, .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_319750 = { .clock = 319750, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA, .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_497750 = { .clock = 497750, .tx = 0x10, .cmn = 0x1, .pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_592000 = { .clock = 592000, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55, .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state mtl_c10_hdmi_593407 = { .clock = 593407, .tx = 0x10, .cmn = 0x1, .pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00, .pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF, .pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB, .pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23, }; static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = { &mtl_c10_hdmi_25_2, /* Consolidated Table */ &mtl_c10_hdmi_27_0, /* Consolidated Table */ &mtl_c10_hdmi_27027, &mtl_c10_hdmi_28320, &mtl_c10_hdmi_30240, &mtl_c10_hdmi_31500, &mtl_c10_hdmi_36000, &mtl_c10_hdmi_40000, &mtl_c10_hdmi_49500, &mtl_c10_hdmi_50000, &mtl_c10_hdmi_57284, &mtl_c10_hdmi_58000, &mtl_c10_hdmi_65000, &mtl_c10_hdmi_71000, &mtl_c10_hdmi_74176, &mtl_c10_hdmi_74_25, /* Consolidated Table */ &mtl_c10_hdmi_75000, &mtl_c10_hdmi_78750, &mtl_c10_hdmi_85500, &mtl_c10_hdmi_88750, &mtl_c10_hdmi_106500, &mtl_c10_hdmi_108000, &mtl_c10_hdmi_115500, &mtl_c10_hdmi_119000, &mtl_c10_hdmi_135000, &mtl_c10_hdmi_138500, &mtl_c10_hdmi_147160, &mtl_c10_hdmi_148352, &mtl_c10_hdmi_148_5, /* Consolidated Table */ &mtl_c10_hdmi_154000, &mtl_c10_hdmi_162000, &mtl_c10_hdmi_167000, &mtl_c10_hdmi_197802, &mtl_c10_hdmi_198000, &mtl_c10_hdmi_209800, &mtl_c10_hdmi_241500, &mtl_c10_hdmi_262750, &mtl_c10_hdmi_268500, &mtl_c10_hdmi_296703, &mtl_c10_hdmi_297000, &mtl_c10_hdmi_319750, &mtl_c10_hdmi_497750, &mtl_c10_hdmi_592000, &mtl_c10_hdmi_593407, &mtl_c10_hdmi_594, /* Consolidated Table */ NULL, }; static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = { .clock = 25175, .tx = { 0xbe88, /* tx cfg0 */ 0x9800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0xa0d2, /* mpllb cfg0 */ 0x7d80, /* mpllb cfg1 */ 0x0906, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x0200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x0000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0001, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = { .clock = 27000, .tx = { 0xbe88, /* tx cfg0 */ 0x9800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0xa0e0, /* mpllb cfg0 */ 0x7d80, /* mpllb cfg1 */ 0x0906, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x8000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0001, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = { .clock = 74250, .tx = { 0xbe88, /* tx cfg0 */ 0x9800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x609a, /* mpllb cfg0 */ 0x7d40, /* mpllb cfg1 */ 0xca06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x5800, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0001, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = { .clock = 148500, .tx = { 0xbe88, /* tx cfg0 */ 0x9800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x409a, /* mpllb cfg0 */ 0x7d20, /* mpllb cfg1 */ 0xca06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x5800, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0001, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_594 = { .clock = 594000, .tx = { 0xbe88, /* tx cfg0 */ 0x9800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x009a, /* mpllb cfg0 */ 0x7d08, /* mpllb cfg1 */ 0xca06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x5800, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0001, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_300 = { .clock = 3000000, .tx = { 0xbe98, /* tx cfg0 */ 0x8800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x309c, /* mpllb cfg0 */ 0x2110, /* mpllb cfg1 */ 0xca06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x2000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0004, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_600 = { .clock = 6000000, .tx = { 0xbe98, /* tx cfg0 */ 0x8800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x109c, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0xca06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x2000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0004, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_800 = { .clock = 8000000, .tx = { 0xbe98, /* tx cfg0 */ 0x8800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x10d0, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0x4a06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0003, /* mpllb cfg7 */ 0x2aaa, /* mpllb cfg8 */ 0x0002, /* mpllb cfg9 */ 0x0004, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_1000 = { .clock = 10000000, .tx = { 0xbe98, /* tx cfg0 */ 0x8800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x1104, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0x0a06, /* mpllb cfg2 */ 0xbe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0003, /* mpllb cfg7 */ 0x3555, /* mpllb cfg8 */ 0x0001, /* mpllb cfg9 */ 0x0004, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state mtl_c20_hdmi_1200 = { .clock = 12000000, .tx = { 0xbe98, /* tx cfg0 */ 0x8800, /* tx cfg1 */ 0x0000, /* tx cfg2 */ }, .cmn = { 0x0500, /* cmn cfg0*/ 0x0005, /* cmn cfg1 */ 0x0000, /* cmn cfg2 */ 0x0000, /* cmn cfg3 */ }, .mpllb = { 0x1138, /* mpllb cfg0 */ 0x2108, /* mpllb cfg1 */ 0x5486, /* mpllb cfg2 */ 0xfe40, /* mpllb cfg3 */ 0x0000, /* mpllb cfg4 */ 0x0000, /* mpllb cfg5 */ 0x2200, /* mpllb cfg6 */ 0x0001, /* mpllb cfg7 */ 0x4000, /* mpllb cfg8 */ 0x0000, /* mpllb cfg9 */ 0x0004, /* mpllb cfg10 */ }, }; static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = { &mtl_c20_hdmi_25_175, &mtl_c20_hdmi_27_0, &mtl_c20_hdmi_74_25, &mtl_c20_hdmi_148_5, &mtl_c20_hdmi_594, &mtl_c20_hdmi_300, &mtl_c20_hdmi_600, &mtl_c20_hdmi_800, &mtl_c20_hdmi_1000, &mtl_c20_hdmi_1200, NULL, }; static int intel_c10_phy_check_hdmi_link_rate(int clock) { const struct intel_c10pll_state * const *tables = mtl_c10_hdmi_tables; int i; for (i = 0; tables[i]; i++) { if (clock == tables[i]->clock) return MODE_OK; } return MODE_CLOCK_RANGE; } static const struct intel_c10pll_state * const * intel_c10pll_tables_get(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { if (intel_crtc_has_dp_encoder(crtc_state)) { if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) return mtl_c10_edp_tables; else return mtl_c10_dp_tables; } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { return mtl_c10_hdmi_tables; } MISSING_CASE(encoder->type); return NULL; } static void intel_c10pll_update_pll(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); struct intel_cx0pll_state *pll_state = &crtc_state->cx0pll_state; int i; if (intel_crtc_has_dp_encoder(crtc_state)) { if (intel_panel_use_ssc(i915)) { struct intel_dp *intel_dp = enc_to_intel_dp(encoder); pll_state->ssc_enabled = (intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5); } } if (pll_state->ssc_enabled) return; drm_WARN_ON(&i915->drm, ARRAY_SIZE(pll_state->c10.pll) < 9); for (i = 4; i < 9; i++) pll_state->c10.pll[i] = 0; } static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { const struct intel_c10pll_state * const *tables; int i; tables = intel_c10pll_tables_get(crtc_state, encoder); if (!tables) return -EINVAL; for (i = 0; tables[i]; i++) { if (crtc_state->port_clock == tables[i]->clock) { crtc_state->cx0pll_state.c10 = *tables[i]; intel_c10pll_update_pll(crtc_state, encoder); return 0; } } return -EINVAL; } static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder, struct intel_c10pll_state *pll_state) { u8 lane = INTEL_CX0_LANE0; intel_wakeref_t wakeref; int i; wakeref = intel_cx0_phy_transaction_begin(encoder); /* * According to C10 VDR Register programming Sequence we need * to do this to read PHY internal registers from MsgBus. */ intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED); for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++) pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i)); pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0)); pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0)); intel_cx0_phy_transaction_end(encoder, wakeref); } static void intel_c10_pll_program(struct drm_i915_private *i915, const struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { const struct intel_c10pll_state *pll_state = &crtc_state->cx0pll_state.c10; int i; intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED); /* Custom width needs to be programmed to 0 for both the phy lanes */ intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH, C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10, MB_WRITE_COMMITTED); intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED); /* Program the pll values only for the master lane */ for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++) intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i), pll_state->pll[i], (i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED); intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED); intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED); intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED); } void intel_c10pll_dump_hw_state(struct drm_i915_private *i915, const struct intel_c10pll_state *hw_state) { bool fracen; int i; unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1; unsigned int multiplier, tx_clk_div; fracen = hw_state->pll[0] & C10_PLL0_FRACEN; drm_dbg_kms(&i915->drm, "c10pll_hw_state: fracen: %s, ", str_yes_no(fracen)); if (fracen) { frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11]; frac_rem = hw_state->pll[14] << 8 | hw_state->pll[13]; frac_den = hw_state->pll[10] << 8 | hw_state->pll[9]; drm_dbg_kms(&i915->drm, "quot: %u, rem: %u, den: %u,\n", frac_quot, frac_rem, frac_den); } multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 | hw_state->pll[2]) / 2 + 16; tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]); drm_dbg_kms(&i915->drm, "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div); drm_dbg_kms(&i915->drm, "c10pll_rawhw_state:"); drm_dbg_kms(&i915->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx, hw_state->cmn); BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4); for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4) drm_dbg_kms(&i915->drm, "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n", i, hw_state->pll[i], i + 1, hw_state->pll[i + 1], i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]); } static int intel_c20_compute_hdmi_tmds_pll(u64 pixel_clock, struct intel_c20pll_state *pll_state) { u64 datarate; u64 mpll_tx_clk_div; u64 vco_freq_shift; u64 vco_freq; u64 multiplier; u64 mpll_multiplier; u64 mpll_fracn_quot; u64 mpll_fracn_rem; u8 mpllb_ana_freq_vco; u8 mpll_div_multiplier; if (pixel_clock < 25175 || pixel_clock > 600000) return -EINVAL; datarate = ((u64)pixel_clock * 1000) * 10; mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate)); vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate)); vco_freq = (datarate << vco_freq_shift) >> 8; multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4)); mpll_multiplier = 2 * (multiplier >> 32); mpll_fracn_quot = (multiplier >> 16) & 0xFFFF; mpll_fracn_rem = multiplier & 0xFFFF; mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)), datarate), 255); if (vco_freq <= DATARATE_3000000000) mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3; else if (vco_freq <= DATARATE_3500000000) mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2; else if (vco_freq <= DATARATE_4000000000) mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1; else mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0; pll_state->clock = pixel_clock; pll_state->tx[0] = 0xbe88; pll_state->tx[1] = 0x9800; pll_state->tx[2] = 0x0000; pll_state->cmn[0] = 0x0500; pll_state->cmn[1] = 0x0005; pll_state->cmn[2] = 0x0000; pll_state->cmn[3] = 0x0000; pll_state->mpllb[0] = (MPLL_TX_CLK_DIV(mpll_tx_clk_div) | MPLL_MULTIPLIER(mpll_multiplier)); pll_state->mpllb[1] = (CAL_DAC_CODE(CAL_DAC_CODE_31) | WORD_CLK_DIV | MPLL_DIV_MULTIPLIER(mpll_div_multiplier)); pll_state->mpllb[2] = (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) | CP_PROP(CP_PROP_20) | CP_INT(CP_INT_6)); pll_state->mpllb[3] = (V2I(V2I_2) | CP_PROP_GS(CP_PROP_GS_30) | CP_INT_GS(CP_INT_GS_28)); pll_state->mpllb[4] = 0x0000; pll_state->mpllb[5] = 0x0000; pll_state->mpllb[6] = (C20_MPLLB_FRACEN | SSC_UP_SPREAD); pll_state->mpllb[7] = MPLL_FRACN_DEN; pll_state->mpllb[8] = mpll_fracn_quot; pll_state->mpllb[9] = mpll_fracn_rem; pll_state->mpllb[10] = HDMI_DIV(HDMI_DIV_1); return 0; } static int intel_c20_phy_check_hdmi_link_rate(int clock) { const struct intel_c20pll_state * const *tables = mtl_c20_hdmi_tables; int i; for (i = 0; tables[i]; i++) { if (clock == tables[i]->clock) return MODE_OK; } if (clock >= 25175 && clock <= 594000) return MODE_OK; return MODE_CLOCK_RANGE; } int intel_cx0_phy_check_hdmi_link_rate(struct intel_hdmi *hdmi, int clock) { struct intel_digital_port *dig_port = hdmi_to_dig_port(hdmi); if (intel_encoder_is_c10phy(&dig_port->base)) return intel_c10_phy_check_hdmi_link_rate(clock); return intel_c20_phy_check_hdmi_link_rate(clock); } static const struct intel_c20pll_state * const * intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { if (intel_crtc_has_dp_encoder(crtc_state)) return mtl_c20_dp_tables; else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) return mtl_c20_hdmi_tables; MISSING_CASE(encoder->type); return NULL; } static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { const struct intel_c20pll_state * const *tables; int i; /* try computed C20 HDMI tables before using consolidated tables */ if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { if (intel_c20_compute_hdmi_tmds_pll(crtc_state->port_clock, &crtc_state->cx0pll_state.c20) == 0) return 0; } tables = intel_c20_pll_tables_get(crtc_state, encoder); if (!tables) return -EINVAL; for (i = 0; tables[i]; i++) { if (crtc_state->port_clock == tables[i]->clock) { crtc_state->cx0pll_state.c20 = *tables[i]; return 0; } } return -EINVAL; } int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { if (intel_encoder_is_c10phy(encoder)) return intel_c10pll_calc_state(crtc_state, encoder); return intel_c20pll_calc_state(crtc_state, encoder); } static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state) { return state->tx[0] & C20_PHY_USE_MPLLB; } static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder, const struct intel_c20pll_state *pll_state) { unsigned int frac, frac_en, frac_quot, frac_rem, frac_den; unsigned int multiplier, refclk = 38400; unsigned int tx_clk_div; unsigned int ref_clk_mpllb_div; unsigned int fb_clk_div4_en; unsigned int ref, vco; unsigned int tx_rate_mult; unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]); if (intel_c20phy_use_mpllb(pll_state)) { tx_rate_mult = 1; frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]); frac_quot = pll_state->mpllb[8]; frac_rem = pll_state->mpllb[9]; frac_den = pll_state->mpllb[7]; multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]); tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]); ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]); fb_clk_div4_en = 0; } else { tx_rate_mult = 2; frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]); frac_quot = pll_state->mplla[8]; frac_rem = pll_state->mplla[9]; frac_den = pll_state->mplla[7]; multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]); tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]); ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]); fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]); } if (frac_en) frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den); else frac = 0; ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div); vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10); return vco << tx_rate_mult >> tx_clk_div >> tx_rate; } static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder, struct intel_c20pll_state *pll_state) { bool cntx; intel_wakeref_t wakeref; int i; wakeref = intel_cx0_phy_transaction_begin(encoder); /* 1. Read current context selection */ cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE; /* Read Tx configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) { if (cntx) pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i)); else pll_state->tx[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i)); } /* Read common configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) { if (cntx) pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i)); else pll_state->cmn[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i)); } if (intel_c20phy_use_mpllb(pll_state)) { /* MPLLB configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) { if (cntx) pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_B_MPLLB_CNTX_CFG(i)); else pll_state->mpllb[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_A_MPLLB_CNTX_CFG(i)); } } else { /* MPLLA configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) { if (cntx) pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_B_MPLLA_CNTX_CFG(i)); else pll_state->mplla[i] = intel_c20_sram_read(encoder, INTEL_CX0_LANE0, PHY_C20_A_MPLLA_CNTX_CFG(i)); } } pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state); intel_cx0_phy_transaction_end(encoder, wakeref); } void intel_c20pll_dump_hw_state(struct drm_i915_private *i915, const struct intel_c20pll_state *hw_state) { int i; drm_dbg_kms(&i915->drm, "c20pll_hw_state:\n"); drm_dbg_kms(&i915->drm, "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n", hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]); drm_dbg_kms(&i915->drm, "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n", hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]); if (intel_c20phy_use_mpllb(hw_state)) { for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++) drm_dbg_kms(&i915->drm, "mpllb[%d] = 0x%.4x\n", i, hw_state->mpllb[i]); } else { for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++) drm_dbg_kms(&i915->drm, "mplla[%d] = 0x%.4x\n", i, hw_state->mplla[i]); } } static u8 intel_c20_get_dp_rate(u32 clock) { switch (clock) { case 162000: /* 1.62 Gbps DP1.4 */ return 0; case 270000: /* 2.7 Gbps DP1.4 */ return 1; case 540000: /* 5.4 Gbps DP 1.4 */ return 2; case 810000: /* 8.1 Gbps DP1.4 */ return 3; case 216000: /* 2.16 Gbps eDP */ return 4; case 243000: /* 2.43 Gbps eDP */ return 5; case 324000: /* 3.24 Gbps eDP */ return 6; case 432000: /* 4.32 Gbps eDP */ return 7; case 1000000: /* 10 Gbps DP2.0 */ return 8; case 1350000: /* 13.5 Gbps DP2.0 */ return 9; case 2000000: /* 20 Gbps DP2.0 */ return 10; case 648000: /* 6.48 Gbps eDP*/ return 11; case 675000: /* 6.75 Gbps eDP*/ return 12; default: MISSING_CASE(clock); return 0; } } static u8 intel_c20_get_hdmi_rate(u32 clock) { if (clock >= 25175 && clock <= 600000) return 0; switch (clock) { case 300000: /* 3 Gbps */ case 600000: /* 6 Gbps */ case 1200000: /* 12 Gbps */ return 1; case 800000: /* 8 Gbps */ return 2; case 1000000: /* 10 Gbps */ return 3; default: MISSING_CASE(clock); return 0; } } static bool is_dp2(u32 clock) { /* DP2.0 clock rates */ if (clock == 1000000 || clock == 1350000 || clock == 2000000) return true; return false; } static bool is_hdmi_frl(u32 clock) { switch (clock) { case 300000: /* 3 Gbps */ case 600000: /* 6 Gbps */ case 800000: /* 8 Gbps */ case 1000000: /* 10 Gbps */ case 1200000: /* 12 Gbps */ return true; default: return false; } } static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); /* banks should not be cleared for DPALT/USB4/TBT modes */ /* TODO: optimize re-calibration in legacy mode */ return intel_tc_port_in_legacy_mode(intel_dig_port); } static int intel_get_c20_custom_width(u32 clock, bool dp) { if (dp && is_dp2(clock)) return 2; else if (is_hdmi_frl(clock)) return 1; else return 0; } static void intel_c20_pll_program(struct drm_i915_private *i915, const struct intel_crtc_state *crtc_state, struct intel_encoder *encoder) { const struct intel_c20pll_state *pll_state = &crtc_state->cx0pll_state.c20; bool dp = false; int lane = crtc_state->lane_count > 2 ? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0; u32 clock = crtc_state->port_clock; bool cntx; int i; if (intel_crtc_has_dp_encoder(crtc_state)) dp = true; /* 1. Read current context selection */ cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0); /* * 2. If there is a protocol switch from HDMI to DP or vice versa, clear * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA. * Protocol switch is only applicable for MPLLA */ if (intel_c20_protocol_switch_valid(encoder)) { for (i = 0; i < 4; i++) intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0); usleep_range(4000, 4100); } /* 3. Write SRAM configuration context. If A in use, write configuration to B context */ /* 3.1 Tx configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) { if (cntx) intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_TX_CNTX_CFG(i), pll_state->tx[i]); else intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_TX_CNTX_CFG(i), pll_state->tx[i]); } /* 3.2 common configuration */ for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) { if (cntx) intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_CMN_CNTX_CFG(i), pll_state->cmn[i]); else intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_CMN_CNTX_CFG(i), pll_state->cmn[i]); } /* 3.3 mpllb or mplla configuration */ if (intel_c20phy_use_mpllb(pll_state)) { for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) { if (cntx) intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_MPLLB_CNTX_CFG(i), pll_state->mpllb[i]); else intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_MPLLB_CNTX_CFG(i), pll_state->mpllb[i]); } } else { for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) { if (cntx) intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_A_MPLLA_CNTX_CFG(i), pll_state->mplla[i]); else intel_c20_sram_write(encoder, INTEL_CX0_LANE0, PHY_C20_B_MPLLA_CNTX_CFG(i), pll_state->mplla[i]); } } /* 4. Program custom width to match the link protocol */ intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_WIDTH, PHY_C20_CUSTOM_WIDTH_MASK, PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(clock, dp)), MB_WRITE_COMMITTED); /* 5. For DP or 6. For HDMI */ if (dp) { intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE, BIT(6) | PHY_C20_CUSTOM_SERDES_MASK, BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(clock)), MB_WRITE_COMMITTED); } else { intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE, BIT(7) | PHY_C20_CUSTOM_SERDES_MASK, is_hdmi_frl(clock) ? BIT(7) : 0, MB_WRITE_COMMITTED); intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE, intel_c20_get_hdmi_rate(clock), MB_WRITE_COMMITTED); } /* * 7. Write Vendor specific registers to toggle context setting to load * the updated programming toggle context bit */ intel_cx0_rmw(encoder, lane, PHY_C20_VDR_CUSTOM_SERDES_RATE, BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED); } static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder, const struct intel_c10pll_state *pll_state) { unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1; unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400; int tmpclk = 0; if (pll_state->pll[0] & C10_PLL0_FRACEN) { frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11]; frac_rem = pll_state->pll[14] << 8 | pll_state->pll[13]; frac_den = pll_state->pll[10] << 8 | pll_state->pll[9]; } multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 | pll_state->pll[2]) / 2 + 16; tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]); hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]); tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) + DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den), 10 << (tx_clk_div + 16)); tmpclk *= (hdmi_div ? 2 : 1); return tmpclk; } static void intel_program_port_clock_ctl(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, bool lane_reversal) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); u32 val = 0; intel_de_rmw(i915, XELPDP_PORT_BUF_CTL1(i915, encoder->port), XELPDP_PORT_REVERSAL, lane_reversal ? XELPDP_PORT_REVERSAL : 0); if (lane_reversal) val |= XELPDP_LANE1_PHY_CLOCK_SELECT; val |= XELPDP_FORWARD_CLOCK_UNGATE; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) && is_hdmi_frl(crtc_state->port_clock)) val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_DIV18CLK); else val |= XELPDP_DDI_CLOCK_SELECT(XELPDP_DDI_CLOCK_SELECT_MAXPCLK); /* TODO: HDMI FRL */ /* DP2.0 10G and 20G rates enable MPLLA*/ if (crtc_state->port_clock == 1000000 || crtc_state->port_clock == 2000000) val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0; else val |= crtc_state->cx0pll_state.ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0; intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE | XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_SSC_ENABLE_PLLA | XELPDP_SSC_ENABLE_PLLB, val); } static u32 intel_cx0_get_powerdown_update(u8 lane_mask) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_POWERDOWN_UPDATE(lane); return val; } static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state); return val; } static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder, u8 lane_mask, u8 state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(i915, port); int lane; intel_de_rmw(i915, buf_ctl2_reg, intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK), intel_cx0_get_powerdown_state(lane_mask, state)); /* Wait for pending transactions.*/ for_each_cx0_lane_in_mask(lane_mask, lane) if (intel_de_wait_for_clear(i915, XELPDP_PORT_M2P_MSGBUS_CTL(i915, port, lane), XELPDP_PORT_M2P_TRANSACTION_PENDING, XELPDP_MSGBUS_TIMEOUT_SLOW)) { drm_dbg_kms(&i915->drm, "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n", phy_name(phy)); intel_cx0_bus_reset(encoder, lane); } intel_de_rmw(i915, buf_ctl2_reg, intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES), intel_cx0_get_powerdown_update(lane_mask)); /* Update Timeout Value */ if (intel_de_wait_custom(i915, buf_ctl2_reg, intel_cx0_get_powerdown_update(lane_mask), 0, XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n", phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US); } static void intel_cx0_setup_powerdown(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), XELPDP_POWER_STATE_READY_MASK, XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY)); intel_de_rmw(i915, XELPDP_PORT_BUF_CTL3(i915, port), XELPDP_POWER_STATE_ACTIVE_MASK | XELPDP_PLL_LANE_STAGGERING_DELAY_MASK, XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) | XELPDP_PLL_LANE_STAGGERING_DELAY(0)); } static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane); return val; } static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane); return val; } static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder, bool lane_reversal) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum port port = encoder->port; enum phy phy = intel_encoder_to_phy(encoder); u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder); u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0; u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES ? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1) : XELPDP_LANE_PIPE_RESET(0); u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES ? (XELPDP_LANE_PHY_CURRENT_STATUS(0) | XELPDP_LANE_PHY_CURRENT_STATUS(1)) : XELPDP_LANE_PHY_CURRENT_STATUS(0); if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL1(i915, port), XELPDP_PORT_BUF_SOC_PHY_READY, XELPDP_PORT_BUF_SOC_PHY_READY, XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "PHY %c failed to bring out of SOC reset after %dus.\n", phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US); intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, lane_pipe_reset); if (intel_de_wait_custom(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_phy_current_status, lane_phy_current_status, XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dus.\n", phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US); intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, port), intel_cx0_get_pclk_refclk_request(owned_lane_mask), intel_cx0_get_pclk_refclk_request(lane_mask)); if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, port), intel_cx0_get_pclk_refclk_ack(owned_lane_mask), intel_cx0_get_pclk_refclk_ack(lane_mask), XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "PHY %c failed to request refclk after %dus.\n", phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US); intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES, CX0_P2_STATE_RESET); intel_cx0_setup_powerdown(encoder); intel_de_rmw(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_pipe_reset, 0); if (intel_de_wait_for_clear(i915, XELPDP_PORT_BUF_CTL2(i915, port), lane_phy_current_status, XELPDP_PORT_RESET_END_TIMEOUT)) drm_warn(&i915->drm, "PHY %c failed to bring out of Lane reset after %dms.\n", phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT); } static void intel_cx0_program_phy_lane(struct drm_i915_private *i915, struct intel_encoder *encoder, int lane_count, bool lane_reversal) { int i; u8 disables; bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder)); u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder); if (intel_encoder_is_c10phy(encoder)) intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED); if (lane_reversal) disables = REG_GENMASK8(3, 0) >> lane_count; else disables = REG_GENMASK8(3, 0) << lane_count; if (dp_alt_mode && lane_count == 1) { disables &= ~REG_GENMASK8(1, 0); disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1); } for (i = 0; i < 4; i++) { int tx = i % 2 + 1; u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1; if (!(owned_lane_mask & lane_mask)) continue; intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2), CONTROL2_DISABLE_SINGLE_TX, disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0, MB_WRITE_COMMITTED); } if (intel_encoder_is_c10phy(encoder)) intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED); } static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane); return val; } static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask) { u32 val = 0; int lane = 0; for_each_cx0_lane_in_mask(lane_mask, lane) val |= XELPDP_LANE_PCLK_PLL_ACK(lane); return val; } static void intel_cx0pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); struct intel_digital_port *dig_port = enc_to_dig_port(encoder); bool lane_reversal = dig_port->saved_port_bits & DDI_BUF_PORT_REVERSAL; u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0; intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder); /* * 1. Program PORT_CLOCK_CTL REGISTER to configure * clock muxes, gating and SSC */ intel_program_port_clock_ctl(encoder, crtc_state, lane_reversal); /* 2. Bring PHY out of reset. */ intel_cx0_phy_lane_reset(encoder, lane_reversal); /* * 3. Change Phy power state to Ready. * TODO: For DP alt mode use only one lane. */ intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES, CX0_P2_STATE_READY); /* * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000. * (This is done inside intel_cx0_phy_transaction_begin(), since we would need * the right timer thresholds for readouts too.) */ /* 5. Program PHY internal PLL internal registers. */ if (intel_encoder_is_c10phy(encoder)) intel_c10_pll_program(i915, crtc_state, encoder); else intel_c20_pll_program(i915, crtc_state, encoder); /* * 6. Program the enabled and disabled owned PHY lane * transmitters over message bus */ intel_cx0_program_phy_lane(i915, encoder, crtc_state->lane_count, lane_reversal); /* * 7. Follow the Display Voltage Frequency Switching - Sequence * Before Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 8. Program DDI_CLK_VALFREQ to match intended DDI * clock frequency. */ intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), crtc_state->port_clock); /* * 9. Set PORT_CLOCK_CTL register PCLK PLL Request * LN to "1" to enable PLL. */ intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES), intel_cx0_get_pclk_pll_request(maxpclk_lane)); /* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN == "1". */ if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES), intel_cx0_get_pclk_pll_ack(maxpclk_lane), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "Port %c PLL not locked after %dus.\n", phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US); /* * 11. Follow the Display Voltage Frequency Switching Sequence After * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* TODO: enable TBT-ALT mode */ intel_cx0_phy_transaction_end(encoder, wakeref); } int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); u32 clock; u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port)); clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val); drm_WARN_ON(&i915->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE)); drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_REQUEST)); drm_WARN_ON(&i915->drm, !(val & XELPDP_TBT_CLOCK_ACK)); switch (clock) { case XELPDP_DDI_CLOCK_SELECT_TBT_162: return 162000; case XELPDP_DDI_CLOCK_SELECT_TBT_270: return 270000; case XELPDP_DDI_CLOCK_SELECT_TBT_540: return 540000; case XELPDP_DDI_CLOCK_SELECT_TBT_810: return 810000; default: MISSING_CASE(clock); return 162000; } } static int intel_mtl_tbt_clock_select(struct drm_i915_private *i915, int clock) { switch (clock) { case 162000: return XELPDP_DDI_CLOCK_SELECT_TBT_162; case 270000: return XELPDP_DDI_CLOCK_SELECT_TBT_270; case 540000: return XELPDP_DDI_CLOCK_SELECT_TBT_540; case 810000: return XELPDP_DDI_CLOCK_SELECT_TBT_810; default: MISSING_CASE(clock); return XELPDP_DDI_CLOCK_SELECT_TBT_162; } } static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); u32 val = 0; /* * 1. Program PORT_CLOCK_CTL REGISTER to configure * clock muxes, gating and SSC */ val |= XELPDP_DDI_CLOCK_SELECT(intel_mtl_tbt_clock_select(i915, crtc_state->port_clock)); val |= XELPDP_FORWARD_CLOCK_UNGATE; intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, val); /* 2. Read back PORT_CLOCK_CTL REGISTER */ val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port)); /* * 3. Follow the Display Voltage Frequency Switching - Sequence * Before Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL. */ val |= XELPDP_TBT_CLOCK_REQUEST; intel_de_write(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), val); /* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */ if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_TBT_CLOCK_ACK, XELPDP_TBT_CLOCK_ACK, 100, 0, NULL)) drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n", encoder->base.base.id, encoder->base.name, phy_name(phy)); /* * 6. Follow the Display Voltage Frequency Switching Sequence After * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 7. Program DDI_CLK_VALFREQ to match intended DDI * clock frequency. */ intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), crtc_state->port_clock); } void intel_mtl_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (intel_tc_port_in_tbt_alt_mode(dig_port)) intel_mtl_tbt_pll_enable(encoder, crtc_state); else intel_cx0pll_enable(encoder, crtc_state); } static void intel_cx0pll_disable(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); bool is_c10 = intel_encoder_is_c10phy(encoder); intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder); /* 1. Change owned PHY lane power to Disable state. */ intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES, is_c10 ? CX0_P2PG_STATE_DISABLE : CX0_P4PG_STATE_DISABLE); /* * 2. Follow the Display Voltage Frequency Switching Sequence Before * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN * to "0" to disable PLL. */ intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) | intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0); /* 4. Program DDI_CLK_VALFREQ to 0. */ intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0); /* * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN == "0". */ if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) | intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0, XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL)) drm_warn(&i915->drm, "Port %c PLL not unlocked after %dus.\n", phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US); /* * 6. Follow the Display Voltage Frequency Switching Sequence After * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */ intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_DDI_CLOCK_SELECT_MASK, 0); intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_FORWARD_CLOCK_UNGATE, 0); intel_cx0_phy_transaction_end(encoder, wakeref); } static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); enum phy phy = intel_encoder_to_phy(encoder); /* * 1. Follow the Display Voltage Frequency Switching Sequence Before * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL. */ intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_TBT_CLOCK_REQUEST, 0); /* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */ if (intel_de_wait_custom(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL)) drm_warn(&i915->drm, "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n", encoder->base.base.id, encoder->base.name, phy_name(phy)); /* * 4. Follow the Display Voltage Frequency Switching Sequence After * Frequency Change. We handle this step in bxt_set_cdclk(). */ /* * 5. Program PORT CLOCK CTRL register to disable and gate clocks */ intel_de_rmw(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port), XELPDP_DDI_CLOCK_SELECT_MASK | XELPDP_FORWARD_CLOCK_UNGATE, 0); /* 6. Program DDI_CLK_VALFREQ to 0. */ intel_de_write(i915, DDI_CLK_VALFREQ(encoder->port), 0); } void intel_mtl_pll_disable(struct intel_encoder *encoder) { struct intel_digital_port *dig_port = enc_to_dig_port(encoder); if (intel_tc_port_in_tbt_alt_mode(dig_port)) intel_mtl_tbt_pll_disable(encoder); else intel_cx0pll_disable(encoder); } enum icl_port_dpll_id intel_mtl_port_pll_type(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(encoder->base.dev); /* * TODO: Determine the PLL type from the SW state, once MTL PLL * handling is done via the standard shared DPLL framework. */ u32 val = intel_de_read(i915, XELPDP_PORT_CLOCK_CTL(i915, encoder->port)); u32 clock = REG_FIELD_GET(XELPDP_DDI_CLOCK_SELECT_MASK, val); if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK || clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK) return ICL_PORT_DPLL_MG_PHY; else return ICL_PORT_DPLL_DEFAULT; } static void intel_c10pll_state_verify(const struct intel_crtc_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder, struct intel_c10pll_state *mpllb_hw_state) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct intel_c10pll_state *mpllb_sw_state = &state->cx0pll_state.c10; int i; if (intel_crtc_needs_fastset(state)) return; for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) { u8 expected = mpllb_sw_state->pll[i]; I915_STATE_WARN(i915, mpllb_hw_state->pll[i] != expected, "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)", crtc->base.base.id, crtc->base.name, i, expected, mpllb_hw_state->pll[i]); } I915_STATE_WARN(i915, mpllb_hw_state->tx != mpllb_sw_state->tx, "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)", crtc->base.base.id, crtc->base.name, mpllb_sw_state->tx, mpllb_hw_state->tx); I915_STATE_WARN(i915, mpllb_hw_state->cmn != mpllb_sw_state->cmn, "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)", crtc->base.base.id, crtc->base.name, mpllb_sw_state->cmn, mpllb_hw_state->cmn); } void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder, struct intel_cx0pll_state *pll_state) { if (intel_encoder_is_c10phy(encoder)) intel_c10pll_readout_hw_state(encoder, &pll_state->c10); else intel_c20pll_readout_hw_state(encoder, &pll_state->c20); } int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder, const struct intel_cx0pll_state *pll_state) { if (intel_encoder_is_c10phy(encoder)) return intel_c10pll_calc_port_clock(encoder, &pll_state->c10); return intel_c20pll_calc_port_clock(encoder, &pll_state->c20); } static void intel_c20pll_state_verify(const struct intel_crtc_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder, struct intel_c20pll_state *mpll_hw_state) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); const struct intel_c20pll_state *mpll_sw_state = &state->cx0pll_state.c20; bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state); bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state); int i; I915_STATE_WARN(i915, mpll_hw_state->clock != mpll_sw_state->clock, "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)", crtc->base.base.id, crtc->base.name, mpll_sw_state->clock, mpll_hw_state->clock); I915_STATE_WARN(i915, sw_use_mpllb != hw_use_mpllb, "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)", crtc->base.base.id, crtc->base.name, sw_use_mpllb, hw_use_mpllb); if (hw_use_mpllb) { for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) { I915_STATE_WARN(i915, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i], "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)", crtc->base.base.id, crtc->base.name, i, mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]); } } else { for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) { I915_STATE_WARN(i915, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i], "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)", crtc->base.base.id, crtc->base.name, i, mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]); } } for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) { I915_STATE_WARN(i915, mpll_hw_state->tx[i] != mpll_sw_state->tx[i], "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)", crtc->base.base.id, crtc->base.name, i, mpll_sw_state->tx[i], mpll_hw_state->tx[i]); } for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) { I915_STATE_WARN(i915, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i], "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)", crtc->base.base.id, crtc->base.name, i, mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]); } } void intel_cx0pll_state_verify(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_encoder *encoder; struct intel_cx0pll_state mpll_hw_state = {}; if (DISPLAY_VER(i915) < 14) return; if (!new_crtc_state->hw.active) return; /* intel_get_crtc_new_encoder() only works for modeset/fastset commits */ if (!intel_crtc_needs_modeset(new_crtc_state) && !intel_crtc_needs_fastset(new_crtc_state)) return; encoder = intel_get_crtc_new_encoder(state, new_crtc_state); if (intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder))) return; intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state); if (intel_encoder_is_c10phy(encoder)) intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10); else intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20); }