/* * Copyright (c) 2006 Luc Verhaegen (quirks list) * Copyright (c) 2007-2008 Intel Corporation * Jesse Barnes * Copyright 2010 Red Hat, Inc. * * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from * FB layer. * Copyright (C) 2006 Dennis Munsie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm_crtc_internal.h" #include "drm_displayid_internal.h" #include "drm_internal.h" static int oui(u8 first, u8 second, u8 third) { return (first << 16) | (second << 8) | third; } #define EDID_EST_TIMINGS 16 #define EDID_STD_TIMINGS 8 #define EDID_DETAILED_TIMINGS 4 /* * EDID blocks out in the wild have a variety of bugs, try to collect * them here (note that userspace may work around broken monitors first, * but fixes should make their way here so that the kernel "just works" * on as many displays as possible). */ /* First detailed mode wrong, use largest 60Hz mode */ #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) /* Reported 135MHz pixel clock is too high, needs adjustment */ #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) /* Prefer the largest mode at 75 Hz */ #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) /* Detail timing is in cm not mm */ #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) /* Detailed timing descriptors have bogus size values, so just take the * maximum size and use that. */ #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) /* use +hsync +vsync for detailed mode */ #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) /* Force reduced-blanking timings for detailed modes */ #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) /* Force 8bpc */ #define EDID_QUIRK_FORCE_8BPC (1 << 8) /* Force 12bpc */ #define EDID_QUIRK_FORCE_12BPC (1 << 9) /* Force 6bpc */ #define EDID_QUIRK_FORCE_6BPC (1 << 10) /* Force 10bpc */ #define EDID_QUIRK_FORCE_10BPC (1 << 11) /* Non desktop display (i.e. HMD) */ #define EDID_QUIRK_NON_DESKTOP (1 << 12) /* Cap the DSC target bitrate to 15bpp */ #define EDID_QUIRK_CAP_DSC_15BPP (1 << 13) #define MICROSOFT_IEEE_OUI 0xca125c struct detailed_mode_closure { struct drm_connector *connector; const struct drm_edid *drm_edid; bool preferred; int modes; }; struct drm_edid_match_closure { const struct drm_edid_ident *ident; bool matched; }; #define LEVEL_DMT 0 #define LEVEL_GTF 1 #define LEVEL_GTF2 2 #define LEVEL_CVT 3 #define EDID_QUIRK(vend_chr_0, vend_chr_1, vend_chr_2, product_id, _quirks) \ { \ .ident = { \ .panel_id = drm_edid_encode_panel_id(vend_chr_0, vend_chr_1, \ vend_chr_2, product_id), \ }, \ .quirks = _quirks \ } static const struct edid_quirk { const struct drm_edid_ident ident; u32 quirks; } edid_quirk_list[] = { /* Acer AL1706 */ EDID_QUIRK('A', 'C', 'R', 44358, EDID_QUIRK_PREFER_LARGE_60), /* Acer F51 */ EDID_QUIRK('A', 'P', 'I', 0x7602, EDID_QUIRK_PREFER_LARGE_60), /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ EDID_QUIRK('A', 'E', 'O', 0, EDID_QUIRK_FORCE_6BPC), /* BenQ GW2765 */ EDID_QUIRK('B', 'N', 'Q', 0x78d6, EDID_QUIRK_FORCE_8BPC), /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ EDID_QUIRK('B', 'O', 'E', 0x78b, EDID_QUIRK_FORCE_6BPC), /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ EDID_QUIRK('C', 'P', 'T', 0x17df, EDID_QUIRK_FORCE_6BPC), /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ EDID_QUIRK('S', 'D', 'C', 0x3652, EDID_QUIRK_FORCE_6BPC), /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ EDID_QUIRK('B', 'O', 'E', 0x0771, EDID_QUIRK_FORCE_6BPC), /* Belinea 10 15 55 */ EDID_QUIRK('M', 'A', 'X', 1516, EDID_QUIRK_PREFER_LARGE_60), EDID_QUIRK('M', 'A', 'X', 0x77e, EDID_QUIRK_PREFER_LARGE_60), /* Envision Peripherals, Inc. EN-7100e */ EDID_QUIRK('E', 'P', 'I', 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH), /* Envision EN2028 */ EDID_QUIRK('E', 'P', 'I', 8232, EDID_QUIRK_PREFER_LARGE_60), /* Funai Electronics PM36B */ EDID_QUIRK('F', 'C', 'M', 13600, EDID_QUIRK_PREFER_LARGE_75 | EDID_QUIRK_DETAILED_IN_CM), /* LG 27GP950 */ EDID_QUIRK('G', 'S', 'M', 0x5bbf, EDID_QUIRK_CAP_DSC_15BPP), /* LG 27GN950 */ EDID_QUIRK('G', 'S', 'M', 0x5b9a, EDID_QUIRK_CAP_DSC_15BPP), /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ EDID_QUIRK('L', 'G', 'D', 764, EDID_QUIRK_FORCE_10BPC), /* LG Philips LCD LP154W01-A5 */ EDID_QUIRK('L', 'P', 'L', 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), EDID_QUIRK('L', 'P', 'L', 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE), /* Samsung SyncMaster 205BW. Note: irony */ EDID_QUIRK('S', 'A', 'M', 541, EDID_QUIRK_DETAILED_SYNC_PP), /* Samsung SyncMaster 22[5-6]BW */ EDID_QUIRK('S', 'A', 'M', 596, EDID_QUIRK_PREFER_LARGE_60), EDID_QUIRK('S', 'A', 'M', 638, EDID_QUIRK_PREFER_LARGE_60), /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ EDID_QUIRK('S', 'N', 'Y', 0x2541, EDID_QUIRK_FORCE_12BPC), /* ViewSonic VA2026w */ EDID_QUIRK('V', 'S', 'C', 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING), /* Medion MD 30217 PG */ EDID_QUIRK('M', 'E', 'D', 0x7b8, EDID_QUIRK_PREFER_LARGE_75), /* Lenovo G50 */ EDID_QUIRK('S', 'D', 'C', 18514, EDID_QUIRK_FORCE_6BPC), /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ EDID_QUIRK('S', 'E', 'C', 0xd033, EDID_QUIRK_FORCE_8BPC), /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ EDID_QUIRK('E', 'T', 'R', 13896, EDID_QUIRK_FORCE_8BPC), /* Valve Index Headset */ EDID_QUIRK('V', 'L', 'V', 0x91a8, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b0, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b1, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b2, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b3, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b4, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b5, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b6, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b7, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b8, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91b9, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91ba, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91bb, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91bc, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91bd, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91be, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('V', 'L', 'V', 0x91bf, EDID_QUIRK_NON_DESKTOP), /* HTC Vive and Vive Pro VR Headsets */ EDID_QUIRK('H', 'V', 'R', 0xaa01, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('H', 'V', 'R', 0xaa02, EDID_QUIRK_NON_DESKTOP), /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */ EDID_QUIRK('O', 'V', 'R', 0x0001, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('O', 'V', 'R', 0x0003, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('O', 'V', 'R', 0x0004, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('O', 'V', 'R', 0x0012, EDID_QUIRK_NON_DESKTOP), /* Windows Mixed Reality Headsets */ EDID_QUIRK('A', 'C', 'R', 0x7fce, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('L', 'E', 'N', 0x0408, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('F', 'U', 'J', 0x1970, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('D', 'E', 'L', 0x7fce, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('S', 'E', 'C', 0x144a, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('A', 'U', 'S', 0xc102, EDID_QUIRK_NON_DESKTOP), /* Sony PlayStation VR Headset */ EDID_QUIRK('S', 'N', 'Y', 0x0704, EDID_QUIRK_NON_DESKTOP), /* Sensics VR Headsets */ EDID_QUIRK('S', 'E', 'N', 0x1019, EDID_QUIRK_NON_DESKTOP), /* OSVR HDK and HDK2 VR Headsets */ EDID_QUIRK('S', 'V', 'R', 0x1019, EDID_QUIRK_NON_DESKTOP), EDID_QUIRK('A', 'U', 'O', 0x1111, EDID_QUIRK_NON_DESKTOP), }; /* * Autogenerated from the DMT spec. * This table is copied from xfree86/modes/xf86EdidModes.c. */ static const struct drm_display_mode drm_dmt_modes[] = { /* 0x01 - 640x350@85Hz */ { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 350, 382, 385, 445, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x02 - 640x400@85Hz */ { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 400, 401, 404, 445, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x03 - 720x400@85Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 828, 936, 0, 400, 401, 404, 446, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x04 - 640x480@60Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x05 - 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 492, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x06 - 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x07 - 640x480@85Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 752, 832, 0, 480, 481, 484, 509, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x08 - 800x600@56Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x09 - 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0a - 800x600@72Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0b - 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0c - 800x600@85Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 896, 1048, 0, 600, 601, 604, 631, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0d - 800x600@120Hz RB */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 880, 960, 0, 600, 603, 607, 636, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x0e - 848x480@60Hz */ { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 976, 1088, 0, 480, 486, 494, 517, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0f - 1024x768@43Hz, interlace */ { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 0x10 - 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x11 - 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x12 - 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x13 - 1024x768@85Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 1168, 1376, 0, 768, 769, 772, 808, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x14 - 1024x768@120Hz RB */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 1104, 1184, 0, 768, 771, 775, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x15 - 1152x864@75Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x55 - 1280x720@60Hz */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x16 - 1280x768@60Hz RB */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 1360, 1440, 0, 768, 771, 778, 790, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x17 - 1280x768@60Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1472, 1664, 0, 768, 771, 778, 798, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x18 - 1280x768@75Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 1488, 1696, 0, 768, 771, 778, 805, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x19 - 1280x768@85Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 1496, 1712, 0, 768, 771, 778, 809, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1a - 1280x768@120Hz RB */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 1360, 1440, 0, 768, 771, 778, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x1b - 1280x800@60Hz RB */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 1360, 1440, 0, 800, 803, 809, 823, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x1c - 1280x800@60Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1480, 1680, 0, 800, 803, 809, 831, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1d - 1280x800@75Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 1488, 1696, 0, 800, 803, 809, 838, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1e - 1280x800@85Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 1496, 1712, 0, 800, 803, 809, 843, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1f - 1280x800@120Hz RB */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 1360, 1440, 0, 800, 803, 809, 847, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x20 - 1280x960@60Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1488, 1800, 0, 960, 961, 964, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x21 - 1280x960@85Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 1504, 1728, 0, 960, 961, 964, 1011, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x22 - 1280x960@120Hz RB */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 1360, 1440, 0, 960, 963, 967, 1017, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x23 - 1280x1024@60Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x24 - 1280x1024@75Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x25 - 1280x1024@85Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x26 - 1280x1024@120Hz RB */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x27 - 1360x768@60Hz */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1536, 1792, 0, 768, 771, 777, 795, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x28 - 1360x768@120Hz RB */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 1440, 1520, 0, 768, 771, 776, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x51 - 1366x768@60Hz */ { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 1579, 1792, 0, 768, 771, 774, 798, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x56 - 1366x768@60Hz */ { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 1436, 1500, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x29 - 1400x1050@60Hz RB */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2a - 1400x1050@60Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2b - 1400x1050@75Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2c - 1400x1050@85Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2d - 1400x1050@120Hz RB */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2e - 1440x900@60Hz RB */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 1520, 1600, 0, 900, 903, 909, 926, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2f - 1440x900@60Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1672, 1904, 0, 900, 903, 909, 934, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x30 - 1440x900@75Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 1688, 1936, 0, 900, 903, 909, 942, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x31 - 1440x900@85Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 1696, 1952, 0, 900, 903, 909, 948, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x32 - 1440x900@120Hz RB */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 1520, 1600, 0, 900, 903, 909, 953, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x53 - 1600x900@60Hz */ { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 1704, 1800, 0, 900, 901, 904, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x33 - 1600x1200@60Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x34 - 1600x1200@65Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x35 - 1600x1200@70Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x36 - 1600x1200@75Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x37 - 1600x1200@85Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x38 - 1600x1200@120Hz RB */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x39 - 1680x1050@60Hz RB */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x3a - 1680x1050@60Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3b - 1680x1050@75Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3c - 1680x1050@85Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3d - 1680x1050@120Hz RB */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x3e - 1792x1344@60Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3f - 1792x1344@75Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x40 - 1792x1344@120Hz RB */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x41 - 1856x1392@60Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x42 - 1856x1392@75Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x43 - 1856x1392@120Hz RB */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x52 - 1920x1080@60Hz */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x44 - 1920x1200@60Hz RB */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x45 - 1920x1200@60Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x46 - 1920x1200@75Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x47 - 1920x1200@85Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x48 - 1920x1200@120Hz RB */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x49 - 1920x1440@60Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4a - 1920x1440@75Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4b - 1920x1440@120Hz RB */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x54 - 2048x1152@60Hz */ { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4c - 2560x1600@60Hz RB */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x4d - 2560x1600@60Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4e - 2560x1600@75Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4f - 2560x1600@85Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x50 - 2560x1600@120Hz RB */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x57 - 4096x2160@60Hz RB */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x58 - 4096x2160@59.94Hz RB */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, }; /* * These more or less come from the DMT spec. The 720x400 modes are * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode * should be 1152x870, again for the Mac, but instead we use the x864 DMT * mode. * * The DMT modes have been fact-checked; the rest are mild guesses. */ static const struct drm_display_mode edid_est_modes[] = { { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 492, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 768, 864, 0, 480, 483, 486, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 846, 900, 0, 400, 421, 423, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 846, 900, 0, 400, 412, 414, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 928, 1152, 0, 624, 625, 628, 667, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ }; struct minimode { short w; short h; short r; short rb; }; static const struct minimode est3_modes[] = { /* byte 6 */ { 640, 350, 85, 0 }, { 640, 400, 85, 0 }, { 720, 400, 85, 0 }, { 640, 480, 85, 0 }, { 848, 480, 60, 0 }, { 800, 600, 85, 0 }, { 1024, 768, 85, 0 }, { 1152, 864, 75, 0 }, /* byte 7 */ { 1280, 768, 60, 1 }, { 1280, 768, 60, 0 }, { 1280, 768, 75, 0 }, { 1280, 768, 85, 0 }, { 1280, 960, 60, 0 }, { 1280, 960, 85, 0 }, { 1280, 1024, 60, 0 }, { 1280, 1024, 85, 0 }, /* byte 8 */ { 1360, 768, 60, 0 }, { 1440, 900, 60, 1 }, { 1440, 900, 60, 0 }, { 1440, 900, 75, 0 }, { 1440, 900, 85, 0 }, { 1400, 1050, 60, 1 }, { 1400, 1050, 60, 0 }, { 1400, 1050, 75, 0 }, /* byte 9 */ { 1400, 1050, 85, 0 }, { 1680, 1050, 60, 1 }, { 1680, 1050, 60, 0 }, { 1680, 1050, 75, 0 }, { 1680, 1050, 85, 0 }, { 1600, 1200, 60, 0 }, { 1600, 1200, 65, 0 }, { 1600, 1200, 70, 0 }, /* byte 10 */ { 1600, 1200, 75, 0 }, { 1600, 1200, 85, 0 }, { 1792, 1344, 60, 0 }, { 1792, 1344, 75, 0 }, { 1856, 1392, 60, 0 }, { 1856, 1392, 75, 0 }, { 1920, 1200, 60, 1 }, { 1920, 1200, 60, 0 }, /* byte 11 */ { 1920, 1200, 75, 0 }, { 1920, 1200, 85, 0 }, { 1920, 1440, 60, 0 }, { 1920, 1440, 75, 0 }, }; static const struct minimode extra_modes[] = { { 1024, 576, 60, 0 }, { 1366, 768, 60, 0 }, { 1600, 900, 60, 0 }, { 1680, 945, 60, 0 }, { 1920, 1080, 60, 0 }, { 2048, 1152, 60, 0 }, { 2048, 1536, 60, 0 }, }; /* * From CEA/CTA-861 spec. * * Do not access directly, instead always use cea_mode_for_vic(). */ static const struct drm_display_mode edid_cea_modes_1[] = { /* 1 - 640x480@60Hz 4:3 */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 2 - 720x480@60Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 3 - 720x480@60Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 4 - 1280x720@60Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 5 - 1920x1080i@60Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 6 - 720(1440)x480i@60Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 7 - 720(1440)x480i@60Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 8 - 720(1440)x240@60Hz 4:3 */ { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 9 - 720(1440)x240@60Hz 16:9 */ { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 10 - 2880x480i@60Hz 4:3 */ { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 11 - 2880x480i@60Hz 16:9 */ { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 12 - 2880x240@60Hz 4:3 */ { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 13 - 2880x240@60Hz 16:9 */ { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 14 - 1440x480@60Hz 4:3 */ { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 1596, 1716, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 15 - 1440x480@60Hz 16:9 */ { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 1596, 1716, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 16 - 1920x1080@60Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 17 - 720x576@50Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 18 - 720x576@50Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 19 - 1280x720@50Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 20 - 1920x1080i@50Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 21 - 720(1440)x576i@50Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 22 - 720(1440)x576i@50Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 23 - 720(1440)x288@50Hz 4:3 */ { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 24 - 720(1440)x288@50Hz 16:9 */ { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 25 - 2880x576i@50Hz 4:3 */ { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 26 - 2880x576i@50Hz 16:9 */ { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 27 - 2880x288@50Hz 4:3 */ { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 28 - 2880x288@50Hz 16:9 */ { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 29 - 1440x576@50Hz 4:3 */ { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 1592, 1728, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 30 - 1440x576@50Hz 16:9 */ { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 1592, 1728, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 31 - 1920x1080@50Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 32 - 1920x1080@24Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 33 - 1920x1080@25Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 34 - 1920x1080@30Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 35 - 2880x480@60Hz 4:3 */ { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 3192, 3432, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 36 - 2880x480@60Hz 16:9 */ { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 3192, 3432, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 37 - 2880x576@50Hz 4:3 */ { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 3184, 3456, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 38 - 2880x576@50Hz 16:9 */ { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 3184, 3456, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 39 - 1920x1080i@50Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 40 - 1920x1080i@100Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 41 - 1280x720@100Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 42 - 720x576@100Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 43 - 720x576@100Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 44 - 720(1440)x576i@100Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 45 - 720(1440)x576i@100Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 46 - 1920x1080i@120Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 47 - 1280x720@120Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 48 - 720x480@120Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 49 - 720x480@120Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 50 - 720(1440)x480i@120Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 51 - 720(1440)x480i@120Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 52 - 720x576@200Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 53 - 720x576@200Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 54 - 720(1440)x576i@200Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 55 - 720(1440)x576i@200Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 56 - 720x480@240Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 57 - 720x480@240Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 58 - 720(1440)x480i@240Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 59 - 720(1440)x480i@240Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 60 - 1280x720@24Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 61 - 1280x720@25Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 3740, 3960, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 62 - 1280x720@30Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 63 - 1920x1080@120Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 64 - 1920x1080@100Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 65 - 1280x720@24Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 66 - 1280x720@25Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 3740, 3960, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 67 - 1280x720@30Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 68 - 1280x720@50Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 69 - 1280x720@60Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 70 - 1280x720@100Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 71 - 1280x720@120Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 72 - 1920x1080@24Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 73 - 1920x1080@25Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 74 - 1920x1080@30Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 75 - 1920x1080@50Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 76 - 1920x1080@60Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 77 - 1920x1080@100Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 78 - 1920x1080@120Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 79 - 1680x720@24Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 80 - 1680x720@25Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 2948, 3168, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 81 - 1680x720@30Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 2420, 2640, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 82 - 1680x720@50Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1980, 2200, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 83 - 1680x720@60Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1980, 2200, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 84 - 1680x720@100Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1780, 2000, 0, 720, 725, 730, 825, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 85 - 1680x720@120Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1780, 2000, 0, 720, 725, 730, 825, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 86 - 2560x1080@24Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 87 - 2560x1080@25Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 88 - 2560x1080@30Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 89 - 2560x1080@50Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 90 - 2560x1080@60Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 91 - 2560x1080@100Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 92 - 2560x1080@120Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 93 - 3840x2160@24Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 94 - 3840x2160@25Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 95 - 3840x2160@30Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 96 - 3840x2160@50Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 97 - 3840x2160@60Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 98 - 4096x2160@24Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 99 - 4096x2160@25Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 100 - 4096x2160@30Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 101 - 4096x2160@50Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 102 - 4096x2160@60Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 103 - 3840x2160@24Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 104 - 3840x2160@25Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 105 - 3840x2160@30Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 106 - 3840x2160@50Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 107 - 3840x2160@60Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 108 - 1280x720@48Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 2280, 2500, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 109 - 1280x720@48Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240, 2280, 2500, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 110 - 1680x720@48Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490, 2530, 2750, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 111 - 1920x1080@48Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 112 - 1920x1080@48Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 113 - 2560x1080@48Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558, 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 114 - 3840x2160@48Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 115 - 4096x2160@48Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 116 - 3840x2160@48Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 117 - 3840x2160@100Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 118 - 3840x2160@120Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 119 - 3840x2160@100Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 120 - 3840x2160@120Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 121 - 5120x2160@24Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116, 7204, 7500, 0, 2160, 2168, 2178, 2200, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 122 - 5120x2160@25Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816, 6904, 7200, 0, 2160, 2168, 2178, 2200, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 123 - 5120x2160@30Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784, 5872, 6000, 0, 2160, 2168, 2178, 2200, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 124 - 5120x2160@48Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866, 5954, 6250, 0, 2160, 2168, 2178, 2475, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 125 - 5120x2160@50Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216, 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 126 - 5120x2160@60Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284, 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 127 - 5120x2160@100Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216, 6304, 6600, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, }; /* * From CEA/CTA-861 spec. * * Do not access directly, instead always use cea_mode_for_vic(). */ static const struct drm_display_mode edid_cea_modes_193[] = { /* 193 - 5120x2160@120Hz 64:27 */ { DRM_MODE("5120x2160", DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284, 5372, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 194 - 7680x4320@24Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 195 - 7680x4320@25Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 196 - 7680x4320@30Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 197 - 7680x4320@48Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 198 - 7680x4320@50Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 199 - 7680x4320@60Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 200 - 7680x4320@100Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 201 - 7680x4320@120Hz 16:9 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 202 - 7680x4320@24Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232, 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 203 - 7680x4320@25Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032, 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 204 - 7680x4320@30Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232, 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 205 - 7680x4320@48Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232, 10408, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 206 - 7680x4320@50Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032, 10208, 10800, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 207 - 7680x4320@60Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232, 8408, 9000, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 208 - 7680x4320@100Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792, 9968, 10560, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 209 - 7680x4320@120Hz 64:27 */ { DRM_MODE("7680x4320", DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032, 8208, 8800, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 210 - 10240x4320@24Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732, 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 211 - 10240x4320@25Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732, 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 212 - 10240x4320@30Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528, 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 213 - 10240x4320@48Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732, 11908, 12500, 0, 4320, 4336, 4356, 4950, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 214 - 10240x4320@50Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732, 12908, 13500, 0, 4320, 4336, 4356, 4400, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 215 - 10240x4320@60Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528, 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 216 - 10240x4320@100Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432, 12608, 13200, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 217 - 10240x4320@120Hz 64:27 */ { DRM_MODE("10240x4320", DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528, 10704, 11000, 0, 4320, 4336, 4356, 4500, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 218 - 4096x2160@100Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 219 - 4096x2160@120Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184, 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, }; /* * HDMI 1.4 4k modes. Index using the VIC. */ static const struct drm_display_mode edid_4k_modes[] = { /* 0 - dummy, VICs start at 1 */ { }, /* 1 - 3840x2160@30Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 2 - 3840x2160@25Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 3 - 3840x2160@24Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 4 - 4096x2160@24Hz (SMPTE) */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, }; /*** DDC fetch and block validation ***/ /* * The opaque EDID type, internal to drm_edid.c. */ struct drm_edid { /* Size allocated for edid */ size_t size; const struct edid *edid; }; static int edid_hfeeodb_extension_block_count(const struct edid *edid); static int edid_hfeeodb_block_count(const struct edid *edid) { int eeodb = edid_hfeeodb_extension_block_count(edid); return eeodb ? eeodb + 1 : 0; } static int edid_extension_block_count(const struct edid *edid) { return edid->extensions; } static int edid_block_count(const struct edid *edid) { return edid_extension_block_count(edid) + 1; } static int edid_size_by_blocks(int num_blocks) { return num_blocks * EDID_LENGTH; } static int edid_size(const struct edid *edid) { return edid_size_by_blocks(edid_block_count(edid)); } static const void *edid_block_data(const struct edid *edid, int index) { BUILD_BUG_ON(sizeof(*edid) != EDID_LENGTH); return edid + index; } static const void *edid_extension_block_data(const struct edid *edid, int index) { return edid_block_data(edid, index + 1); } /* EDID block count indicated in EDID, may exceed allocated size */ static int __drm_edid_block_count(const struct drm_edid *drm_edid) { int num_blocks; /* Starting point */ num_blocks = edid_block_count(drm_edid->edid); /* HF-EEODB override */ if (drm_edid->size >= edid_size_by_blocks(2)) { int eeodb; /* * Note: HF-EEODB may specify a smaller extension count than the * regular one. Unlike in buffer allocation, here we can use it. */ eeodb = edid_hfeeodb_block_count(drm_edid->edid); if (eeodb) num_blocks = eeodb; } return num_blocks; } /* EDID block count, limited by allocated size */ static int drm_edid_block_count(const struct drm_edid *drm_edid) { /* Limit by allocated size */ return min(__drm_edid_block_count(drm_edid), (int)drm_edid->size / EDID_LENGTH); } /* EDID extension block count, limited by allocated size */ static int drm_edid_extension_block_count(const struct drm_edid *drm_edid) { return drm_edid_block_count(drm_edid) - 1; } static const void *drm_edid_block_data(const struct drm_edid *drm_edid, int index) { return edid_block_data(drm_edid->edid, index); } static const void *drm_edid_extension_block_data(const struct drm_edid *drm_edid, int index) { return edid_extension_block_data(drm_edid->edid, index); } /* * Initializer helper for legacy interfaces, where we have no choice but to * trust edid size. Not for general purpose use. */ static const struct drm_edid *drm_edid_legacy_init(struct drm_edid *drm_edid, const struct edid *edid) { if (!edid) return NULL; memset(drm_edid, 0, sizeof(*drm_edid)); drm_edid->edid = edid; drm_edid->size = edid_size(edid); return drm_edid; } /* * EDID base and extension block iterator. * * struct drm_edid_iter iter; * const u8 *block; * * drm_edid_iter_begin(drm_edid, &iter); * drm_edid_iter_for_each(block, &iter) { * // do stuff with block * } * drm_edid_iter_end(&iter); */ struct drm_edid_iter { const struct drm_edid *drm_edid; /* Current block index. */ int index; }; static void drm_edid_iter_begin(const struct drm_edid *drm_edid, struct drm_edid_iter *iter) { memset(iter, 0, sizeof(*iter)); iter->drm_edid = drm_edid; } static const void *__drm_edid_iter_next(struct drm_edid_iter *iter) { const void *block = NULL; if (!iter->drm_edid) return NULL; if (iter->index < drm_edid_block_count(iter->drm_edid)) block = drm_edid_block_data(iter->drm_edid, iter->index++); return block; } #define drm_edid_iter_for_each(__block, __iter) \ while (((__block) = __drm_edid_iter_next(__iter))) static void drm_edid_iter_end(struct drm_edid_iter *iter) { memset(iter, 0, sizeof(*iter)); } static const u8 edid_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; static void edid_header_fix(void *edid) { memcpy(edid, edid_header, sizeof(edid_header)); } /** * drm_edid_header_is_valid - sanity check the header of the base EDID block * @_edid: pointer to raw base EDID block * * Sanity check the header of the base EDID block. * * Return: 8 if the header is perfect, down to 0 if it's totally wrong. */ int drm_edid_header_is_valid(const void *_edid) { const struct edid *edid = _edid; int i, score = 0; for (i = 0; i < sizeof(edid_header); i++) { if (edid->header[i] == edid_header[i]) score++; } return score; } EXPORT_SYMBOL(drm_edid_header_is_valid); static int edid_fixup __read_mostly = 6; module_param_named(edid_fixup, edid_fixup, int, 0400); MODULE_PARM_DESC(edid_fixup, "Minimum number of valid EDID header bytes (0-8, default 6)"); static int edid_block_compute_checksum(const void *_block) { const u8 *block = _block; int i; u8 csum = 0, crc = 0; for (i = 0; i < EDID_LENGTH - 1; i++) csum += block[i]; crc = 0x100 - csum; return crc; } static int edid_block_get_checksum(const void *_block) { const struct edid *block = _block; return block->checksum; } static int edid_block_tag(const void *_block) { const u8 *block = _block; return block[0]; } static bool edid_block_is_zero(const void *edid) { return !memchr_inv(edid, 0, EDID_LENGTH); } static bool drm_edid_eq(const struct drm_edid *drm_edid, const void *raw_edid, size_t raw_edid_size) { bool edid1_present = drm_edid && drm_edid->edid && drm_edid->size; bool edid2_present = raw_edid && raw_edid_size; if (edid1_present != edid2_present) return false; if (edid1_present) { if (drm_edid->size != raw_edid_size) return false; if (memcmp(drm_edid->edid, raw_edid, drm_edid->size)) return false; } return true; } enum edid_block_status { EDID_BLOCK_OK = 0, EDID_BLOCK_READ_FAIL, EDID_BLOCK_NULL, EDID_BLOCK_ZERO, EDID_BLOCK_HEADER_CORRUPT, EDID_BLOCK_HEADER_REPAIR, EDID_BLOCK_HEADER_FIXED, EDID_BLOCK_CHECKSUM, EDID_BLOCK_VERSION, }; static enum edid_block_status edid_block_check(const void *_block, bool is_base_block) { const struct edid *block = _block; if (!block) return EDID_BLOCK_NULL; if (is_base_block) { int score = drm_edid_header_is_valid(block); if (score < clamp(edid_fixup, 0, 8)) { if (edid_block_is_zero(block)) return EDID_BLOCK_ZERO; else return EDID_BLOCK_HEADER_CORRUPT; } if (score < 8) return EDID_BLOCK_HEADER_REPAIR; } if (edid_block_compute_checksum(block) != edid_block_get_checksum(block)) { if (edid_block_is_zero(block)) return EDID_BLOCK_ZERO; else return EDID_BLOCK_CHECKSUM; } if (is_base_block) { if (block->version != 1) return EDID_BLOCK_VERSION; } return EDID_BLOCK_OK; } static bool edid_block_status_valid(enum edid_block_status status, int tag) { return status == EDID_BLOCK_OK || status == EDID_BLOCK_HEADER_FIXED || (status == EDID_BLOCK_CHECKSUM && tag == CEA_EXT); } static bool edid_block_valid(const void *block, bool base) { return edid_block_status_valid(edid_block_check(block, base), edid_block_tag(block)); } static void edid_block_status_print(enum edid_block_status status, const struct edid *block, int block_num) { switch (status) { case EDID_BLOCK_OK: break; case EDID_BLOCK_READ_FAIL: pr_debug("EDID block %d read failed\n", block_num); break; case EDID_BLOCK_NULL: pr_debug("EDID block %d pointer is NULL\n", block_num); break; case EDID_BLOCK_ZERO: pr_notice("EDID block %d is all zeroes\n", block_num); break; case EDID_BLOCK_HEADER_CORRUPT: pr_notice("EDID has corrupt header\n"); break; case EDID_BLOCK_HEADER_REPAIR: pr_debug("EDID corrupt header needs repair\n"); break; case EDID_BLOCK_HEADER_FIXED: pr_debug("EDID corrupt header fixed\n"); break; case EDID_BLOCK_CHECKSUM: if (edid_block_status_valid(status, edid_block_tag(block))) { pr_debug("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d, ignoring\n", block_num, edid_block_tag(block), edid_block_compute_checksum(block)); } else { pr_notice("EDID block %d (tag 0x%02x) checksum is invalid, remainder is %d\n", block_num, edid_block_tag(block), edid_block_compute_checksum(block)); } break; case EDID_BLOCK_VERSION: pr_notice("EDID has major version %d, instead of 1\n", block->version); break; default: WARN(1, "EDID block %d unknown edid block status code %d\n", block_num, status); break; } } static void edid_block_dump(const char *level, const void *block, int block_num) { enum edid_block_status status; char prefix[20]; status = edid_block_check(block, block_num == 0); if (status == EDID_BLOCK_ZERO) sprintf(prefix, "\t[%02x] ZERO ", block_num); else if (!edid_block_status_valid(status, edid_block_tag(block))) sprintf(prefix, "\t[%02x] BAD ", block_num); else sprintf(prefix, "\t[%02x] GOOD ", block_num); print_hex_dump(level, prefix, DUMP_PREFIX_NONE, 16, 1, block, EDID_LENGTH, false); } /** * drm_edid_block_valid - Sanity check the EDID block (base or extension) * @_block: pointer to raw EDID block * @block_num: type of block to validate (0 for base, extension otherwise) * @print_bad_edid: if true, dump bad EDID blocks to the console * @edid_corrupt: if true, the header or checksum is invalid * * Validate a base or extension EDID block and optionally dump bad blocks to * the console. * * Return: True if the block is valid, false otherwise. */ bool drm_edid_block_valid(u8 *_block, int block_num, bool print_bad_edid, bool *edid_corrupt) { struct edid *block = (struct edid *)_block; enum edid_block_status status; bool is_base_block = block_num == 0; bool valid; if (WARN_ON(!block)) return false; status = edid_block_check(block, is_base_block); if (status == EDID_BLOCK_HEADER_REPAIR) { DRM_DEBUG_KMS("Fixing EDID header, your hardware may be failing\n"); edid_header_fix(block); /* Retry with fixed header, update status if that worked. */ status = edid_block_check(block, is_base_block); if (status == EDID_BLOCK_OK) status = EDID_BLOCK_HEADER_FIXED; } if (edid_corrupt) { /* * Unknown major version isn't corrupt but we can't use it. Only * the base block can reset edid_corrupt to false. */ if (is_base_block && (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION)) *edid_corrupt = false; else if (status != EDID_BLOCK_OK) *edid_corrupt = true; } edid_block_status_print(status, block, block_num); /* Determine whether we can use this block with this status. */ valid = edid_block_status_valid(status, edid_block_tag(block)); if (!valid && print_bad_edid && status != EDID_BLOCK_ZERO) { pr_notice("Raw EDID:\n"); edid_block_dump(KERN_NOTICE, block, block_num); } return valid; } EXPORT_SYMBOL(drm_edid_block_valid); /** * drm_edid_is_valid - sanity check EDID data * @edid: EDID data * * Sanity-check an entire EDID record (including extensions) * * Return: True if the EDID data is valid, false otherwise. */ bool drm_edid_is_valid(struct edid *edid) { int i; if (!edid) return false; for (i = 0; i < edid_block_count(edid); i++) { void *block = (void *)edid_block_data(edid, i); if (!drm_edid_block_valid(block, i, true, NULL)) return false; } return true; } EXPORT_SYMBOL(drm_edid_is_valid); /** * drm_edid_valid - sanity check EDID data * @drm_edid: EDID data * * Sanity check an EDID. Cross check block count against allocated size and * checksum the blocks. * * Return: True if the EDID data is valid, false otherwise. */ bool drm_edid_valid(const struct drm_edid *drm_edid) { int i; if (!drm_edid) return false; if (edid_size_by_blocks(__drm_edid_block_count(drm_edid)) != drm_edid->size) return false; for (i = 0; i < drm_edid_block_count(drm_edid); i++) { const void *block = drm_edid_block_data(drm_edid, i); if (!edid_block_valid(block, i == 0)) return false; } return true; } EXPORT_SYMBOL(drm_edid_valid); static struct edid *edid_filter_invalid_blocks(struct edid *edid, size_t *alloc_size) { struct edid *new; int i, valid_blocks = 0; /* * Note: If the EDID uses HF-EEODB, but has invalid blocks, we'll revert * back to regular extension count here. We don't want to start * modifying the HF-EEODB extension too. */ for (i = 0; i < edid_block_count(edid); i++) { const void *src_block = edid_block_data(edid, i); if (edid_block_valid(src_block, i == 0)) { void *dst_block = (void *)edid_block_data(edid, valid_blocks); memmove(dst_block, src_block, EDID_LENGTH); valid_blocks++; } } /* We already trusted the base block to be valid here... */ if (WARN_ON(!valid_blocks)) { kfree(edid); return NULL; } edid->extensions = valid_blocks - 1; edid->checksum = edid_block_compute_checksum(edid); *alloc_size = edid_size_by_blocks(valid_blocks); new = krealloc(edid, *alloc_size, GFP_KERNEL); if (!new) kfree(edid); return new; } #define DDC_SEGMENT_ADDR 0x30 /** * drm_do_probe_ddc_edid() - get EDID information via I2C * @data: I2C device adapter * @buf: EDID data buffer to be filled * @block: 128 byte EDID block to start fetching from * @len: EDID data buffer length to fetch * * Try to fetch EDID information by calling I2C driver functions. * * Return: 0 on success or -1 on failure. */ static int drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) { struct i2c_adapter *adapter = data; unsigned char start = block * EDID_LENGTH; unsigned char segment = block >> 1; unsigned char xfers = segment ? 3 : 2; int ret, retries = 5; /* * The core I2C driver will automatically retry the transfer if the * adapter reports EAGAIN. However, we find that bit-banging transfers * are susceptible to errors under a heavily loaded machine and * generate spurious NAKs and timeouts. Retrying the transfer * of the individual block a few times seems to overcome this. */ do { struct i2c_msg msgs[] = { { .addr = DDC_SEGMENT_ADDR, .flags = 0, .len = 1, .buf = &segment, }, { .addr = DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DDC_ADDR, .flags = I2C_M_RD, .len = len, .buf = buf, } }; /* * Avoid sending the segment addr to not upset non-compliant * DDC monitors. */ ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); if (ret == -ENXIO) { DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", adapter->name); break; } } while (ret != xfers && --retries); return ret == xfers ? 0 : -1; } static void connector_bad_edid(struct drm_connector *connector, const struct edid *edid, int num_blocks) { int i; u8 last_block; /* * 0x7e in the EDID is the number of extension blocks. The EDID * is 1 (base block) + num_ext_blocks big. That means we can think * of 0x7e in the EDID of the _index_ of the last block in the * combined chunk of memory. */ last_block = edid->extensions; /* Calculate real checksum for the last edid extension block data */ if (last_block < num_blocks) connector->real_edid_checksum = edid_block_compute_checksum(edid + last_block); if (connector->bad_edid_counter++ && !drm_debug_enabled(DRM_UT_KMS)) return; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID is invalid:\n", connector->base.id, connector->name); for (i = 0; i < num_blocks; i++) edid_block_dump(KERN_DEBUG, edid + i, i); } /* Get override or firmware EDID */ static const struct drm_edid *drm_edid_override_get(struct drm_connector *connector) { const struct drm_edid *override = NULL; mutex_lock(&connector->edid_override_mutex); if (connector->edid_override) override = drm_edid_dup(connector->edid_override); mutex_unlock(&connector->edid_override_mutex); if (!override) override = drm_edid_load_firmware(connector); return IS_ERR(override) ? NULL : override; } /* For debugfs edid_override implementation */ int drm_edid_override_show(struct drm_connector *connector, struct seq_file *m) { const struct drm_edid *drm_edid; mutex_lock(&connector->edid_override_mutex); drm_edid = connector->edid_override; if (drm_edid) seq_write(m, drm_edid->edid, drm_edid->size); mutex_unlock(&connector->edid_override_mutex); return 0; } /* For debugfs edid_override implementation */ int drm_edid_override_set(struct drm_connector *connector, const void *edid, size_t size) { const struct drm_edid *drm_edid; drm_edid = drm_edid_alloc(edid, size); if (!drm_edid_valid(drm_edid)) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override invalid\n", connector->base.id, connector->name); drm_edid_free(drm_edid); return -EINVAL; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override set\n", connector->base.id, connector->name); mutex_lock(&connector->edid_override_mutex); drm_edid_free(connector->edid_override); connector->edid_override = drm_edid; mutex_unlock(&connector->edid_override_mutex); return 0; } /* For debugfs edid_override implementation */ int drm_edid_override_reset(struct drm_connector *connector) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] EDID override reset\n", connector->base.id, connector->name); mutex_lock(&connector->edid_override_mutex); drm_edid_free(connector->edid_override); connector->edid_override = NULL; mutex_unlock(&connector->edid_override_mutex); return 0; } /** * drm_edid_override_connector_update - add modes from override/firmware EDID * @connector: connector we're probing * * Add modes from the override/firmware EDID, if available. Only to be used from * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe * failed during drm_get_edid() and caused the override/firmware EDID to be * skipped. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_edid_override_connector_update(struct drm_connector *connector) { const struct drm_edid *override; int num_modes = 0; override = drm_edid_override_get(connector); if (override) { if (drm_edid_connector_update(connector, override) == 0) num_modes = drm_edid_connector_add_modes(connector); drm_edid_free(override); drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n", connector->base.id, connector->name, num_modes); } return num_modes; } EXPORT_SYMBOL(drm_edid_override_connector_update); typedef int read_block_fn(void *context, u8 *buf, unsigned int block, size_t len); static enum edid_block_status edid_block_read(void *block, unsigned int block_num, read_block_fn read_block, void *context) { enum edid_block_status status; bool is_base_block = block_num == 0; int try; for (try = 0; try < 4; try++) { if (read_block(context, block, block_num, EDID_LENGTH)) return EDID_BLOCK_READ_FAIL; status = edid_block_check(block, is_base_block); if (status == EDID_BLOCK_HEADER_REPAIR) { edid_header_fix(block); /* Retry with fixed header, update status if that worked. */ status = edid_block_check(block, is_base_block); if (status == EDID_BLOCK_OK) status = EDID_BLOCK_HEADER_FIXED; } if (edid_block_status_valid(status, edid_block_tag(block))) break; /* Fail early for unrepairable base block all zeros. */ if (try == 0 && is_base_block && status == EDID_BLOCK_ZERO) break; } return status; } static struct edid *_drm_do_get_edid(struct drm_connector *connector, read_block_fn read_block, void *context, size_t *size) { enum edid_block_status status; int i, num_blocks, invalid_blocks = 0; const struct drm_edid *override; struct edid *edid, *new; size_t alloc_size = EDID_LENGTH; override = drm_edid_override_get(connector); if (override) { alloc_size = override->size; edid = kmemdup(override->edid, alloc_size, GFP_KERNEL); drm_edid_free(override); if (!edid) return NULL; goto ok; } edid = kmalloc(alloc_size, GFP_KERNEL); if (!edid) return NULL; status = edid_block_read(edid, 0, read_block, context); edid_block_status_print(status, edid, 0); if (status == EDID_BLOCK_READ_FAIL) goto fail; /* FIXME: Clarify what a corrupt EDID actually means. */ if (status == EDID_BLOCK_OK || status == EDID_BLOCK_VERSION) connector->edid_corrupt = false; else connector->edid_corrupt = true; if (!edid_block_status_valid(status, edid_block_tag(edid))) { if (status == EDID_BLOCK_ZERO) connector->null_edid_counter++; connector_bad_edid(connector, edid, 1); goto fail; } if (!edid_extension_block_count(edid)) goto ok; alloc_size = edid_size(edid); new = krealloc(edid, alloc_size, GFP_KERNEL); if (!new) goto fail; edid = new; num_blocks = edid_block_count(edid); for (i = 1; i < num_blocks; i++) { void *block = (void *)edid_block_data(edid, i); status = edid_block_read(block, i, read_block, context); edid_block_status_print(status, block, i); if (!edid_block_status_valid(status, edid_block_tag(block))) { if (status == EDID_BLOCK_READ_FAIL) goto fail; invalid_blocks++; } else if (i == 1) { /* * If the first EDID extension is a CTA extension, and * the first Data Block is HF-EEODB, override the * extension block count. * * Note: HF-EEODB could specify a smaller extension * count too, but we can't risk allocating a smaller * amount. */ int eeodb = edid_hfeeodb_block_count(edid); if (eeodb > num_blocks) { num_blocks = eeodb; alloc_size = edid_size_by_blocks(num_blocks); new = krealloc(edid, alloc_size, GFP_KERNEL); if (!new) goto fail; edid = new; } } } if (invalid_blocks) { connector_bad_edid(connector, edid, num_blocks); edid = edid_filter_invalid_blocks(edid, &alloc_size); } ok: if (size) *size = alloc_size; return edid; fail: kfree(edid); return NULL; } /** * drm_do_get_edid - get EDID data using a custom EDID block read function * @connector: connector we're probing * @read_block: EDID block read function * @context: private data passed to the block read function * * When the I2C adapter connected to the DDC bus is hidden behind a device that * exposes a different interface to read EDID blocks this function can be used * to get EDID data using a custom block read function. * * As in the general case the DDC bus is accessible by the kernel at the I2C * level, drivers must make all reasonable efforts to expose it as an I2C * adapter and use drm_get_edid() instead of abusing this function. * * The EDID may be overridden using debugfs override_edid or firmware EDID * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority * order. Having either of them bypasses actual EDID reads. * * Return: Pointer to valid EDID or NULL if we couldn't find any. */ struct edid *drm_do_get_edid(struct drm_connector *connector, read_block_fn read_block, void *context) { return _drm_do_get_edid(connector, read_block, context, NULL); } EXPORT_SYMBOL_GPL(drm_do_get_edid); /** * drm_edid_raw - Get a pointer to the raw EDID data. * @drm_edid: drm_edid container * * Get a pointer to the raw EDID data. * * This is for transition only. Avoid using this like the plague. * * Return: Pointer to raw EDID data. */ const struct edid *drm_edid_raw(const struct drm_edid *drm_edid) { if (!drm_edid || !drm_edid->size) return NULL; /* * Do not return pointers where relying on EDID extension count would * lead to buffer overflow. */ if (WARN_ON(edid_size(drm_edid->edid) > drm_edid->size)) return NULL; return drm_edid->edid; } EXPORT_SYMBOL(drm_edid_raw); /* Allocate struct drm_edid container *without* duplicating the edid data */ static const struct drm_edid *_drm_edid_alloc(const void *edid, size_t size) { struct drm_edid *drm_edid; if (!edid || !size || size < EDID_LENGTH) return NULL; drm_edid = kzalloc(sizeof(*drm_edid), GFP_KERNEL); if (drm_edid) { drm_edid->edid = edid; drm_edid->size = size; } return drm_edid; } /** * drm_edid_alloc - Allocate a new drm_edid container * @edid: Pointer to raw EDID data * @size: Size of memory allocated for EDID * * Allocate a new drm_edid container. Do not calculate edid size from edid, pass * the actual size that has been allocated for the data. There is no validation * of the raw EDID data against the size, but at least the EDID base block must * fit in the buffer. * * The returned pointer must be freed using drm_edid_free(). * * Return: drm_edid container, or NULL on errors */ const struct drm_edid *drm_edid_alloc(const void *edid, size_t size) { const struct drm_edid *drm_edid; if (!edid || !size || size < EDID_LENGTH) return NULL; edid = kmemdup(edid, size, GFP_KERNEL); if (!edid) return NULL; drm_edid = _drm_edid_alloc(edid, size); if (!drm_edid) kfree(edid); return drm_edid; } EXPORT_SYMBOL(drm_edid_alloc); /** * drm_edid_dup - Duplicate a drm_edid container * @drm_edid: EDID to duplicate * * The returned pointer must be freed using drm_edid_free(). * * Returns: drm_edid container copy, or NULL on errors */ const struct drm_edid *drm_edid_dup(const struct drm_edid *drm_edid) { if (!drm_edid) return NULL; return drm_edid_alloc(drm_edid->edid, drm_edid->size); } EXPORT_SYMBOL(drm_edid_dup); /** * drm_edid_free - Free the drm_edid container * @drm_edid: EDID to free */ void drm_edid_free(const struct drm_edid *drm_edid) { if (!drm_edid) return; kfree(drm_edid->edid); kfree(drm_edid); } EXPORT_SYMBOL(drm_edid_free); /** * drm_probe_ddc() - probe DDC presence * @adapter: I2C adapter to probe * * Return: True on success, false on failure. */ bool drm_probe_ddc(struct i2c_adapter *adapter) { unsigned char out; return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); } EXPORT_SYMBOL(drm_probe_ddc); /** * drm_get_edid - get EDID data, if available * @connector: connector we're probing * @adapter: I2C adapter to use for DDC * * Poke the given I2C channel to grab EDID data if possible. If found, * attach it to the connector. * * Return: Pointer to valid EDID or NULL if we couldn't find any. */ struct edid *drm_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct edid *edid; if (connector->force == DRM_FORCE_OFF) return NULL; if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) return NULL; edid = _drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter, NULL); drm_connector_update_edid_property(connector, edid); return edid; } EXPORT_SYMBOL(drm_get_edid); /** * drm_edid_read_custom - Read EDID data using given EDID block read function * @connector: Connector to use * @read_block: EDID block read function * @context: Private data passed to the block read function * * When the I2C adapter connected to the DDC bus is hidden behind a device that * exposes a different interface to read EDID blocks this function can be used * to get EDID data using a custom block read function. * * As in the general case the DDC bus is accessible by the kernel at the I2C * level, drivers must make all reasonable efforts to expose it as an I2C * adapter and use drm_edid_read() or drm_edid_read_ddc() instead of abusing * this function. * * The EDID may be overridden using debugfs override_edid or firmware EDID * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority * order. Having either of them bypasses actual EDID reads. * * The returned pointer must be freed using drm_edid_free(). * * Return: Pointer to EDID, or NULL if probe/read failed. */ const struct drm_edid *drm_edid_read_custom(struct drm_connector *connector, read_block_fn read_block, void *context) { const struct drm_edid *drm_edid; struct edid *edid; size_t size = 0; edid = _drm_do_get_edid(connector, read_block, context, &size); if (!edid) return NULL; /* Sanity check for now */ drm_WARN_ON(connector->dev, !size); drm_edid = _drm_edid_alloc(edid, size); if (!drm_edid) kfree(edid); return drm_edid; } EXPORT_SYMBOL(drm_edid_read_custom); /** * drm_edid_read_ddc - Read EDID data using given I2C adapter * @connector: Connector to use * @adapter: I2C adapter to use for DDC * * Read EDID using the given I2C adapter. * * The EDID may be overridden using debugfs override_edid or firmware EDID * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority * order. Having either of them bypasses actual EDID reads. * * Prefer initializing connector->ddc with drm_connector_init_with_ddc() and * using drm_edid_read() instead of this function. * * The returned pointer must be freed using drm_edid_free(). * * Return: Pointer to EDID, or NULL if probe/read failed. */ const struct drm_edid *drm_edid_read_ddc(struct drm_connector *connector, struct i2c_adapter *adapter) { const struct drm_edid *drm_edid; if (connector->force == DRM_FORCE_OFF) return NULL; if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) return NULL; drm_edid = drm_edid_read_custom(connector, drm_do_probe_ddc_edid, adapter); /* Note: Do *not* call connector updates here. */ return drm_edid; } EXPORT_SYMBOL(drm_edid_read_ddc); /** * drm_edid_read - Read EDID data using connector's I2C adapter * @connector: Connector to use * * Read EDID using the connector's I2C adapter. * * The EDID may be overridden using debugfs override_edid or firmware EDID * (drm_edid_load_firmware() and drm.edid_firmware parameter), in this priority * order. Having either of them bypasses actual EDID reads. * * The returned pointer must be freed using drm_edid_free(). * * Return: Pointer to EDID, or NULL if probe/read failed. */ const struct drm_edid *drm_edid_read(struct drm_connector *connector) { if (drm_WARN_ON(connector->dev, !connector->ddc)) return NULL; return drm_edid_read_ddc(connector, connector->ddc); } EXPORT_SYMBOL(drm_edid_read); /** * drm_edid_get_product_id - Get the vendor and product identification * @drm_edid: EDID * @id: Where to place the product id */ void drm_edid_get_product_id(const struct drm_edid *drm_edid, struct drm_edid_product_id *id) { if (drm_edid && drm_edid->edid && drm_edid->size >= EDID_LENGTH) memcpy(id, &drm_edid->edid->product_id, sizeof(*id)); else memset(id, 0, sizeof(*id)); } EXPORT_SYMBOL(drm_edid_get_product_id); static void decode_date(struct seq_buf *s, const struct drm_edid_product_id *id) { int week = id->week_of_manufacture; int year = id->year_of_manufacture + 1990; if (week == 0xff) seq_buf_printf(s, "model year: %d", year); else if (!week) seq_buf_printf(s, "year of manufacture: %d", year); else seq_buf_printf(s, "week/year of manufacture: %d/%d", week, year); } /** * drm_edid_print_product_id - Print decoded product id to printer * @p: drm printer * @id: EDID product id * @raw: If true, also print the raw hex * * See VESA E-EDID 1.4 section 3.4. */ void drm_edid_print_product_id(struct drm_printer *p, const struct drm_edid_product_id *id, bool raw) { DECLARE_SEQ_BUF(date, 40); char vend[4]; drm_edid_decode_mfg_id(be16_to_cpu(id->manufacturer_name), vend); decode_date(&date, id); drm_printf(p, "manufacturer name: %s, product code: %u, serial number: %u, %s\n", vend, le16_to_cpu(id->product_code), le32_to_cpu(id->serial_number), seq_buf_str(&date)); if (raw) drm_printf(p, "raw product id: %*ph\n", (int)sizeof(*id), id); WARN_ON(seq_buf_has_overflowed(&date)); } EXPORT_SYMBOL(drm_edid_print_product_id); /** * drm_edid_get_panel_id - Get a panel's ID from EDID * @drm_edid: EDID that contains panel ID. * * This function uses the first block of the EDID of a panel and (assuming * that the EDID is valid) extracts the ID out of it. The ID is a 32-bit value * (16 bits of manufacturer ID and 16 bits of per-manufacturer ID) that's * supposed to be different for each different modem of panel. * * Return: A 32-bit ID that should be different for each make/model of panel. * See the functions drm_edid_encode_panel_id() and * drm_edid_decode_panel_id() for some details on the structure of this * ID. Return 0 if the EDID size is less than a base block. */ u32 drm_edid_get_panel_id(const struct drm_edid *drm_edid) { const struct edid *edid = drm_edid->edid; if (drm_edid->size < EDID_LENGTH) return 0; /* * We represent the ID as a 32-bit number so it can easily be compared * with "==". * * NOTE that we deal with endianness differently for the top half * of this ID than for the bottom half. The bottom half (the product * id) gets decoded as little endian by the EDID_PRODUCT_ID because * that's how everyone seems to interpret it. The top half (the mfg_id) * gets stored as big endian because that makes * drm_edid_encode_panel_id() and drm_edid_decode_panel_id() easier * to write (it's easier to extract the ASCII). It doesn't really * matter, though, as long as the number here is unique. */ return (u32)edid->mfg_id[0] << 24 | (u32)edid->mfg_id[1] << 16 | (u32)EDID_PRODUCT_ID(edid); } EXPORT_SYMBOL(drm_edid_get_panel_id); /** * drm_edid_read_base_block - Get a panel's EDID base block * @adapter: I2C adapter to use for DDC * * This function returns the drm_edid containing the first block of the EDID of * a panel. * * This function is intended to be used during early probing on devices where * more than one panel might be present. Because of its intended use it must * assume that the EDID of the panel is correct, at least as far as the base * block is concerned (in other words, we don't process any overrides here). * * Caller should call drm_edid_free() after use. * * NOTE: it's expected that this function and drm_do_get_edid() will both * be read the EDID, but there is no caching between them. Since we're only * reading the first block, hopefully this extra overhead won't be too big. * * WARNING: Only use this function when the connector is unknown. For example, * during the early probe of panel. The EDID read from the function is temporary * and should be replaced by the full EDID returned from other drm_edid_read. * * Return: Pointer to allocated EDID base block, or NULL on any failure. */ const struct drm_edid *drm_edid_read_base_block(struct i2c_adapter *adapter) { enum edid_block_status status; void *base_block; base_block = kzalloc(EDID_LENGTH, GFP_KERNEL); if (!base_block) return NULL; status = edid_block_read(base_block, 0, drm_do_probe_ddc_edid, adapter); edid_block_status_print(status, base_block, 0); if (!edid_block_status_valid(status, edid_block_tag(base_block))) { edid_block_dump(KERN_NOTICE, base_block, 0); kfree(base_block); return NULL; } return _drm_edid_alloc(base_block, EDID_LENGTH); } EXPORT_SYMBOL(drm_edid_read_base_block); /** * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output * @connector: connector we're probing * @adapter: I2C adapter to use for DDC * * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily * switch DDC to the GPU which is retrieving EDID. * * Return: Pointer to valid EDID or %NULL if we couldn't find any. */ struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, struct i2c_adapter *adapter) { struct drm_device *dev = connector->dev; struct pci_dev *pdev = to_pci_dev(dev->dev); struct edid *edid; if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) return NULL; vga_switcheroo_lock_ddc(pdev); edid = drm_get_edid(connector, adapter); vga_switcheroo_unlock_ddc(pdev); return edid; } EXPORT_SYMBOL(drm_get_edid_switcheroo); /** * drm_edid_read_switcheroo - get EDID data for a vga_switcheroo output * @connector: connector we're probing * @adapter: I2C adapter to use for DDC * * Wrapper around drm_edid_read_ddc() for laptops with dual GPUs using one set * of outputs. The wrapper adds the requisite vga_switcheroo calls to * temporarily switch DDC to the GPU which is retrieving EDID. * * Return: Pointer to valid EDID or %NULL if we couldn't find any. */ const struct drm_edid *drm_edid_read_switcheroo(struct drm_connector *connector, struct i2c_adapter *adapter) { struct drm_device *dev = connector->dev; struct pci_dev *pdev = to_pci_dev(dev->dev); const struct drm_edid *drm_edid; if (drm_WARN_ON_ONCE(dev, !dev_is_pci(dev->dev))) return NULL; vga_switcheroo_lock_ddc(pdev); drm_edid = drm_edid_read_ddc(connector, adapter); vga_switcheroo_unlock_ddc(pdev); return drm_edid; } EXPORT_SYMBOL(drm_edid_read_switcheroo); /** * drm_edid_duplicate - duplicate an EDID and the extensions * @edid: EDID to duplicate * * Return: Pointer to duplicated EDID or NULL on allocation failure. */ struct edid *drm_edid_duplicate(const struct edid *edid) { if (!edid) return NULL; return kmemdup(edid, edid_size(edid), GFP_KERNEL); } EXPORT_SYMBOL(drm_edid_duplicate); /*** EDID parsing ***/ /** * edid_get_quirks - return quirk flags for a given EDID * @drm_edid: EDID to process * * This tells subsequent routines what fixes they need to apply. * * Return: A u32 represents the quirks to apply. */ static u32 edid_get_quirks(const struct drm_edid *drm_edid) { const struct edid_quirk *quirk; int i; for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { quirk = &edid_quirk_list[i]; if (drm_edid_match(drm_edid, &quirk->ident)) return quirk->quirks; } return 0; } #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) /* * Walk the mode list for connector, clearing the preferred status on existing * modes and setting it anew for the right mode ala quirks. */ static void edid_fixup_preferred(struct drm_connector *connector) { const struct drm_display_info *info = &connector->display_info; struct drm_display_mode *t, *cur_mode, *preferred_mode; int target_refresh = 0; int cur_vrefresh, preferred_vrefresh; if (list_empty(&connector->probed_modes)) return; if (info->quirks & EDID_QUIRK_PREFER_LARGE_60) target_refresh = 60; if (info->quirks & EDID_QUIRK_PREFER_LARGE_75) target_refresh = 75; preferred_mode = list_first_entry(&connector->probed_modes, struct drm_display_mode, head); list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; if (cur_mode == preferred_mode) continue; /* Largest mode is preferred */ if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) preferred_mode = cur_mode; cur_vrefresh = drm_mode_vrefresh(cur_mode); preferred_vrefresh = drm_mode_vrefresh(preferred_mode); /* At a given size, try to get closest to target refresh */ if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { preferred_mode = cur_mode; } } preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; } static bool mode_is_rb(const struct drm_display_mode *mode) { return (mode->htotal - mode->hdisplay == 160) && (mode->hsync_end - mode->hdisplay == 80) && (mode->hsync_end - mode->hsync_start == 32) && (mode->vsync_start - mode->vdisplay == 3); } /* * drm_mode_find_dmt - Create a copy of a mode if present in DMT * @dev: Device to duplicate against * @hsize: Mode width * @vsize: Mode height * @fresh: Mode refresh rate * @rb: Mode reduced-blanking-ness * * Walk the DMT mode list looking for a match for the given parameters. * * Return: A newly allocated copy of the mode, or NULL if not found. */ struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, int hsize, int vsize, int fresh, bool rb) { int i; for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hsize != ptr->hdisplay) continue; if (vsize != ptr->vdisplay) continue; if (fresh != drm_mode_vrefresh(ptr)) continue; if (rb != mode_is_rb(ptr)) continue; return drm_mode_duplicate(dev, ptr); } return NULL; } EXPORT_SYMBOL(drm_mode_find_dmt); static bool is_display_descriptor(const struct detailed_timing *descriptor, u8 type) { BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.pad1) != 2); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.type) != 3); return descriptor->pixel_clock == 0 && descriptor->data.other_data.pad1 == 0 && descriptor->data.other_data.type == type; } static bool is_detailed_timing_descriptor(const struct detailed_timing *descriptor) { BUILD_BUG_ON(offsetof(typeof(*descriptor), pixel_clock) != 0); return descriptor->pixel_clock != 0; } typedef void detailed_cb(const struct detailed_timing *timing, void *closure); static void cea_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) { int i, n; u8 d = ext[0x02]; const u8 *det_base = ext + d; if (d < 4 || d > 127) return; n = (127 - d) / 18; for (i = 0; i < n; i++) cb((const struct detailed_timing *)(det_base + 18 * i), closure); } static void vtb_for_each_detailed_block(const u8 *ext, detailed_cb *cb, void *closure) { unsigned int i, n = min((int)ext[0x02], 6); const u8 *det_base = ext + 5; if (ext[0x01] != 1) return; /* unknown version */ for (i = 0; i < n; i++) cb((const struct detailed_timing *)(det_base + 18 * i), closure); } static void drm_for_each_detailed_block(const struct drm_edid *drm_edid, detailed_cb *cb, void *closure) { struct drm_edid_iter edid_iter; const u8 *ext; int i; if (!drm_edid) return; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) cb(&drm_edid->edid->detailed_timings[i], closure); drm_edid_iter_begin(drm_edid, &edid_iter); drm_edid_iter_for_each(ext, &edid_iter) { switch (*ext) { case CEA_EXT: cea_for_each_detailed_block(ext, cb, closure); break; case VTB_EXT: vtb_for_each_detailed_block(ext, cb, closure); break; default: break; } } drm_edid_iter_end(&edid_iter); } static void is_rb(const struct detailed_timing *descriptor, void *data) { bool *res = data; if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) return; BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.cvt.flags) != 15); if (descriptor->data.other_data.data.range.flags == DRM_EDID_CVT_SUPPORT_FLAG && descriptor->data.other_data.data.range.formula.cvt.flags & DRM_EDID_CVT_FLAGS_REDUCED_BLANKING) *res = true; } /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ static bool drm_monitor_supports_rb(const struct drm_edid *drm_edid) { if (drm_edid->edid->revision >= 4) { bool ret = false; drm_for_each_detailed_block(drm_edid, is_rb, &ret); return ret; } return drm_edid_is_digital(drm_edid); } static void find_gtf2(const struct detailed_timing *descriptor, void *data) { const struct detailed_timing **res = data; if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) return; BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); if (descriptor->data.other_data.data.range.flags == DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG) *res = descriptor; } /* Secondary GTF curve kicks in above some break frequency */ static int drm_gtf2_hbreak(const struct drm_edid *drm_edid) { const struct detailed_timing *descriptor = NULL; drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.hfreq_start_khz) != 12); return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.hfreq_start_khz * 2 : 0; } static int drm_gtf2_2c(const struct drm_edid *drm_edid) { const struct detailed_timing *descriptor = NULL; drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.c) != 13); return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.c : 0; } static int drm_gtf2_m(const struct drm_edid *drm_edid) { const struct detailed_timing *descriptor = NULL; drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.m) != 14); return descriptor ? le16_to_cpu(descriptor->data.other_data.data.range.formula.gtf2.m) : 0; } static int drm_gtf2_k(const struct drm_edid *drm_edid) { const struct detailed_timing *descriptor = NULL; drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.k) != 16); return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.k : 0; } static int drm_gtf2_2j(const struct drm_edid *drm_edid) { const struct detailed_timing *descriptor = NULL; drm_for_each_detailed_block(drm_edid, find_gtf2, &descriptor); BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.formula.gtf2.j) != 17); return descriptor ? descriptor->data.other_data.data.range.formula.gtf2.j : 0; } static void get_timing_level(const struct detailed_timing *descriptor, void *data) { int *res = data; if (!is_display_descriptor(descriptor, EDID_DETAIL_MONITOR_RANGE)) return; BUILD_BUG_ON(offsetof(typeof(*descriptor), data.other_data.data.range.flags) != 10); switch (descriptor->data.other_data.data.range.flags) { case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: *res = LEVEL_GTF; break; case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: *res = LEVEL_GTF2; break; case DRM_EDID_CVT_SUPPORT_FLAG: *res = LEVEL_CVT; break; default: break; } } /* Get standard timing level (CVT/GTF/DMT). */ static int standard_timing_level(const struct drm_edid *drm_edid) { const struct edid *edid = drm_edid->edid; if (edid->revision >= 4) { /* * If the range descriptor doesn't * indicate otherwise default to CVT */ int ret = LEVEL_CVT; drm_for_each_detailed_block(drm_edid, get_timing_level, &ret); return ret; } else if (edid->revision >= 3 && drm_gtf2_hbreak(drm_edid)) { return LEVEL_GTF2; } else if (edid->revision >= 2) { return LEVEL_GTF; } else { return LEVEL_DMT; } } /* * 0 is reserved. The spec says 0x01 fill for unused timings. Some old * monitors fill with ascii space (0x20) instead. */ static int bad_std_timing(u8 a, u8 b) { return (a == 0x00 && b == 0x00) || (a == 0x01 && b == 0x01) || (a == 0x20 && b == 0x20); } static int drm_mode_hsync(const struct drm_display_mode *mode) { if (mode->htotal <= 0) return 0; return DIV_ROUND_CLOSEST(mode->clock, mode->htotal); } static struct drm_display_mode * drm_gtf2_mode(struct drm_device *dev, const struct drm_edid *drm_edid, int hsize, int vsize, int vrefresh_rate) { struct drm_display_mode *mode; /* * This is potentially wrong if there's ever a monitor with * more than one ranges section, each claiming a different * secondary GTF curve. Please don't do that. */ mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); if (!mode) return NULL; if (drm_mode_hsync(mode) > drm_gtf2_hbreak(drm_edid)) { drm_mode_destroy(dev, mode); mode = drm_gtf_mode_complex(dev, hsize, vsize, vrefresh_rate, 0, 0, drm_gtf2_m(drm_edid), drm_gtf2_2c(drm_edid), drm_gtf2_k(drm_edid), drm_gtf2_2j(drm_edid)); } return mode; } /* * Take the standard timing params (in this case width, aspect, and refresh) * and convert them into a real mode using CVT/GTF/DMT. */ static struct drm_display_mode *drm_mode_std(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct std_timing *t) { struct drm_device *dev = connector->dev; struct drm_display_mode *m, *mode = NULL; int hsize, vsize; int vrefresh_rate; unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) >> EDID_TIMING_ASPECT_SHIFT; unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) >> EDID_TIMING_VFREQ_SHIFT; int timing_level = standard_timing_level(drm_edid); if (bad_std_timing(t->hsize, t->vfreq_aspect)) return NULL; /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ hsize = t->hsize * 8 + 248; /* vrefresh_rate = vfreq + 60 */ vrefresh_rate = vfreq + 60; /* the vdisplay is calculated based on the aspect ratio */ if (aspect_ratio == 0) { if (drm_edid->edid->revision < 3) vsize = hsize; else vsize = (hsize * 10) / 16; } else if (aspect_ratio == 1) vsize = (hsize * 3) / 4; else if (aspect_ratio == 2) vsize = (hsize * 4) / 5; else vsize = (hsize * 9) / 16; /* HDTV hack, part 1 */ if (vrefresh_rate == 60 && ((hsize == 1360 && vsize == 765) || (hsize == 1368 && vsize == 769))) { hsize = 1366; vsize = 768; } /* * If this connector already has a mode for this size and refresh * rate (because it came from detailed or CVT info), use that * instead. This way we don't have to guess at interlace or * reduced blanking. */ list_for_each_entry(m, &connector->probed_modes, head) if (m->hdisplay == hsize && m->vdisplay == vsize && drm_mode_vrefresh(m) == vrefresh_rate) return NULL; /* HDTV hack, part 2 */ if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, false); if (!mode) return NULL; mode->hdisplay = 1366; mode->hsync_start = mode->hsync_start - 1; mode->hsync_end = mode->hsync_end - 1; return mode; } /* check whether it can be found in default mode table */ if (drm_monitor_supports_rb(drm_edid)) { mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, true); if (mode) return mode; } mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); if (mode) return mode; /* okay, generate it */ switch (timing_level) { case LEVEL_DMT: break; case LEVEL_GTF: mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); break; case LEVEL_GTF2: mode = drm_gtf2_mode(dev, drm_edid, hsize, vsize, vrefresh_rate); break; case LEVEL_CVT: mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, false); break; } return mode; } /* * EDID is delightfully ambiguous about how interlaced modes are to be * encoded. Our internal representation is of frame height, but some * HDTV detailed timings are encoded as field height. * * The format list here is from CEA, in frame size. Technically we * should be checking refresh rate too. Whatever. */ static void drm_mode_do_interlace_quirk(struct drm_display_mode *mode, const struct detailed_pixel_timing *pt) { int i; static const struct { int w, h; } cea_interlaced[] = { { 1920, 1080 }, { 720, 480 }, { 1440, 480 }, { 2880, 480 }, { 720, 576 }, { 1440, 576 }, { 2880, 576 }, }; if (!(pt->misc & DRM_EDID_PT_INTERLACED)) return; for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { if ((mode->hdisplay == cea_interlaced[i].w) && (mode->vdisplay == cea_interlaced[i].h / 2)) { mode->vdisplay *= 2; mode->vsync_start *= 2; mode->vsync_end *= 2; mode->vtotal *= 2; mode->vtotal |= 1; } } mode->flags |= DRM_MODE_FLAG_INTERLACE; } /* * Create a new mode from an EDID detailed timing section. An EDID detailed * timing block contains enough info for us to create and return a new struct * drm_display_mode. */ static struct drm_display_mode *drm_mode_detailed(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { const struct drm_display_info *info = &connector->display_info; struct drm_device *dev = connector->dev; struct drm_display_mode *mode; const struct detailed_pixel_timing *pt = &timing->data.pixel_data; unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); /* ignore tiny modes */ if (hactive < 64 || vactive < 64) return NULL; if (pt->misc & DRM_EDID_PT_STEREO) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Stereo mode not supported\n", connector->base.id, connector->name); return NULL; } if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Composite sync not supported\n", connector->base.id, connector->name); } /* it is incorrect if hsync/vsync width is zero */ if (!hsync_pulse_width || !vsync_pulse_width) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Incorrect Detailed timing. Wrong Hsync/Vsync pulse width\n", connector->base.id, connector->name); return NULL; } if (info->quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); if (!mode) return NULL; goto set_size; } mode = drm_mode_create(dev); if (!mode) return NULL; if (info->quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) mode->clock = 1088 * 10; else mode->clock = le16_to_cpu(timing->pixel_clock) * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync_offset; mode->hsync_end = mode->hsync_start + hsync_pulse_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync_offset; mode->vsync_end = mode->vsync_start + vsync_pulse_width; mode->vtotal = mode->vdisplay + vblank; /* Some EDIDs have bogus h/vsync_end values */ if (mode->hsync_end > mode->htotal) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing hsync_end %d->%d\n", connector->base.id, connector->name, mode->hsync_end, mode->htotal); mode->hsync_end = mode->htotal; } if (mode->vsync_end > mode->vtotal) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] reducing vsync_end %d->%d\n", connector->base.id, connector->name, mode->vsync_end, mode->vtotal); mode->vsync_end = mode->vtotal; } drm_mode_do_interlace_quirk(mode, pt); if (info->quirks & EDID_QUIRK_DETAILED_SYNC_PP) { mode->flags |= DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC; } else { mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; } set_size: mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; if (info->quirks & EDID_QUIRK_DETAILED_IN_CM) { mode->width_mm *= 10; mode->height_mm *= 10; } if (info->quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { mode->width_mm = drm_edid->edid->width_cm * 10; mode->height_mm = drm_edid->edid->height_cm * 10; } mode->type = DRM_MODE_TYPE_DRIVER; drm_mode_set_name(mode); return mode; } static bool mode_in_hsync_range(const struct drm_display_mode *mode, const struct edid *edid, const u8 *t) { int hsync, hmin, hmax; hmin = t[7]; if (edid->revision >= 4) hmin += ((t[4] & 0x04) ? 255 : 0); hmax = t[8]; if (edid->revision >= 4) hmax += ((t[4] & 0x08) ? 255 : 0); hsync = drm_mode_hsync(mode); return (hsync <= hmax && hsync >= hmin); } static bool mode_in_vsync_range(const struct drm_display_mode *mode, const struct edid *edid, const u8 *t) { int vsync, vmin, vmax; vmin = t[5]; if (edid->revision >= 4) vmin += ((t[4] & 0x01) ? 255 : 0); vmax = t[6]; if (edid->revision >= 4) vmax += ((t[4] & 0x02) ? 255 : 0); vsync = drm_mode_vrefresh(mode); return (vsync <= vmax && vsync >= vmin); } static u32 range_pixel_clock(const struct edid *edid, const u8 *t) { /* unspecified */ if (t[9] == 0 || t[9] == 255) return 0; /* 1.4 with CVT support gives us real precision, yay */ if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) return (t[9] * 10000) - ((t[12] >> 2) * 250); /* 1.3 is pathetic, so fuzz up a bit */ return t[9] * 10000 + 5001; } static bool mode_in_range(const struct drm_display_mode *mode, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { const struct edid *edid = drm_edid->edid; u32 max_clock; const u8 *t = (const u8 *)timing; if (!mode_in_hsync_range(mode, edid, t)) return false; if (!mode_in_vsync_range(mode, edid, t)) return false; max_clock = range_pixel_clock(edid, t); if (max_clock) if (mode->clock > max_clock) return false; /* 1.4 max horizontal check */ if (edid->revision >= 4 && t[10] == DRM_EDID_CVT_SUPPORT_FLAG) if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) return false; if (mode_is_rb(mode) && !drm_monitor_supports_rb(drm_edid)) return false; return true; } static bool valid_inferred_mode(const struct drm_connector *connector, const struct drm_display_mode *mode) { const struct drm_display_mode *m; bool ok = false; list_for_each_entry(m, &connector->probed_modes, head) { if (mode->hdisplay == m->hdisplay && mode->vdisplay == m->vdisplay && drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) return false; /* duplicated */ if (mode->hdisplay <= m->hdisplay && mode->vdisplay <= m->vdisplay) ok = true; } return ok; } static int drm_dmt_modes_for_range(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { if (mode_in_range(drm_dmt_modes + i, drm_edid, timing) && valid_inferred_mode(connector, drm_dmt_modes + i)) { newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } return modes; } /* fix up 1366x768 mode from 1368x768; * GFT/CVT can't express 1366 width which isn't dividable by 8 */ void drm_mode_fixup_1366x768(struct drm_display_mode *mode) { if (mode->hdisplay == 1368 && mode->vdisplay == 768) { mode->hdisplay = 1366; mode->hsync_start--; mode->hsync_end--; drm_mode_set_name(mode); } } static int drm_gtf_modes_for_range(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); if (!newmode) return modes; drm_mode_fixup_1366x768(newmode); if (!mode_in_range(newmode, drm_edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static int drm_gtf2_modes_for_range(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_gtf2_mode(dev, drm_edid, m->w, m->h, m->r); if (!newmode) return modes; drm_mode_fixup_1366x768(newmode); if (!mode_in_range(newmode, drm_edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static int drm_cvt_modes_for_range(struct drm_connector *connector, const struct drm_edid *drm_edid, const struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; bool rb = drm_monitor_supports_rb(drm_edid); for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); if (!newmode) return modes; drm_mode_fixup_1366x768(newmode); if (!mode_in_range(newmode, drm_edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static void do_inferred_modes(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; const struct detailed_non_pixel *data = &timing->data.other_data; const struct detailed_data_monitor_range *range = &data->data.range; if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) return; closure->modes += drm_dmt_modes_for_range(closure->connector, closure->drm_edid, timing); if (closure->drm_edid->edid->revision < 2) return; /* GTF not defined yet */ switch (range->flags) { case DRM_EDID_SECONDARY_GTF_SUPPORT_FLAG: closure->modes += drm_gtf2_modes_for_range(closure->connector, closure->drm_edid, timing); break; case DRM_EDID_DEFAULT_GTF_SUPPORT_FLAG: closure->modes += drm_gtf_modes_for_range(closure->connector, closure->drm_edid, timing); break; case DRM_EDID_CVT_SUPPORT_FLAG: if (closure->drm_edid->edid->revision < 4) break; closure->modes += drm_cvt_modes_for_range(closure->connector, closure->drm_edid, timing); break; case DRM_EDID_RANGE_LIMITS_ONLY_FLAG: default: break; } } static int add_inferred_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; if (drm_edid->edid->revision >= 1) drm_for_each_detailed_block(drm_edid, do_inferred_modes, &closure); return closure.modes; } static int drm_est3_modes(struct drm_connector *connector, const struct detailed_timing *timing) { int i, j, m, modes = 0; struct drm_display_mode *mode; const u8 *est = ((const u8 *)timing) + 6; for (i = 0; i < 6; i++) { for (j = 7; j >= 0; j--) { m = (i * 8) + (7 - j); if (m >= ARRAY_SIZE(est3_modes)) break; if (est[i] & (1 << j)) { mode = drm_mode_find_dmt(connector->dev, est3_modes[m].w, est3_modes[m].h, est3_modes[m].r, est3_modes[m].rb); if (mode) { drm_mode_probed_add(connector, mode); modes++; } } } } return modes; } static void do_established_modes(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; if (!is_display_descriptor(timing, EDID_DETAIL_EST_TIMINGS)) return; closure->modes += drm_est3_modes(closure->connector, timing); } /* * Get established modes from EDID and add them. Each EDID block contains a * bitmap of the supported "established modes" list (defined above). Tease them * out and add them to the global modes list. */ static int add_established_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_device *dev = connector->dev; const struct edid *edid = drm_edid->edid; unsigned long est_bits = edid->established_timings.t1 | (edid->established_timings.t2 << 8) | ((edid->established_timings.mfg_rsvd & 0x80) << 9); int i, modes = 0; struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; for (i = 0; i <= EDID_EST_TIMINGS; i++) { if (est_bits & (1<revision >= 1) drm_for_each_detailed_block(drm_edid, do_established_modes, &closure); return modes + closure.modes; } static void do_standard_modes(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; const struct detailed_non_pixel *data = &timing->data.other_data; struct drm_connector *connector = closure->connector; int i; if (!is_display_descriptor(timing, EDID_DETAIL_STD_MODES)) return; for (i = 0; i < 6; i++) { const struct std_timing *std = &data->data.timings[i]; struct drm_display_mode *newmode; newmode = drm_mode_std(connector, closure->drm_edid, std); if (newmode) { drm_mode_probed_add(connector, newmode); closure->modes++; } } } /* * Get standard modes from EDID and add them. Standard modes can be calculated * using the appropriate standard (DMT, GTF, or CVT). Grab them from EDID and * add them to the list. */ static int add_standard_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { int i, modes = 0; struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; for (i = 0; i < EDID_STD_TIMINGS; i++) { struct drm_display_mode *newmode; newmode = drm_mode_std(connector, drm_edid, &drm_edid->edid->standard_timings[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } if (drm_edid->edid->revision >= 1) drm_for_each_detailed_block(drm_edid, do_standard_modes, &closure); /* XXX should also look for standard codes in VTB blocks */ return modes + closure.modes; } static int drm_cvt_modes(struct drm_connector *connector, const struct detailed_timing *timing) { int i, j, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; const struct cvt_timing *cvt; static const int rates[] = { 60, 85, 75, 60, 50 }; const u8 empty[3] = { 0, 0, 0 }; for (i = 0; i < 4; i++) { int width, height; cvt = &(timing->data.other_data.data.cvt[i]); if (!memcmp(cvt->code, empty, 3)) continue; height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; switch (cvt->code[1] & 0x0c) { /* default - because compiler doesn't see that we've enumerated all cases */ default: case 0x00: width = height * 4 / 3; break; case 0x04: width = height * 16 / 9; break; case 0x08: width = height * 16 / 10; break; case 0x0c: width = height * 15 / 9; break; } for (j = 1; j < 5; j++) { if (cvt->code[2] & (1 << j)) { newmode = drm_cvt_mode(dev, width, height, rates[j], j == 0, false, false); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } } return modes; } static void do_cvt_mode(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; if (!is_display_descriptor(timing, EDID_DETAIL_CVT_3BYTE)) return; closure->modes += drm_cvt_modes(closure->connector, timing); } static int add_cvt_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; if (drm_edid->edid->revision >= 3) drm_for_each_detailed_block(drm_edid, do_cvt_mode, &closure); /* XXX should also look for CVT codes in VTB blocks */ return closure.modes; } static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, struct drm_display_mode *mode); static void do_detailed_mode(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct drm_display_mode *newmode; if (!is_detailed_timing_descriptor(timing)) return; newmode = drm_mode_detailed(closure->connector, closure->drm_edid, timing); if (!newmode) return; if (closure->preferred) newmode->type |= DRM_MODE_TYPE_PREFERRED; /* * Detailed modes are limited to 10kHz pixel clock resolution, * so fix up anything that looks like CEA/HDMI mode, but the clock * is just slightly off. */ fixup_detailed_cea_mode_clock(closure->connector, newmode); drm_mode_probed_add(closure->connector, newmode); closure->modes++; closure->preferred = false; } /* * add_detailed_modes - Add modes from detailed timings * @connector: attached connector * @drm_edid: EDID block to scan */ static int add_detailed_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; if (drm_edid->edid->revision >= 4) closure.preferred = true; /* first detailed timing is always preferred */ else closure.preferred = drm_edid->edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING; drm_for_each_detailed_block(drm_edid, do_detailed_mode, &closure); return closure.modes; } /* CTA-861-H Table 60 - CTA Tag Codes */ #define CTA_DB_AUDIO 1 #define CTA_DB_VIDEO 2 #define CTA_DB_VENDOR 3 #define CTA_DB_SPEAKER 4 #define CTA_DB_EXTENDED_TAG 7 /* CTA-861-H Table 62 - CTA Extended Tag Codes */ #define CTA_EXT_DB_VIDEO_CAP 0 #define CTA_EXT_DB_VENDOR 1 #define CTA_EXT_DB_HDR_STATIC_METADATA 6 #define CTA_EXT_DB_420_VIDEO_DATA 14 #define CTA_EXT_DB_420_VIDEO_CAP_MAP 15 #define CTA_EXT_DB_HF_EEODB 0x78 #define CTA_EXT_DB_HF_SCDB 0x79 #define EDID_BASIC_AUDIO (1 << 6) #define EDID_CEA_YCRCB444 (1 << 5) #define EDID_CEA_YCRCB422 (1 << 4) #define EDID_CEA_VCDB_QS (1 << 6) /* * Search EDID for CEA extension block. * * FIXME: Prefer not returning pointers to raw EDID data. */ const u8 *drm_edid_find_extension(const struct drm_edid *drm_edid, int ext_id, int *ext_index) { const u8 *edid_ext = NULL; int i; /* No EDID or EDID extensions */ if (!drm_edid || !drm_edid_extension_block_count(drm_edid)) return NULL; /* Find CEA extension */ for (i = *ext_index; i < drm_edid_extension_block_count(drm_edid); i++) { edid_ext = drm_edid_extension_block_data(drm_edid, i); if (edid_block_tag(edid_ext) == ext_id) break; } if (i >= drm_edid_extension_block_count(drm_edid)) return NULL; *ext_index = i + 1; return edid_ext; } /* Return true if the EDID has a CTA extension or a DisplayID CTA data block */ static bool drm_edid_has_cta_extension(const struct drm_edid *drm_edid) { const struct displayid_block *block; struct displayid_iter iter; struct drm_edid_iter edid_iter; const u8 *ext; bool found = false; /* Look for a top level CEA extension block */ drm_edid_iter_begin(drm_edid, &edid_iter); drm_edid_iter_for_each(ext, &edid_iter) { if (ext[0] == CEA_EXT) { found = true; break; } } drm_edid_iter_end(&edid_iter); if (found) return true; /* CEA blocks can also be found embedded in a DisplayID block */ displayid_iter_edid_begin(drm_edid, &iter); displayid_iter_for_each(block, &iter) { if (block->tag == DATA_BLOCK_CTA) { found = true; break; } } displayid_iter_end(&iter); return found; } static __always_inline const struct drm_display_mode *cea_mode_for_vic(u8 vic) { BUILD_BUG_ON(1 + ARRAY_SIZE(edid_cea_modes_1) - 1 != 127); BUILD_BUG_ON(193 + ARRAY_SIZE(edid_cea_modes_193) - 1 != 219); if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1)) return &edid_cea_modes_1[vic - 1]; if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193)) return &edid_cea_modes_193[vic - 193]; return NULL; } static u8 cea_num_vics(void) { return 193 + ARRAY_SIZE(edid_cea_modes_193); } static u8 cea_next_vic(u8 vic) { if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1)) vic = 193; return vic; } /* * Calculate the alternate clock for the CEA mode * (60Hz vs. 59.94Hz etc.) */ static unsigned int cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) { unsigned int clock = cea_mode->clock; if (drm_mode_vrefresh(cea_mode) % 6 != 0) return clock; /* * edid_cea_modes contains the 59.94Hz * variant for 240 and 480 line modes, * and the 60Hz variant otherwise. */ if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); else clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); return clock; } static bool cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) { /* * For certain VICs the spec allows the vertical * front porch to vary by one or two lines. * * cea_modes[] stores the variant with the shortest * vertical front porch. We can adjust the mode to * get the other variants by simply increasing the * vertical front porch length. */ BUILD_BUG_ON(cea_mode_for_vic(8)->vtotal != 262 || cea_mode_for_vic(9)->vtotal != 262 || cea_mode_for_vic(12)->vtotal != 262 || cea_mode_for_vic(13)->vtotal != 262 || cea_mode_for_vic(23)->vtotal != 312 || cea_mode_for_vic(24)->vtotal != 312 || cea_mode_for_vic(27)->vtotal != 312 || cea_mode_for_vic(28)->vtotal != 312); if (((vic == 8 || vic == 9 || vic == 12 || vic == 13) && mode->vtotal < 263) || ((vic == 23 || vic == 24 || vic == 27 || vic == 28) && mode->vtotal < 314)) { mode->vsync_start++; mode->vsync_end++; mode->vtotal++; return true; } return false; } static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, unsigned int clock_tolerance) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { struct drm_display_mode cea_mode; unsigned int clock1, clock2; drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); /* Check both 60Hz and 59.94Hz */ clock1 = cea_mode.clock; clock2 = cea_mode_alternate_clock(&cea_mode); if (abs(to_match->clock - clock1) > clock_tolerance && abs(to_match->clock - clock2) > clock_tolerance) continue; do { if (drm_mode_match(to_match, &cea_mode, match_flags)) return vic; } while (cea_mode_alternate_timings(vic, &cea_mode)); } return 0; } /** * drm_match_cea_mode - look for a CEA mode matching given mode * @to_match: display mode * * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 * mode. */ u8 drm_match_cea_mode(const struct drm_display_mode *to_match) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) { struct drm_display_mode cea_mode; unsigned int clock1, clock2; drm_mode_init(&cea_mode, cea_mode_for_vic(vic)); /* Check both 60Hz and 59.94Hz */ clock1 = cea_mode.clock; clock2 = cea_mode_alternate_clock(&cea_mode); if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) continue; do { if (drm_mode_match(to_match, &cea_mode, match_flags)) return vic; } while (cea_mode_alternate_timings(vic, &cea_mode)); } return 0; } EXPORT_SYMBOL(drm_match_cea_mode); static bool drm_valid_cea_vic(u8 vic) { return cea_mode_for_vic(vic) != NULL; } static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) { const struct drm_display_mode *mode = cea_mode_for_vic(video_code); if (mode) return mode->picture_aspect_ratio; return HDMI_PICTURE_ASPECT_NONE; } static enum hdmi_picture_aspect drm_get_hdmi_aspect_ratio(const u8 video_code) { return edid_4k_modes[video_code].picture_aspect_ratio; } /* * Calculate the alternate clock for HDMI modes (those from the HDMI vendor * specific block). */ static unsigned int hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) { return cea_mode_alternate_clock(hdmi_mode); } static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, unsigned int clock_tolerance) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; unsigned int clock1, clock2; /* Make sure to also match alternate clocks */ clock1 = hdmi_mode->clock; clock2 = hdmi_mode_alternate_clock(hdmi_mode); if (abs(to_match->clock - clock1) > clock_tolerance && abs(to_match->clock - clock2) > clock_tolerance) continue; if (drm_mode_match(to_match, hdmi_mode, match_flags)) return vic; } return 0; } /* * drm_match_hdmi_mode - look for a HDMI mode matching given mode * @to_match: display mode * * An HDMI mode is one defined in the HDMI vendor specific block. * * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. */ static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; unsigned int clock1, clock2; /* Make sure to also match alternate clocks */ clock1 = hdmi_mode->clock; clock2 = hdmi_mode_alternate_clock(hdmi_mode); if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && drm_mode_match(to_match, hdmi_mode, match_flags)) return vic; } return 0; } static bool drm_valid_hdmi_vic(u8 vic) { return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); } static int add_alternate_cea_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_device *dev = connector->dev; struct drm_display_mode *mode, *tmp; LIST_HEAD(list); int modes = 0; /* Don't add CTA modes if the CTA extension block is missing */ if (!drm_edid_has_cta_extension(drm_edid)) return 0; /* * Go through all probed modes and create a new mode * with the alternate clock for certain CEA modes. */ list_for_each_entry(mode, &connector->probed_modes, head) { const struct drm_display_mode *cea_mode = NULL; struct drm_display_mode *newmode; u8 vic = drm_match_cea_mode(mode); unsigned int clock1, clock2; if (drm_valid_cea_vic(vic)) { cea_mode = cea_mode_for_vic(vic); clock2 = cea_mode_alternate_clock(cea_mode); } else { vic = drm_match_hdmi_mode(mode); if (drm_valid_hdmi_vic(vic)) { cea_mode = &edid_4k_modes[vic]; clock2 = hdmi_mode_alternate_clock(cea_mode); } } if (!cea_mode) continue; clock1 = cea_mode->clock; if (clock1 == clock2) continue; if (mode->clock != clock1 && mode->clock != clock2) continue; newmode = drm_mode_duplicate(dev, cea_mode); if (!newmode) continue; /* Carry over the stereo flags */ newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; /* * The current mode could be either variant. Make * sure to pick the "other" clock for the new mode. */ if (mode->clock != clock1) newmode->clock = clock1; else newmode->clock = clock2; list_add_tail(&newmode->head, &list); } list_for_each_entry_safe(mode, tmp, &list, head) { list_del(&mode->head); drm_mode_probed_add(connector, mode); modes++; } return modes; } static u8 svd_to_vic(u8 svd) { /* 0-6 bit vic, 7th bit native mode indicator */ if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) return svd & 127; return svd; } /* * Return a display mode for the 0-based vic_index'th VIC across all CTA VDBs in * the EDID, or NULL on errors. */ static struct drm_display_mode * drm_display_mode_from_vic_index(struct drm_connector *connector, int vic_index) { const struct drm_display_info *info = &connector->display_info; struct drm_device *dev = connector->dev; if (!info->vics || vic_index >= info->vics_len || !info->vics[vic_index]) return NULL; return drm_display_mode_from_cea_vic(dev, info->vics[vic_index]); } /* * do_y420vdb_modes - Parse YCBCR 420 only modes * @connector: connector corresponding to the HDMI sink * @svds: start of the data block of CEA YCBCR 420 VDB * @len: length of the CEA YCBCR 420 VDB * * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) * which contains modes which can be supported in YCBCR 420 * output format only. */ static int do_y420vdb_modes(struct drm_connector *connector, const u8 *svds, u8 svds_len) { struct drm_device *dev = connector->dev; int modes = 0, i; for (i = 0; i < svds_len; i++) { u8 vic = svd_to_vic(svds[i]); struct drm_display_mode *newmode; if (!drm_valid_cea_vic(vic)) continue; newmode = drm_mode_duplicate(dev, cea_mode_for_vic(vic)); if (!newmode) break; drm_mode_probed_add(connector, newmode); modes++; } return modes; } /** * drm_display_mode_from_cea_vic() - return a mode for CEA VIC * @dev: DRM device * @video_code: CEA VIC of the mode * * Creates a new mode matching the specified CEA VIC. * * Returns: A new drm_display_mode on success or NULL on failure */ struct drm_display_mode * drm_display_mode_from_cea_vic(struct drm_device *dev, u8 video_code) { const struct drm_display_mode *cea_mode; struct drm_display_mode *newmode; cea_mode = cea_mode_for_vic(video_code); if (!cea_mode) return NULL; newmode = drm_mode_duplicate(dev, cea_mode); if (!newmode) return NULL; return newmode; } EXPORT_SYMBOL(drm_display_mode_from_cea_vic); /* Add modes based on VICs parsed in parse_cta_vdb() */ static int add_cta_vdb_modes(struct drm_connector *connector) { const struct drm_display_info *info = &connector->display_info; int i, modes = 0; if (!info->vics) return 0; for (i = 0; i < info->vics_len; i++) { struct drm_display_mode *mode; mode = drm_display_mode_from_vic_index(connector, i); if (mode) { drm_mode_probed_add(connector, mode); modes++; } } return modes; } struct stereo_mandatory_mode { int width, height, vrefresh; unsigned int flags; }; static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, { 1920, 1080, 50, DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, { 1920, 1080, 60, DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } }; static bool stereo_match_mandatory(const struct drm_display_mode *mode, const struct stereo_mandatory_mode *stereo_mode) { unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; return mode->hdisplay == stereo_mode->width && mode->vdisplay == stereo_mode->height && interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && drm_mode_vrefresh(mode) == stereo_mode->vrefresh; } static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) { struct drm_device *dev = connector->dev; const struct drm_display_mode *mode; struct list_head stereo_modes; int modes = 0, i; INIT_LIST_HEAD(&stereo_modes); list_for_each_entry(mode, &connector->probed_modes, head) { for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { const struct stereo_mandatory_mode *mandatory; struct drm_display_mode *new_mode; if (!stereo_match_mandatory(mode, &stereo_mandatory_modes[i])) continue; mandatory = &stereo_mandatory_modes[i]; new_mode = drm_mode_duplicate(dev, mode); if (!new_mode) continue; new_mode->flags |= mandatory->flags; list_add_tail(&new_mode->head, &stereo_modes); modes++; } } list_splice_tail(&stereo_modes, &connector->probed_modes); return modes; } static int add_hdmi_mode(struct drm_connector *connector, u8 vic) { struct drm_device *dev = connector->dev; struct drm_display_mode *newmode; if (!drm_valid_hdmi_vic(vic)) { drm_err(connector->dev, "[CONNECTOR:%d:%s] Unknown HDMI VIC: %d\n", connector->base.id, connector->name, vic); return 0; } newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); if (!newmode) return 0; drm_mode_probed_add(connector, newmode); return 1; } static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, int vic_index) { struct drm_display_mode *newmode; int modes = 0; if (structure & (1 << 0)) { newmode = drm_display_mode_from_vic_index(connector, vic_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; drm_mode_probed_add(connector, newmode); modes++; } } if (structure & (1 << 6)) { newmode = drm_display_mode_from_vic_index(connector, vic_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; drm_mode_probed_add(connector, newmode); modes++; } } if (structure & (1 << 8)) { newmode = drm_display_mode_from_vic_index(connector, vic_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; drm_mode_probed_add(connector, newmode); modes++; } } return modes; } static bool hdmi_vsdb_latency_present(const u8 *db) { return db[8] & BIT(7); } static bool hdmi_vsdb_i_latency_present(const u8 *db) { return hdmi_vsdb_latency_present(db) && db[8] & BIT(6); } static int hdmi_vsdb_latency_length(const u8 *db) { if (hdmi_vsdb_i_latency_present(db)) return 4; else if (hdmi_vsdb_latency_present(db)) return 2; else return 0; } /* * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block * @connector: connector corresponding to the HDMI sink * @db: start of the CEA vendor specific block * @len: length of the CEA block payload, ie. one can access up to db[len] * * Parses the HDMI VSDB looking for modes to add to @connector. This function * also adds the stereo 3d modes when applicable. */ static int do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len) { int modes = 0, offset = 0, i, multi_present = 0, multi_len; u8 vic_len, hdmi_3d_len = 0; u16 mask; u16 structure_all; if (len < 8) goto out; /* no HDMI_Video_Present */ if (!(db[8] & (1 << 5))) goto out; offset += hdmi_vsdb_latency_length(db); /* the declared length is not long enough for the 2 first bytes * of additional video format capabilities */ if (len < (8 + offset + 2)) goto out; /* 3D_Present */ offset++; if (db[8 + offset] & (1 << 7)) { modes += add_hdmi_mandatory_stereo_modes(connector); /* 3D_Multi_present */ multi_present = (db[8 + offset] & 0x60) >> 5; } offset++; vic_len = db[8 + offset] >> 5; hdmi_3d_len = db[8 + offset] & 0x1f; for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { u8 vic; vic = db[9 + offset + i]; modes += add_hdmi_mode(connector, vic); } offset += 1 + vic_len; if (multi_present == 1) multi_len = 2; else if (multi_present == 2) multi_len = 4; else multi_len = 0; if (len < (8 + offset + hdmi_3d_len - 1)) goto out; if (hdmi_3d_len < multi_len) goto out; if (multi_present == 1 || multi_present == 2) { /* 3D_Structure_ALL */ structure_all = (db[8 + offset] << 8) | db[9 + offset]; /* check if 3D_MASK is present */ if (multi_present == 2) mask = (db[10 + offset] << 8) | db[11 + offset]; else mask = 0xffff; for (i = 0; i < 16; i++) { if (mask & (1 << i)) modes += add_3d_struct_modes(connector, structure_all, i); } } offset += multi_len; for (i = 0; i < (hdmi_3d_len - multi_len); i++) { int vic_index; struct drm_display_mode *newmode = NULL; unsigned int newflag = 0; bool detail_present; detail_present = ((db[8 + offset + i] & 0x0f) > 7); if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) break; /* 2D_VIC_order_X */ vic_index = db[8 + offset + i] >> 4; /* 3D_Structure_X */ switch (db[8 + offset + i] & 0x0f) { case 0: newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; break; case 6: newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; break; case 8: /* 3D_Detail_X */ if ((db[9 + offset + i] >> 4) == 1) newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; break; } if (newflag != 0) { newmode = drm_display_mode_from_vic_index(connector, vic_index); if (newmode) { newmode->flags |= newflag; drm_mode_probed_add(connector, newmode); modes++; } } if (detail_present) i++; } out: return modes; } static int cea_revision(const u8 *cea) { /* * FIXME is this correct for the DispID variant? * The DispID spec doesn't really specify whether * this is the revision of the CEA extension or * the DispID CEA data block. And the only value * given as an example is 0. */ return cea[1]; } /* * CTA Data Block iterator. * * Iterate through all CTA Data Blocks in both EDID CTA Extensions and DisplayID * CTA Data Blocks. * * struct cea_db *db: * struct cea_db_iter iter; * * cea_db_iter_edid_begin(edid, &iter); * cea_db_iter_for_each(db, &iter) { * // do stuff with db * } * cea_db_iter_end(&iter); */ struct cea_db_iter { struct drm_edid_iter edid_iter; struct displayid_iter displayid_iter; /* Current Data Block Collection. */ const u8 *collection; /* Current Data Block index in current collection. */ int index; /* End index in current collection. */ int end; }; /* CTA-861-H section 7.4 CTA Data BLock Collection */ struct cea_db { u8 tag_length; u8 data[]; } __packed; static int cea_db_tag(const struct cea_db *db) { return db->tag_length >> 5; } static int cea_db_payload_len(const void *_db) { /* FIXME: Transition to passing struct cea_db * everywhere. */ const struct cea_db *db = _db; return db->tag_length & 0x1f; } static const void *cea_db_data(const struct cea_db *db) { return db->data; } static bool cea_db_is_extended_tag(const struct cea_db *db, int tag) { return cea_db_tag(db) == CTA_DB_EXTENDED_TAG && cea_db_payload_len(db) >= 1 && db->data[0] == tag; } static bool cea_db_is_vendor(const struct cea_db *db, int vendor_oui) { const u8 *data = cea_db_data(db); return cea_db_tag(db) == CTA_DB_VENDOR && cea_db_payload_len(db) >= 3 && oui(data[2], data[1], data[0]) == vendor_oui; } static void cea_db_iter_edid_begin(const struct drm_edid *drm_edid, struct cea_db_iter *iter) { memset(iter, 0, sizeof(*iter)); drm_edid_iter_begin(drm_edid, &iter->edid_iter); displayid_iter_edid_begin(drm_edid, &iter->displayid_iter); } static const struct cea_db * __cea_db_iter_current_block(const struct cea_db_iter *iter) { const struct cea_db *db; if (!iter->collection) return NULL; db = (const struct cea_db *)&iter->collection[iter->index]; if (iter->index + sizeof(*db) <= iter->end && iter->index + sizeof(*db) + cea_db_payload_len(db) <= iter->end) return db; return NULL; } /* * References: * - CTA-861-H section 7.3.3 CTA Extension Version 3 */ static int cea_db_collection_size(const u8 *cta) { u8 d = cta[2]; if (d < 4 || d > 127) return 0; return d - 4; } /* * References: * - VESA E-EDID v1.4 * - CTA-861-H section 7.3.3 CTA Extension Version 3 */ static const void *__cea_db_iter_edid_next(struct cea_db_iter *iter) { const u8 *ext; drm_edid_iter_for_each(ext, &iter->edid_iter) { int size; /* Only support CTA Extension revision 3+ */ if (ext[0] != CEA_EXT || cea_revision(ext) < 3) continue; size = cea_db_collection_size(ext); if (!size) continue; iter->index = 4; iter->end = iter->index + size; return ext; } return NULL; } /* * References: * - DisplayID v1.3 Appendix C: CEA Data Block within a DisplayID Data Block * - DisplayID v2.0 section 4.10 CTA DisplayID Data Block * * Note that the above do not specify any connection between DisplayID Data * Block revision and CTA Extension versions. */ static const void *__cea_db_iter_displayid_next(struct cea_db_iter *iter) { const struct displayid_block *block; displayid_iter_for_each(block, &iter->displayid_iter) { if (block->tag != DATA_BLOCK_CTA) continue; /* * The displayid iterator has already verified the block bounds * in displayid_iter_block(). */ iter->index = sizeof(*block); iter->end = iter->index + block->num_bytes; return block; } return NULL; } static const struct cea_db *__cea_db_iter_next(struct cea_db_iter *iter) { const struct cea_db *db; if (iter->collection) { /* Current collection should always be valid. */ db = __cea_db_iter_current_block(iter); if (WARN_ON(!db)) { iter->collection = NULL; return NULL; } /* Next block in CTA Data Block Collection */ iter->index += sizeof(*db) + cea_db_payload_len(db); db = __cea_db_iter_current_block(iter); if (db) return db; } for (;;) { /* * Find the next CTA Data Block Collection. First iterate all * the EDID CTA Extensions, then all the DisplayID CTA blocks. * * Per DisplayID v1.3 Appendix B: DisplayID as an EDID * Extension, it's recommended that DisplayID extensions are * exposed after all of the CTA Extensions. */ iter->collection = __cea_db_iter_edid_next(iter); if (!iter->collection) iter->collection = __cea_db_iter_displayid_next(iter); if (!iter->collection) return NULL; db = __cea_db_iter_current_block(iter); if (db) return db; } } #define cea_db_iter_for_each(__db, __iter) \ while (((__db) = __cea_db_iter_next(__iter))) static void cea_db_iter_end(struct cea_db_iter *iter) { displayid_iter_end(&iter->displayid_iter); drm_edid_iter_end(&iter->edid_iter); memset(iter, 0, sizeof(*iter)); } static bool cea_db_is_hdmi_vsdb(const struct cea_db *db) { return cea_db_is_vendor(db, HDMI_IEEE_OUI) && cea_db_payload_len(db) >= 5; } static bool cea_db_is_hdmi_forum_vsdb(const struct cea_db *db) { return cea_db_is_vendor(db, HDMI_FORUM_IEEE_OUI) && cea_db_payload_len(db) >= 7; } static bool cea_db_is_hdmi_forum_eeodb(const void *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) && cea_db_payload_len(db) >= 2; } static bool cea_db_is_microsoft_vsdb(const struct cea_db *db) { return cea_db_is_vendor(db, MICROSOFT_IEEE_OUI) && cea_db_payload_len(db) == 21; } static bool cea_db_is_vcdb(const struct cea_db *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_VIDEO_CAP) && cea_db_payload_len(db) == 2; } static bool cea_db_is_hdmi_forum_scdb(const struct cea_db *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_SCDB) && cea_db_payload_len(db) >= 7; } static bool cea_db_is_y420cmdb(const struct cea_db *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_CAP_MAP); } static bool cea_db_is_y420vdb(const struct cea_db *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_420_VIDEO_DATA); } static bool cea_db_is_hdmi_hdr_metadata_block(const struct cea_db *db) { return cea_db_is_extended_tag(db, CTA_EXT_DB_HDR_STATIC_METADATA) && cea_db_payload_len(db) >= 3; } /* * Get the HF-EEODB override extension block count from EDID. * * The passed in EDID may be partially read, as long as it has at least two * blocks (base block and one extension block) if EDID extension count is > 0. * * Note that this is *not* how you should parse CTA Data Blocks in general; this * is only to handle partially read EDIDs. Normally, use the CTA Data Block * iterators instead. * * References: * - HDMI 2.1 section 10.3.6 HDMI Forum EDID Extension Override Data Block */ static int edid_hfeeodb_extension_block_count(const struct edid *edid) { const u8 *cta; /* No extensions according to base block, no HF-EEODB. */ if (!edid_extension_block_count(edid)) return 0; /* HF-EEODB is always in the first EDID extension block only */ cta = edid_extension_block_data(edid, 0); if (edid_block_tag(cta) != CEA_EXT || cea_revision(cta) < 3) return 0; /* Need to have the data block collection, and at least 3 bytes. */ if (cea_db_collection_size(cta) < 3) return 0; /* * Sinks that include the HF-EEODB in their E-EDID shall include one and * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4 * through 6 of Block 1 of the E-EDID. */ if (!cea_db_is_hdmi_forum_eeodb(&cta[4])) return 0; return cta[4 + 2]; } /* * CTA-861 YCbCr 4:2:0 Capability Map Data Block (CTA Y420CMDB) * * Y420CMDB contains a bitmap which gives the index of CTA modes from CTA VDB, * which can support YCBCR 420 sampling output also (apart from RGB/YCBCR444 * etc). For example, if the bit 0 in bitmap is set, first mode in VDB can * support YCBCR420 output too. */ static void parse_cta_y420cmdb(struct drm_connector *connector, const struct cea_db *db, u64 *y420cmdb_map) { struct drm_display_info *info = &connector->display_info; int i, map_len = cea_db_payload_len(db) - 1; const u8 *data = cea_db_data(db) + 1; u64 map = 0; if (map_len == 0) { /* All CEA modes support ycbcr420 sampling also.*/ map = U64_MAX; goto out; } /* * This map indicates which of the existing CEA block modes * from VDB can support YCBCR420 output too. So if bit=0 is * set, first mode from VDB can support YCBCR420 output too. * We will parse and keep this map, before parsing VDB itself * to avoid going through the same block again and again. * * Spec is not clear about max possible size of this block. * Clamping max bitmap block size at 8 bytes. Every byte can * address 8 CEA modes, in this way this map can address * 8*8 = first 64 SVDs. */ if (WARN_ON_ONCE(map_len > 8)) map_len = 8; for (i = 0; i < map_len; i++) map |= (u64)data[i] << (8 * i); out: if (map) info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; *y420cmdb_map = map; } static int add_cea_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct cea_db *db; struct cea_db_iter iter; int modes; /* CTA VDB block VICs parsed earlier */ modes = add_cta_vdb_modes(connector); cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { if (cea_db_is_hdmi_vsdb(db)) { modes += do_hdmi_vsdb_modes(connector, (const u8 *)db, cea_db_payload_len(db)); } else if (cea_db_is_y420vdb(db)) { const u8 *vdb420 = cea_db_data(db) + 1; /* Add 4:2:0(only) modes present in EDID */ modes += do_y420vdb_modes(connector, vdb420, cea_db_payload_len(db) - 1); } } cea_db_iter_end(&iter); return modes; } static void fixup_detailed_cea_mode_clock(struct drm_connector *connector, struct drm_display_mode *mode) { const struct drm_display_mode *cea_mode; int clock1, clock2, clock; u8 vic; const char *type; /* * allow 5kHz clock difference either way to account for * the 10kHz clock resolution limit of detailed timings. */ vic = drm_match_cea_mode_clock_tolerance(mode, 5); if (drm_valid_cea_vic(vic)) { type = "CEA"; cea_mode = cea_mode_for_vic(vic); clock1 = cea_mode->clock; clock2 = cea_mode_alternate_clock(cea_mode); } else { vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); if (drm_valid_hdmi_vic(vic)) { type = "HDMI"; cea_mode = &edid_4k_modes[vic]; clock1 = cea_mode->clock; clock2 = hdmi_mode_alternate_clock(cea_mode); } else { return; } } /* pick whichever is closest */ if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) clock = clock1; else clock = clock2; if (mode->clock == clock) return; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", connector->base.id, connector->name, type, vic, mode->clock, clock); mode->clock = clock; } static void drm_calculate_luminance_range(struct drm_connector *connector) { struct hdr_static_metadata *hdr_metadata = &connector->hdr_sink_metadata.hdmi_type1; struct drm_luminance_range_info *luminance_range = &connector->display_info.luminance_range; static const u8 pre_computed_values[] = { 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98 }; u32 max_avg, min_cll, max, min, q, r; if (!(hdr_metadata->metadata_type & BIT(HDMI_STATIC_METADATA_TYPE1))) return; max_avg = hdr_metadata->max_fall; min_cll = hdr_metadata->min_cll; /* * From the specification (CTA-861-G), for calculating the maximum * luminance we need to use: * Luminance = 50*2**(CV/32) * Where CV is a one-byte value. * For calculating this expression we may need float point precision; * to avoid this complexity level, we take advantage that CV is divided * by a constant. From the Euclids division algorithm, we know that CV * can be written as: CV = 32*q + r. Next, we replace CV in the * Luminance expression and get 50*(2**q)*(2**(r/32)), hence we just * need to pre-compute the value of r/32. For pre-computing the values * We just used the following Ruby line: * (0...32).each {|cv| puts (50*2**(cv/32.0)).round} * The results of the above expressions can be verified at * pre_computed_values. */ q = max_avg >> 5; r = max_avg % 32; max = (1 << q) * pre_computed_values[r]; /* min luminance: maxLum * (CV/255)^2 / 100 */ q = DIV_ROUND_CLOSEST(min_cll, 255); min = max * DIV_ROUND_CLOSEST((q * q), 100); luminance_range->min_luminance = min; luminance_range->max_luminance = max; } static uint8_t eotf_supported(const u8 *edid_ext) { return edid_ext[2] & (BIT(HDMI_EOTF_TRADITIONAL_GAMMA_SDR) | BIT(HDMI_EOTF_TRADITIONAL_GAMMA_HDR) | BIT(HDMI_EOTF_SMPTE_ST2084) | BIT(HDMI_EOTF_BT_2100_HLG)); } static uint8_t hdr_metadata_type(const u8 *edid_ext) { return edid_ext[3] & BIT(HDMI_STATIC_METADATA_TYPE1); } static void drm_parse_hdr_metadata_block(struct drm_connector *connector, const u8 *db) { u16 len; len = cea_db_payload_len(db); connector->hdr_sink_metadata.hdmi_type1.eotf = eotf_supported(db); connector->hdr_sink_metadata.hdmi_type1.metadata_type = hdr_metadata_type(db); if (len >= 4) connector->hdr_sink_metadata.hdmi_type1.max_cll = db[4]; if (len >= 5) connector->hdr_sink_metadata.hdmi_type1.max_fall = db[5]; if (len >= 6) { connector->hdr_sink_metadata.hdmi_type1.min_cll = db[6]; /* Calculate only when all values are available */ drm_calculate_luminance_range(connector); } } /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ static void drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) { u8 len = cea_db_payload_len(db); if (len >= 6 && (db[6] & (1 << 7))) connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; if (len >= 10 && hdmi_vsdb_latency_present(db)) { connector->latency_present[0] = true; connector->video_latency[0] = db[9]; connector->audio_latency[0] = db[10]; } if (len >= 12 && hdmi_vsdb_i_latency_present(db)) { connector->latency_present[1] = true; connector->video_latency[1] = db[11]; connector->audio_latency[1] = db[12]; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: latency present %d %d, video latency %d %d, audio latency %d %d\n", connector->base.id, connector->name, connector->latency_present[0], connector->latency_present[1], connector->video_latency[0], connector->video_latency[1], connector->audio_latency[0], connector->audio_latency[1]); } static void match_identity(const struct detailed_timing *timing, void *data) { struct drm_edid_match_closure *closure = data; unsigned int i; const char *name = closure->ident->name; unsigned int name_len = strlen(name); const char *desc = timing->data.other_data.data.str.str; unsigned int desc_len = ARRAY_SIZE(timing->data.other_data.data.str.str); if (name_len > desc_len || !(is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME) || is_display_descriptor(timing, EDID_DETAIL_MONITOR_STRING))) return; if (strncmp(name, desc, name_len)) return; for (i = name_len; i < desc_len; i++) { if (desc[i] == '\n') break; /* Allow white space before EDID string terminator. */ if (!isspace(desc[i])) return; } closure->matched = true; } /** * drm_edid_match - match drm_edid with given identity * @drm_edid: EDID * @ident: the EDID identity to match with * * Check if the EDID matches with the given identity. * * Return: True if the given identity matched with EDID, false otherwise. */ bool drm_edid_match(const struct drm_edid *drm_edid, const struct drm_edid_ident *ident) { if (!drm_edid || drm_edid_get_panel_id(drm_edid) != ident->panel_id) return false; /* Match with name only if it's not NULL. */ if (ident->name) { struct drm_edid_match_closure closure = { .ident = ident, .matched = false, }; drm_for_each_detailed_block(drm_edid, match_identity, &closure); return closure.matched; } return true; } EXPORT_SYMBOL(drm_edid_match); static void monitor_name(const struct detailed_timing *timing, void *data) { const char **res = data; if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_NAME)) return; *res = timing->data.other_data.data.str.str; } static int get_monitor_name(const struct drm_edid *drm_edid, char name[13]) { const char *edid_name = NULL; int mnl; if (!drm_edid || !name) return 0; drm_for_each_detailed_block(drm_edid, monitor_name, &edid_name); for (mnl = 0; edid_name && mnl < 13; mnl++) { if (edid_name[mnl] == 0x0a) break; name[mnl] = edid_name[mnl]; } return mnl; } /** * drm_edid_get_monitor_name - fetch the monitor name from the edid * @edid: monitor EDID information * @name: pointer to a character array to hold the name of the monitor * @bufsize: The size of the name buffer (should be at least 14 chars.) * */ void drm_edid_get_monitor_name(const struct edid *edid, char *name, int bufsize) { int name_length = 0; if (bufsize <= 0) return; if (edid) { char buf[13]; struct drm_edid drm_edid = { .edid = edid, .size = edid_size(edid), }; name_length = min(get_monitor_name(&drm_edid, buf), bufsize - 1); memcpy(name, buf, name_length); } name[name_length] = '\0'; } EXPORT_SYMBOL(drm_edid_get_monitor_name); static void clear_eld(struct drm_connector *connector) { memset(connector->eld, 0, sizeof(connector->eld)); connector->latency_present[0] = false; connector->latency_present[1] = false; connector->video_latency[0] = 0; connector->audio_latency[0] = 0; connector->video_latency[1] = 0; connector->audio_latency[1] = 0; } /* * Get 3-byte SAD buffer from struct cea_sad. */ void drm_edid_cta_sad_get(const struct cea_sad *cta_sad, u8 *sad) { sad[0] = cta_sad->format << 3 | cta_sad->channels; sad[1] = cta_sad->freq; sad[2] = cta_sad->byte2; } /* * Set struct cea_sad from 3-byte SAD buffer. */ void drm_edid_cta_sad_set(struct cea_sad *cta_sad, const u8 *sad) { cta_sad->format = (sad[0] & 0x78) >> 3; cta_sad->channels = sad[0] & 0x07; cta_sad->freq = sad[1] & 0x7f; cta_sad->byte2 = sad[2]; } /* * drm_edid_to_eld - build ELD from EDID * @connector: connector corresponding to the HDMI/DP sink * @drm_edid: EDID to parse * * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. */ static void drm_edid_to_eld(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct drm_display_info *info = &connector->display_info; const struct cea_db *db; struct cea_db_iter iter; uint8_t *eld = connector->eld; int total_sad_count = 0; int mnl; if (!drm_edid) return; mnl = get_monitor_name(drm_edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD monitor %s\n", connector->base.id, connector->name, &eld[DRM_ELD_MONITOR_NAME_STRING]); eld[DRM_ELD_CEA_EDID_VER_MNL] = info->cea_rev << DRM_ELD_CEA_EDID_VER_SHIFT; eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; eld[DRM_ELD_MANUFACTURER_NAME0] = drm_edid->edid->mfg_id[0]; eld[DRM_ELD_MANUFACTURER_NAME1] = drm_edid->edid->mfg_id[1]; eld[DRM_ELD_PRODUCT_CODE0] = drm_edid->edid->prod_code[0]; eld[DRM_ELD_PRODUCT_CODE1] = drm_edid->edid->prod_code[1]; cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { const u8 *data = cea_db_data(db); int len = cea_db_payload_len(db); int sad_count; switch (cea_db_tag(db)) { case CTA_DB_AUDIO: /* Audio Data Block, contains SADs */ sad_count = min(len / 3, 15 - total_sad_count); if (sad_count >= 1) memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], data, sad_count * 3); total_sad_count += sad_count; break; case CTA_DB_SPEAKER: /* Speaker Allocation Data Block */ if (len >= 1) eld[DRM_ELD_SPEAKER] = data[0]; break; case CTA_DB_VENDOR: /* HDMI Vendor-Specific Data Block */ if (cea_db_is_hdmi_vsdb(db)) drm_parse_hdmi_vsdb_audio(connector, (const u8 *)db); break; default: break; } } cea_db_iter_end(&iter); eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_eDP) eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; else eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; eld[DRM_ELD_BASELINE_ELD_LEN] = DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] ELD size %d, SAD count %d\n", connector->base.id, connector->name, drm_eld_size(eld), total_sad_count); } static int _drm_edid_to_sad(const struct drm_edid *drm_edid, struct cea_sad **psads) { const struct cea_db *db; struct cea_db_iter iter; int count = 0; cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { if (cea_db_tag(db) == CTA_DB_AUDIO) { struct cea_sad *sads; int i; count = cea_db_payload_len(db) / 3; /* SAD is 3B */ sads = kcalloc(count, sizeof(*sads), GFP_KERNEL); *psads = sads; if (!sads) return -ENOMEM; for (i = 0; i < count; i++) drm_edid_cta_sad_set(&sads[i], &db->data[i * 3]); break; } } cea_db_iter_end(&iter); DRM_DEBUG_KMS("Found %d Short Audio Descriptors\n", count); return count; } /** * drm_edid_to_sad - extracts SADs from EDID * @edid: EDID to parse * @sads: pointer that will be set to the extracted SADs * * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. * * Note: The returned pointer needs to be freed using kfree(). * * Return: The number of found SADs or negative number on error. */ int drm_edid_to_sad(const struct edid *edid, struct cea_sad **sads) { struct drm_edid drm_edid; return _drm_edid_to_sad(drm_edid_legacy_init(&drm_edid, edid), sads); } EXPORT_SYMBOL(drm_edid_to_sad); static int _drm_edid_to_speaker_allocation(const struct drm_edid *drm_edid, u8 **sadb) { const struct cea_db *db; struct cea_db_iter iter; int count = 0; cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { if (cea_db_tag(db) == CTA_DB_SPEAKER && cea_db_payload_len(db) == 3) { *sadb = kmemdup(db->data, cea_db_payload_len(db), GFP_KERNEL); if (!*sadb) return -ENOMEM; count = cea_db_payload_len(db); break; } } cea_db_iter_end(&iter); DRM_DEBUG_KMS("Found %d Speaker Allocation Data Blocks\n", count); return count; } /** * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID * @edid: EDID to parse * @sadb: pointer to the speaker block * * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. * * Note: The returned pointer needs to be freed using kfree(). * * Return: The number of found Speaker Allocation Blocks or negative number on * error. */ int drm_edid_to_speaker_allocation(const struct edid *edid, u8 **sadb) { struct drm_edid drm_edid; return _drm_edid_to_speaker_allocation(drm_edid_legacy_init(&drm_edid, edid), sadb); } EXPORT_SYMBOL(drm_edid_to_speaker_allocation); /** * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay * @connector: connector associated with the HDMI/DP sink * @mode: the display mode * * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if * the sink doesn't support audio or video. */ int drm_av_sync_delay(struct drm_connector *connector, const struct drm_display_mode *mode) { int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); int a, v; if (!connector->latency_present[0]) return 0; if (!connector->latency_present[1]) i = 0; a = connector->audio_latency[i]; v = connector->video_latency[i]; /* * HDMI/DP sink doesn't support audio or video? */ if (a == 255 || v == 255) return 0; /* * Convert raw EDID values to millisecond. * Treat unknown latency as 0ms. */ if (a) a = min(2 * (a - 1), 500); if (v) v = min(2 * (v - 1), 500); return max(v - a, 0); } EXPORT_SYMBOL(drm_av_sync_delay); static bool _drm_detect_hdmi_monitor(const struct drm_edid *drm_edid) { const struct cea_db *db; struct cea_db_iter iter; bool hdmi = false; /* * Because HDMI identifier is in Vendor Specific Block, * search it from all data blocks of CEA extension. */ cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { if (cea_db_is_hdmi_vsdb(db)) { hdmi = true; break; } } cea_db_iter_end(&iter); return hdmi; } /** * drm_detect_hdmi_monitor - detect whether monitor is HDMI * @edid: monitor EDID information * * Parse the CEA extension according to CEA-861-B. * * Drivers that have added the modes parsed from EDID to drm_display_info * should use &drm_display_info.is_hdmi instead of calling this function. * * Return: True if the monitor is HDMI, false if not or unknown. */ bool drm_detect_hdmi_monitor(const struct edid *edid) { struct drm_edid drm_edid; return _drm_detect_hdmi_monitor(drm_edid_legacy_init(&drm_edid, edid)); } EXPORT_SYMBOL(drm_detect_hdmi_monitor); static bool _drm_detect_monitor_audio(const struct drm_edid *drm_edid) { struct drm_edid_iter edid_iter; const struct cea_db *db; struct cea_db_iter iter; const u8 *edid_ext; bool has_audio = false; drm_edid_iter_begin(drm_edid, &edid_iter); drm_edid_iter_for_each(edid_ext, &edid_iter) { if (edid_ext[0] == CEA_EXT) { has_audio = edid_ext[3] & EDID_BASIC_AUDIO; if (has_audio) break; } } drm_edid_iter_end(&edid_iter); if (has_audio) { DRM_DEBUG_KMS("Monitor has basic audio support\n"); goto end; } cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { if (cea_db_tag(db) == CTA_DB_AUDIO) { const u8 *data = cea_db_data(db); int i; for (i = 0; i < cea_db_payload_len(db); i += 3) DRM_DEBUG_KMS("CEA audio format %d\n", (data[i] >> 3) & 0xf); has_audio = true; break; } } cea_db_iter_end(&iter); end: return has_audio; } /** * drm_detect_monitor_audio - check monitor audio capability * @edid: EDID block to scan * * Monitor should have CEA extension block. * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic * audio' only. If there is any audio extension block and supported * audio format, assume at least 'basic audio' support, even if 'basic * audio' is not defined in EDID. * * Return: True if the monitor supports audio, false otherwise. */ bool drm_detect_monitor_audio(const struct edid *edid) { struct drm_edid drm_edid; return _drm_detect_monitor_audio(drm_edid_legacy_init(&drm_edid, edid)); } EXPORT_SYMBOL(drm_detect_monitor_audio); /** * drm_default_rgb_quant_range - default RGB quantization range * @mode: display mode * * Determine the default RGB quantization range for the mode, * as specified in CEA-861. * * Return: The default RGB quantization range for the mode */ enum hdmi_quantization_range drm_default_rgb_quant_range(const struct drm_display_mode *mode) { /* All CEA modes other than VIC 1 use limited quantization range. */ return drm_match_cea_mode(mode) > 1 ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL; } EXPORT_SYMBOL(drm_default_rgb_quant_range); /* CTA-861 Video Data Block (CTA VDB) */ static void parse_cta_vdb(struct drm_connector *connector, const struct cea_db *db) { struct drm_display_info *info = &connector->display_info; int i, vic_index, len = cea_db_payload_len(db); const u8 *svds = cea_db_data(db); u8 *vics; if (!len) return; /* Gracefully handle multiple VDBs, however unlikely that is */ vics = krealloc(info->vics, info->vics_len + len, GFP_KERNEL); if (!vics) return; vic_index = info->vics_len; info->vics_len += len; info->vics = vics; for (i = 0; i < len; i++) { u8 vic = svd_to_vic(svds[i]); if (!drm_valid_cea_vic(vic)) vic = 0; info->vics[vic_index++] = vic; } } /* * Update y420_cmdb_modes based on previously parsed CTA VDB and Y420CMDB. * * Translate the y420cmdb_map based on VIC indexes to y420_cmdb_modes indexed * using the VICs themselves. */ static void update_cta_y420cmdb(struct drm_connector *connector, u64 y420cmdb_map) { struct drm_display_info *info = &connector->display_info; struct drm_hdmi_info *hdmi = &info->hdmi; int i, len = min_t(int, info->vics_len, BITS_PER_TYPE(y420cmdb_map)); for (i = 0; i < len; i++) { u8 vic = info->vics[i]; if (vic && y420cmdb_map & BIT_ULL(i)) bitmap_set(hdmi->y420_cmdb_modes, vic, 1); } } static bool cta_vdb_has_vic(const struct drm_connector *connector, u8 vic) { const struct drm_display_info *info = &connector->display_info; int i; if (!vic || !info->vics) return false; for (i = 0; i < info->vics_len; i++) { if (info->vics[i] == vic) return true; } return false; } /* CTA-861-H YCbCr 4:2:0 Video Data Block (CTA Y420VDB) */ static void parse_cta_y420vdb(struct drm_connector *connector, const struct cea_db *db) { struct drm_display_info *info = &connector->display_info; struct drm_hdmi_info *hdmi = &info->hdmi; const u8 *svds = cea_db_data(db) + 1; int i; for (i = 0; i < cea_db_payload_len(db) - 1; i++) { u8 vic = svd_to_vic(svds[i]); if (!drm_valid_cea_vic(vic)) continue; bitmap_set(hdmi->y420_vdb_modes, vic, 1); info->color_formats |= DRM_COLOR_FORMAT_YCBCR420; } } static void drm_parse_vcdb(struct drm_connector *connector, const u8 *db) { struct drm_display_info *info = &connector->display_info; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA VCDB 0x%02x\n", connector->base.id, connector->name, db[2]); if (db[2] & EDID_CEA_VCDB_QS) info->rgb_quant_range_selectable = true; } static void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane) { switch (max_frl_rate) { case 1: *max_lanes = 3; *max_rate_per_lane = 3; break; case 2: *max_lanes = 3; *max_rate_per_lane = 6; break; case 3: *max_lanes = 4; *max_rate_per_lane = 6; break; case 4: *max_lanes = 4; *max_rate_per_lane = 8; break; case 5: *max_lanes = 4; *max_rate_per_lane = 10; break; case 6: *max_lanes = 4; *max_rate_per_lane = 12; break; case 0: default: *max_lanes = 0; *max_rate_per_lane = 0; } } static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, const u8 *db) { u8 dc_mask; struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; hdmi->y420_dc_modes = dc_mask; } static void drm_parse_dsc_info(struct drm_hdmi_dsc_cap *hdmi_dsc, const u8 *hf_scds) { hdmi_dsc->v_1p2 = hf_scds[11] & DRM_EDID_DSC_1P2; if (!hdmi_dsc->v_1p2) return; hdmi_dsc->native_420 = hf_scds[11] & DRM_EDID_DSC_NATIVE_420; hdmi_dsc->all_bpp = hf_scds[11] & DRM_EDID_DSC_ALL_BPP; if (hf_scds[11] & DRM_EDID_DSC_16BPC) hdmi_dsc->bpc_supported = 16; else if (hf_scds[11] & DRM_EDID_DSC_12BPC) hdmi_dsc->bpc_supported = 12; else if (hf_scds[11] & DRM_EDID_DSC_10BPC) hdmi_dsc->bpc_supported = 10; else /* Supports min 8 BPC if DSC 1.2 is supported*/ hdmi_dsc->bpc_supported = 8; if (cea_db_payload_len(hf_scds) >= 12 && hf_scds[12]) { u8 dsc_max_slices; u8 dsc_max_frl_rate; dsc_max_frl_rate = (hf_scds[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4; drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes, &hdmi_dsc->max_frl_rate_per_lane); dsc_max_slices = hf_scds[12] & DRM_EDID_DSC_MAX_SLICES; switch (dsc_max_slices) { case 1: hdmi_dsc->max_slices = 1; hdmi_dsc->clk_per_slice = 340; break; case 2: hdmi_dsc->max_slices = 2; hdmi_dsc->clk_per_slice = 340; break; case 3: hdmi_dsc->max_slices = 4; hdmi_dsc->clk_per_slice = 340; break; case 4: hdmi_dsc->max_slices = 8; hdmi_dsc->clk_per_slice = 340; break; case 5: hdmi_dsc->max_slices = 8; hdmi_dsc->clk_per_slice = 400; break; case 6: hdmi_dsc->max_slices = 12; hdmi_dsc->clk_per_slice = 400; break; case 7: hdmi_dsc->max_slices = 16; hdmi_dsc->clk_per_slice = 400; break; case 0: default: hdmi_dsc->max_slices = 0; hdmi_dsc->clk_per_slice = 0; } } if (cea_db_payload_len(hf_scds) >= 13 && hf_scds[13]) hdmi_dsc->total_chunk_kbytes = hf_scds[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES; } /* Sink Capability Data Structure */ static void drm_parse_hdmi_forum_scds(struct drm_connector *connector, const u8 *hf_scds) { struct drm_display_info *info = &connector->display_info; struct drm_hdmi_info *hdmi = &info->hdmi; struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap; int max_tmds_clock = 0; u8 max_frl_rate = 0; bool dsc_support = false; info->has_hdmi_infoframe = true; if (hf_scds[6] & 0x80) { hdmi->scdc.supported = true; if (hf_scds[6] & 0x40) hdmi->scdc.read_request = true; } /* * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. * And as per the spec, three factors confirm this: * * Availability of a HF-VSDB block in EDID (check) * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) * * SCDC support available (let's check) * Lets check it out. */ if (hf_scds[5]) { struct drm_scdc *scdc = &hdmi->scdc; /* max clock is 5000 KHz times block value */ max_tmds_clock = hf_scds[5] * 5000; if (max_tmds_clock > 340000) { info->max_tmds_clock = max_tmds_clock; } if (scdc->supported) { scdc->scrambling.supported = true; /* Few sinks support scrambling for clocks < 340M */ if ((hf_scds[6] & 0x8)) scdc->scrambling.low_rates = true; } } if (hf_scds[7]) { max_frl_rate = (hf_scds[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4; drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes, &hdmi->max_frl_rate_per_lane); } drm_parse_ycbcr420_deep_color_info(connector, hf_scds); if (cea_db_payload_len(hf_scds) >= 11 && hf_scds[11]) { drm_parse_dsc_info(hdmi_dsc, hf_scds); dsc_support = true; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HF-VSDB: max TMDS clock: %d KHz, HDMI 2.1 support: %s, DSC 1.2 support: %s\n", connector->base.id, connector->name, max_tmds_clock, str_yes_no(max_frl_rate), str_yes_no(dsc_support)); } static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, const u8 *hdmi) { struct drm_display_info *info = &connector->display_info; unsigned int dc_bpc = 0; /* HDMI supports at least 8 bpc */ info->bpc = 8; if (cea_db_payload_len(hdmi) < 6) return; if (hdmi[6] & DRM_EDID_HDMI_DC_30) { dc_bpc = 10; info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_30; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 30.\n", connector->base.id, connector->name); } if (hdmi[6] & DRM_EDID_HDMI_DC_36) { dc_bpc = 12; info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_36; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 36.\n", connector->base.id, connector->name); } if (hdmi[6] & DRM_EDID_HDMI_DC_48) { dc_bpc = 16; info->edid_hdmi_rgb444_dc_modes |= DRM_EDID_HDMI_DC_48; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does deep color 48.\n", connector->base.id, connector->name); } if (dc_bpc == 0) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] No deep color support on this HDMI sink.\n", connector->base.id, connector->name); return; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning HDMI sink color depth as %d bpc.\n", connector->base.id, connector->name, dc_bpc); info->bpc = dc_bpc; /* YCRCB444 is optional according to spec. */ if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { info->edid_hdmi_ycbcr444_dc_modes = info->edid_hdmi_rgb444_dc_modes; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink does YCRCB444 in deep color.\n", connector->base.id, connector->name); } /* * Spec says that if any deep color mode is supported at all, * then deep color 36 bit must be supported. */ if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI sink should do DC_36, but does not!\n", connector->base.id, connector->name); } } /* HDMI Vendor-Specific Data Block (HDMI VSDB, H14b-VSDB) */ static void drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) { struct drm_display_info *info = &connector->display_info; u8 len = cea_db_payload_len(db); info->is_hdmi = true; info->source_physical_address = (db[4] << 8) | db[5]; if (len >= 6) info->dvi_dual = db[6] & 1; if (len >= 7) info->max_tmds_clock = db[7] * 5000; /* * Try to infer whether the sink supports HDMI infoframes. * * HDMI infoframe support was first added in HDMI 1.4. Assume the sink * supports infoframes if HDMI_Video_present is set. */ if (len >= 8 && db[8] & BIT(5)) info->has_hdmi_infoframe = true; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HDMI: DVI dual %d, max TMDS clock %d kHz\n", connector->base.id, connector->name, info->dvi_dual, info->max_tmds_clock); drm_parse_hdmi_deep_color_info(connector, db); } /* * See EDID extension for head-mounted and specialized monitors, specified at: * https://docs.microsoft.com/en-us/windows-hardware/drivers/display/specialized-monitors-edid-extension */ static void drm_parse_microsoft_vsdb(struct drm_connector *connector, const u8 *db) { struct drm_display_info *info = &connector->display_info; u8 version = db[4]; bool desktop_usage = db[5] & BIT(6); /* Version 1 and 2 for HMDs, version 3 flags desktop usage explicitly */ if (version == 1 || version == 2 || (version == 3 && !desktop_usage)) info->non_desktop = true; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] HMD or specialized display VSDB version %u: 0x%02x\n", connector->base.id, connector->name, version, db[5]); } static void drm_parse_cea_ext(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_display_info *info = &connector->display_info; struct drm_edid_iter edid_iter; const struct cea_db *db; struct cea_db_iter iter; const u8 *edid_ext; u64 y420cmdb_map = 0; drm_edid_iter_begin(drm_edid, &edid_iter); drm_edid_iter_for_each(edid_ext, &edid_iter) { if (edid_ext[0] != CEA_EXT) continue; if (!info->cea_rev) info->cea_rev = edid_ext[1]; if (info->cea_rev != edid_ext[1]) drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] CEA extension version mismatch %u != %u\n", connector->base.id, connector->name, info->cea_rev, edid_ext[1]); /* The existence of a CTA extension should imply RGB support */ info->color_formats = DRM_COLOR_FORMAT_RGB444; if (edid_ext[3] & EDID_CEA_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; if (edid_ext[3] & EDID_CEA_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; if (edid_ext[3] & EDID_BASIC_AUDIO) info->has_audio = true; } drm_edid_iter_end(&edid_iter); cea_db_iter_edid_begin(drm_edid, &iter); cea_db_iter_for_each(db, &iter) { /* FIXME: convert parsers to use struct cea_db */ const u8 *data = (const u8 *)db; if (cea_db_is_hdmi_vsdb(db)) drm_parse_hdmi_vsdb_video(connector, data); else if (cea_db_is_hdmi_forum_vsdb(db) || cea_db_is_hdmi_forum_scdb(db)) drm_parse_hdmi_forum_scds(connector, data); else if (cea_db_is_microsoft_vsdb(db)) drm_parse_microsoft_vsdb(connector, data); else if (cea_db_is_y420cmdb(db)) parse_cta_y420cmdb(connector, db, &y420cmdb_map); else if (cea_db_is_y420vdb(db)) parse_cta_y420vdb(connector, db); else if (cea_db_is_vcdb(db)) drm_parse_vcdb(connector, data); else if (cea_db_is_hdmi_hdr_metadata_block(db)) drm_parse_hdr_metadata_block(connector, data); else if (cea_db_tag(db) == CTA_DB_VIDEO) parse_cta_vdb(connector, db); else if (cea_db_tag(db) == CTA_DB_AUDIO) info->has_audio = true; } cea_db_iter_end(&iter); if (y420cmdb_map) update_cta_y420cmdb(connector, y420cmdb_map); } static void get_monitor_range(const struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct drm_display_info *info = &closure->connector->display_info; struct drm_monitor_range_info *monitor_range = &info->monitor_range; const struct detailed_non_pixel *data = &timing->data.other_data; const struct detailed_data_monitor_range *range = &data->data.range; const struct edid *edid = closure->drm_edid->edid; if (!is_display_descriptor(timing, EDID_DETAIL_MONITOR_RANGE)) return; /* * These limits are used to determine the VRR refresh * rate range. Only the "range limits only" variant * of the range descriptor seems to guarantee that * any and all timings are accepted by the sink, as * opposed to just timings conforming to the indicated * formula (GTF/GTF2/CVT). Thus other variants of the * range descriptor are not accepted here. */ if (range->flags != DRM_EDID_RANGE_LIMITS_ONLY_FLAG) return; monitor_range->min_vfreq = range->min_vfreq; monitor_range->max_vfreq = range->max_vfreq; if (edid->revision >= 4) { if (data->pad2 & DRM_EDID_RANGE_OFFSET_MIN_VFREQ) monitor_range->min_vfreq += 255; if (data->pad2 & DRM_EDID_RANGE_OFFSET_MAX_VFREQ) monitor_range->max_vfreq += 255; } } static void drm_get_monitor_range(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct drm_display_info *info = &connector->display_info; struct detailed_mode_closure closure = { .connector = connector, .drm_edid = drm_edid, }; if (drm_edid->edid->revision < 4) return; if (!(drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ)) return; drm_for_each_detailed_block(drm_edid, get_monitor_range, &closure); drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Supported Monitor Refresh rate range is %d Hz - %d Hz\n", connector->base.id, connector->name, info->monitor_range.min_vfreq, info->monitor_range.max_vfreq); } static void drm_parse_vesa_mso_data(struct drm_connector *connector, const struct displayid_block *block) { struct displayid_vesa_vendor_specific_block *vesa = (struct displayid_vesa_vendor_specific_block *)block; struct drm_display_info *info = &connector->display_info; if (block->num_bytes < 3) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Unexpected vendor block size %u\n", connector->base.id, connector->name, block->num_bytes); return; } if (oui(vesa->oui[0], vesa->oui[1], vesa->oui[2]) != VESA_IEEE_OUI) return; if (sizeof(*vesa) != sizeof(*block) + block->num_bytes) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Unexpected VESA vendor block size\n", connector->base.id, connector->name); return; } switch (FIELD_GET(DISPLAYID_VESA_MSO_MODE, vesa->mso)) { default: drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO mode value\n", connector->base.id, connector->name); fallthrough; case 0: info->mso_stream_count = 0; break; case 1: info->mso_stream_count = 2; /* 2 or 4 links */ break; case 2: info->mso_stream_count = 4; /* 4 links */ break; } if (!info->mso_stream_count) { info->mso_pixel_overlap = 0; return; } info->mso_pixel_overlap = FIELD_GET(DISPLAYID_VESA_MSO_OVERLAP, vesa->mso); if (info->mso_pixel_overlap > 8) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Reserved MSO pixel overlap value %u\n", connector->base.id, connector->name, info->mso_pixel_overlap); info->mso_pixel_overlap = 8; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] MSO stream count %u, pixel overlap %u\n", connector->base.id, connector->name, info->mso_stream_count, info->mso_pixel_overlap); } static void drm_update_mso(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct displayid_block *block; struct displayid_iter iter; displayid_iter_edid_begin(drm_edid, &iter); displayid_iter_for_each(block, &iter) { if (block->tag == DATA_BLOCK_2_VENDOR_SPECIFIC) drm_parse_vesa_mso_data(connector, block); } displayid_iter_end(&iter); } /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset * all of the values which would have been set from EDID */ static void drm_reset_display_info(struct drm_connector *connector) { struct drm_display_info *info = &connector->display_info; info->width_mm = 0; info->height_mm = 0; info->bpc = 0; info->color_formats = 0; info->cea_rev = 0; info->max_tmds_clock = 0; info->dvi_dual = false; info->is_hdmi = false; info->has_audio = false; info->has_hdmi_infoframe = false; info->rgb_quant_range_selectable = false; memset(&info->hdmi, 0, sizeof(info->hdmi)); info->edid_hdmi_rgb444_dc_modes = 0; info->edid_hdmi_ycbcr444_dc_modes = 0; info->non_desktop = 0; memset(&info->monitor_range, 0, sizeof(info->monitor_range)); memset(&info->luminance_range, 0, sizeof(info->luminance_range)); info->mso_stream_count = 0; info->mso_pixel_overlap = 0; info->max_dsc_bpp = 0; kfree(info->vics); info->vics = NULL; info->vics_len = 0; info->quirks = 0; info->source_physical_address = CEC_PHYS_ADDR_INVALID; } static void update_displayid_info(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_display_info *info = &connector->display_info; const struct displayid_block *block; struct displayid_iter iter; displayid_iter_edid_begin(drm_edid, &iter); displayid_iter_for_each(block, &iter) { if (displayid_version(&iter) == DISPLAY_ID_STRUCTURE_VER_20 && (displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_VR || displayid_primary_use(&iter) == PRIMARY_USE_HEAD_MOUNTED_AR)) info->non_desktop = true; /* * We're only interested in the base section here, no need to * iterate further. */ break; } displayid_iter_end(&iter); } static void update_display_info(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_display_info *info = &connector->display_info; const struct edid *edid; drm_reset_display_info(connector); clear_eld(connector); if (!drm_edid) return; edid = drm_edid->edid; info->quirks = edid_get_quirks(drm_edid); info->width_mm = edid->width_cm * 10; info->height_mm = edid->height_cm * 10; drm_get_monitor_range(connector, drm_edid); if (edid->revision < 3) goto out; if (!drm_edid_is_digital(drm_edid)) goto out; info->color_formats |= DRM_COLOR_FORMAT_RGB444; drm_parse_cea_ext(connector, drm_edid); update_displayid_info(connector, drm_edid); /* * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? * * For such displays, the DFP spec 1.0, section 3.10 "EDID support" * tells us to assume 8 bpc color depth if the EDID doesn't have * extensions which tell otherwise. */ if (info->bpc == 0 && edid->revision == 3 && edid->input & DRM_EDID_DIGITAL_DFP_1_X) { info->bpc = 8; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning DFP sink color depth as %d bpc.\n", connector->base.id, connector->name, info->bpc); } /* Only defined for 1.4 with digital displays */ if (edid->revision < 4) goto out; switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { case DRM_EDID_DIGITAL_DEPTH_6: info->bpc = 6; break; case DRM_EDID_DIGITAL_DEPTH_8: info->bpc = 8; break; case DRM_EDID_DIGITAL_DEPTH_10: info->bpc = 10; break; case DRM_EDID_DIGITAL_DEPTH_12: info->bpc = 12; break; case DRM_EDID_DIGITAL_DEPTH_14: info->bpc = 14; break; case DRM_EDID_DIGITAL_DEPTH_16: info->bpc = 16; break; case DRM_EDID_DIGITAL_DEPTH_UNDEF: default: info->bpc = 0; break; } drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Assigning EDID-1.4 digital sink color depth as %d bpc.\n", connector->base.id, connector->name, info->bpc); if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCBCR444; if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCBCR422; drm_update_mso(connector, drm_edid); out: if (info->quirks & EDID_QUIRK_NON_DESKTOP) { drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] Non-desktop display%s\n", connector->base.id, connector->name, info->non_desktop ? " (redundant quirk)" : ""); info->non_desktop = true; } if (info->quirks & EDID_QUIRK_CAP_DSC_15BPP) info->max_dsc_bpp = 15; if (info->quirks & EDID_QUIRK_FORCE_6BPC) info->bpc = 6; if (info->quirks & EDID_QUIRK_FORCE_8BPC) info->bpc = 8; if (info->quirks & EDID_QUIRK_FORCE_10BPC) info->bpc = 10; if (info->quirks & EDID_QUIRK_FORCE_12BPC) info->bpc = 12; /* Depends on info->cea_rev set by drm_parse_cea_ext() above */ drm_edid_to_eld(connector, drm_edid); } static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, struct displayid_detailed_timings_1 *timings, bool type_7) { struct drm_display_mode *mode; unsigned pixel_clock = (timings->pixel_clock[0] | (timings->pixel_clock[1] << 8) | (timings->pixel_clock[2] << 16)) + 1; unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; mode = drm_mode_create(dev); if (!mode) return NULL; /* resolution is kHz for type VII, and 10 kHz for type I */ mode->clock = type_7 ? pixel_clock : pixel_clock * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync; mode->hsync_end = mode->hsync_start + hsync_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync; mode->vsync_end = mode->vsync_start + vsync_width; mode->vtotal = mode->vdisplay + vblank; mode->flags = 0; mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; mode->type = DRM_MODE_TYPE_DRIVER; if (timings->flags & 0x80) mode->type |= DRM_MODE_TYPE_PREFERRED; drm_mode_set_name(mode); return mode; } static int add_displayid_detailed_1_modes(struct drm_connector *connector, const struct displayid_block *block) { struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; int i; int num_timings; struct drm_display_mode *newmode; int num_modes = 0; bool type_7 = block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING; /* blocks must be multiple of 20 bytes length */ if (block->num_bytes % 20) return 0; num_timings = block->num_bytes / 20; for (i = 0; i < num_timings; i++) { struct displayid_detailed_timings_1 *timings = &det->timings[i]; newmode = drm_mode_displayid_detailed(connector->dev, timings, type_7); if (!newmode) continue; drm_mode_probed_add(connector, newmode); num_modes++; } return num_modes; } static int add_displayid_detailed_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct displayid_block *block; struct displayid_iter iter; int num_modes = 0; displayid_iter_edid_begin(drm_edid, &iter); displayid_iter_for_each(block, &iter) { if (block->tag == DATA_BLOCK_TYPE_1_DETAILED_TIMING || block->tag == DATA_BLOCK_2_TYPE_7_DETAILED_TIMING) num_modes += add_displayid_detailed_1_modes(connector, block); } displayid_iter_end(&iter); return num_modes; } static int _drm_edid_connector_add_modes(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct drm_display_info *info = &connector->display_info; int num_modes = 0; if (!drm_edid) return 0; /* * EDID spec says modes should be preferred in this order: * - preferred detailed mode * - other detailed modes from base block * - detailed modes from extension blocks * - CVT 3-byte code modes * - standard timing codes * - established timing codes * - modes inferred from GTF or CVT range information * * We get this pretty much right. * * XXX order for additional mode types in extension blocks? */ num_modes += add_detailed_modes(connector, drm_edid); num_modes += add_cvt_modes(connector, drm_edid); num_modes += add_standard_modes(connector, drm_edid); num_modes += add_established_modes(connector, drm_edid); num_modes += add_cea_modes(connector, drm_edid); num_modes += add_alternate_cea_modes(connector, drm_edid); num_modes += add_displayid_detailed_modes(connector, drm_edid); if (drm_edid->edid->features & DRM_EDID_FEATURE_CONTINUOUS_FREQ) num_modes += add_inferred_modes(connector, drm_edid); if (info->quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) edid_fixup_preferred(connector); return num_modes; } static void _drm_update_tile_info(struct drm_connector *connector, const struct drm_edid *drm_edid); static int _drm_edid_connector_property_update(struct drm_connector *connector, const struct drm_edid *drm_edid) { struct drm_device *dev = connector->dev; int ret; if (connector->edid_blob_ptr) { const void *old_edid = connector->edid_blob_ptr->data; size_t old_edid_size = connector->edid_blob_ptr->length; if (old_edid && !drm_edid_eq(drm_edid, old_edid, old_edid_size)) { connector->epoch_counter++; drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID changed, epoch counter %llu\n", connector->base.id, connector->name, connector->epoch_counter); } } ret = drm_property_replace_global_blob(dev, &connector->edid_blob_ptr, drm_edid ? drm_edid->size : 0, drm_edid ? drm_edid->edid : NULL, &connector->base, dev->mode_config.edid_property); if (ret) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] EDID property update failed (%d)\n", connector->base.id, connector->name, ret); goto out; } ret = drm_object_property_set_value(&connector->base, dev->mode_config.non_desktop_property, connector->display_info.non_desktop); if (ret) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Non-desktop property update failed (%d)\n", connector->base.id, connector->name, ret); goto out; } ret = drm_connector_set_tile_property(connector); if (ret) { drm_dbg_kms(dev, "[CONNECTOR:%d:%s] Tile property update failed (%d)\n", connector->base.id, connector->name, ret); goto out; } out: return ret; } /** * drm_edid_connector_update - Update connector information from EDID * @connector: Connector * @drm_edid: EDID * * Update the connector display info, ELD, HDR metadata, relevant properties, * etc. from the passed in EDID. * * If EDID is NULL, reset the information. * * Must be called before calling drm_edid_connector_add_modes(). * * Return: 0 on success, negative error on errors. */ int drm_edid_connector_update(struct drm_connector *connector, const struct drm_edid *drm_edid) { update_display_info(connector, drm_edid); _drm_update_tile_info(connector, drm_edid); return _drm_edid_connector_property_update(connector, drm_edid); } EXPORT_SYMBOL(drm_edid_connector_update); /** * drm_edid_connector_add_modes - Update probed modes from the EDID property * @connector: Connector * * Add the modes from the previously updated EDID property to the connector * probed modes list. * * drm_edid_connector_update() must have been called before this to update the * EDID property. * * Return: The number of modes added, or 0 if we couldn't find any. */ int drm_edid_connector_add_modes(struct drm_connector *connector) { const struct drm_edid *drm_edid = NULL; int count; if (connector->edid_blob_ptr) drm_edid = drm_edid_alloc(connector->edid_blob_ptr->data, connector->edid_blob_ptr->length); count = _drm_edid_connector_add_modes(connector, drm_edid); drm_edid_free(drm_edid); return count; } EXPORT_SYMBOL(drm_edid_connector_add_modes); /** * drm_connector_update_edid_property - update the edid property of a connector * @connector: drm connector * @edid: new value of the edid property * * This function creates a new blob modeset object and assigns its id to the * connector's edid property. * Since we also parse tile information from EDID's displayID block, we also * set the connector's tile property here. See drm_connector_set_tile_property() * for more details. * * This function is deprecated. Use drm_edid_connector_update() instead. * * Returns: * Zero on success, negative errno on failure. */ int drm_connector_update_edid_property(struct drm_connector *connector, const struct edid *edid) { struct drm_edid drm_edid; return drm_edid_connector_update(connector, drm_edid_legacy_init(&drm_edid, edid)); } EXPORT_SYMBOL(drm_connector_update_edid_property); /** * drm_add_edid_modes - add modes from EDID data, if available * @connector: connector we're probing * @edid: EDID data * * Add the specified modes to the connector's mode list. Also fills out the * &drm_display_info structure and ELD in @connector with any information which * can be derived from the edid. * * This function is deprecated. Use drm_edid_connector_add_modes() instead. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) { struct drm_edid _drm_edid; const struct drm_edid *drm_edid; if (edid && !drm_edid_is_valid(edid)) { drm_warn(connector->dev, "[CONNECTOR:%d:%s] EDID invalid.\n", connector->base.id, connector->name); edid = NULL; } drm_edid = drm_edid_legacy_init(&_drm_edid, edid); update_display_info(connector, drm_edid); return _drm_edid_connector_add_modes(connector, drm_edid); } EXPORT_SYMBOL(drm_add_edid_modes); /** * drm_add_modes_noedid - add modes for the connectors without EDID * @connector: connector we're probing * @hdisplay: the horizontal display limit * @vdisplay: the vertical display limit * * Add the specified modes to the connector's mode list. Only when the * hdisplay/vdisplay is not beyond the given limit, it will be added. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_add_modes_noedid(struct drm_connector *connector, int hdisplay, int vdisplay) { int i, count, num_modes = 0; struct drm_display_mode *mode; struct drm_device *dev = connector->dev; count = ARRAY_SIZE(drm_dmt_modes); if (hdisplay < 0) hdisplay = 0; if (vdisplay < 0) vdisplay = 0; for (i = 0; i < count; i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hdisplay && vdisplay) { /* * Only when two are valid, they will be used to check * whether the mode should be added to the mode list of * the connector. */ if (ptr->hdisplay > hdisplay || ptr->vdisplay > vdisplay) continue; } if (drm_mode_vrefresh(ptr) > 61) continue; mode = drm_mode_duplicate(dev, ptr); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } EXPORT_SYMBOL(drm_add_modes_noedid); static bool is_hdmi2_sink(const struct drm_connector *connector) { /* * FIXME: sil-sii8620 doesn't have a connector around when * we need one, so we have to be prepared for a NULL connector. */ if (!connector) return true; return connector->display_info.hdmi.scdc.supported || connector->display_info.color_formats & DRM_COLOR_FORMAT_YCBCR420; } static u8 drm_mode_hdmi_vic(const struct drm_connector *connector, const struct drm_display_mode *mode) { bool has_hdmi_infoframe = connector ? connector->display_info.has_hdmi_infoframe : false; if (!has_hdmi_infoframe) return 0; /* No HDMI VIC when signalling 3D video format */ if (mode->flags & DRM_MODE_FLAG_3D_MASK) return 0; return drm_match_hdmi_mode(mode); } static u8 drm_mode_cea_vic(const struct drm_connector *connector, const struct drm_display_mode *mode) { /* * HDMI spec says if a mode is found in HDMI 1.4b 4K modes * we should send its VIC in vendor infoframes, else send the * VIC in AVI infoframes. Lets check if this mode is present in * HDMI 1.4b 4K modes */ if (drm_mode_hdmi_vic(connector, mode)) return 0; return drm_match_cea_mode(mode); } /* * Avoid sending VICs defined in HDMI 2.0 in AVI infoframes to sinks that * conform to HDMI 1.4. * * HDMI 1.4 (CTA-861-D) VIC range: [1..64] * HDMI 2.0 (CTA-861-F) VIC range: [1..107] * * If the sink lists the VIC in CTA VDB, assume it's fine, regardless of HDMI * version. */ static u8 vic_for_avi_infoframe(const struct drm_connector *connector, u8 vic) { if (!is_hdmi2_sink(connector) && vic > 64 && !cta_vdb_has_vic(connector, vic)) return 0; return vic; } /** * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with * data from a DRM display mode * @frame: HDMI AVI infoframe * @connector: the connector * @mode: DRM display mode * * Return: 0 on success or a negative error code on failure. */ int drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, const struct drm_connector *connector, const struct drm_display_mode *mode) { enum hdmi_picture_aspect picture_aspect; u8 vic, hdmi_vic; if (!frame || !mode) return -EINVAL; hdmi_avi_infoframe_init(frame); if (mode->flags & DRM_MODE_FLAG_DBLCLK) frame->pixel_repeat = 1; vic = drm_mode_cea_vic(connector, mode); hdmi_vic = drm_mode_hdmi_vic(connector, mode); frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; /* * As some drivers don't support atomic, we can't use connector state. * So just initialize the frame with default values, just the same way * as it's done with other properties here. */ frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; frame->itc = 0; /* * Populate picture aspect ratio from either * user input (if specified) or from the CEA/HDMI mode lists. */ picture_aspect = mode->picture_aspect_ratio; if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) { if (vic) picture_aspect = drm_get_cea_aspect_ratio(vic); else if (hdmi_vic) picture_aspect = drm_get_hdmi_aspect_ratio(hdmi_vic); } /* * The infoframe can't convey anything but none, 4:3 * and 16:9, so if the user has asked for anything else * we can only satisfy it by specifying the right VIC. */ if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { if (vic) { if (picture_aspect != drm_get_cea_aspect_ratio(vic)) return -EINVAL; } else if (hdmi_vic) { if (picture_aspect != drm_get_hdmi_aspect_ratio(hdmi_vic)) return -EINVAL; } else { return -EINVAL; } picture_aspect = HDMI_PICTURE_ASPECT_NONE; } frame->video_code = vic_for_avi_infoframe(connector, vic); frame->picture_aspect = picture_aspect; frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; return 0; } EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); /** * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe * quantization range information * @frame: HDMI AVI infoframe * @connector: the connector * @mode: DRM display mode * @rgb_quant_range: RGB quantization range (Q) */ void drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, const struct drm_connector *connector, const struct drm_display_mode *mode, enum hdmi_quantization_range rgb_quant_range) { const struct drm_display_info *info = &connector->display_info; /* * CEA-861: * "A Source shall not send a non-zero Q value that does not correspond * to the default RGB Quantization Range for the transmitted Picture * unless the Sink indicates support for the Q bit in a Video * Capabilities Data Block." * * HDMI 2.0 recommends sending non-zero Q when it does match the * default RGB quantization range for the mode, even when QS=0. */ if (info->rgb_quant_range_selectable || rgb_quant_range == drm_default_rgb_quant_range(mode)) frame->quantization_range = rgb_quant_range; else frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; /* * CEA-861-F: * "When transmitting any RGB colorimetry, the Source should set the * YQ-field to match the RGB Quantization Range being transmitted * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, * set YQ=1) and the Sink shall ignore the YQ-field." * * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused * by non-zero YQ when receiving RGB. There doesn't seem to be any * good way to tell which version of CEA-861 the sink supports, so * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based * on CEA-861-F. */ if (!is_hdmi2_sink(connector) || rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; else frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_FULL; } EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); static enum hdmi_3d_structure s3d_structure_from_display_mode(const struct drm_display_mode *mode) { u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; switch (layout) { case DRM_MODE_FLAG_3D_FRAME_PACKING: return HDMI_3D_STRUCTURE_FRAME_PACKING; case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; case DRM_MODE_FLAG_3D_L_DEPTH: return HDMI_3D_STRUCTURE_L_DEPTH; case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; default: return HDMI_3D_STRUCTURE_INVALID; } } /** * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with * data from a DRM display mode * @frame: HDMI vendor infoframe * @connector: the connector * @mode: DRM display mode * * Note that there's is a need to send HDMI vendor infoframes only when using a * 4k or stereoscopic 3D mode. So when giving any other mode as input this * function will return -EINVAL, error that can be safely ignored. * * Return: 0 on success or a negative error code on failure. */ int drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, const struct drm_connector *connector, const struct drm_display_mode *mode) { /* * FIXME: sil-sii8620 doesn't have a connector around when * we need one, so we have to be prepared for a NULL connector. */ bool has_hdmi_infoframe = connector ? connector->display_info.has_hdmi_infoframe : false; int err; if (!frame || !mode) return -EINVAL; if (!has_hdmi_infoframe) return -EINVAL; err = hdmi_vendor_infoframe_init(frame); if (err < 0) return err; /* * Even if it's not absolutely necessary to send the infoframe * (ie.vic==0 and s3d_struct==0) we will still send it if we * know that the sink can handle it. This is based on a * suggestion in HDMI 2.0 Appendix F. Apparently some sinks * have trouble realizing that they should switch from 3D to 2D * mode if the source simply stops sending the infoframe when * it wants to switch from 3D to 2D. */ frame->vic = drm_mode_hdmi_vic(connector, mode); frame->s3d_struct = s3d_structure_from_display_mode(mode); return 0; } EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); static void drm_parse_tiled_block(struct drm_connector *connector, const struct displayid_block *block) { const struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; u16 w, h; u8 tile_v_loc, tile_h_loc; u8 num_v_tile, num_h_tile; struct drm_tile_group *tg; w = tile->tile_size[0] | tile->tile_size[1] << 8; h = tile->tile_size[2] | tile->tile_size[3] << 8; num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); connector->has_tile = true; if (tile->tile_cap & 0x80) connector->tile_is_single_monitor = true; connector->num_h_tile = num_h_tile + 1; connector->num_v_tile = num_v_tile + 1; connector->tile_h_loc = tile_h_loc; connector->tile_v_loc = tile_v_loc; connector->tile_h_size = w + 1; connector->tile_v_size = h + 1; drm_dbg_kms(connector->dev, "[CONNECTOR:%d:%s] tile cap 0x%x, size %dx%d, num tiles %dx%d, location %dx%d, vend %c%c%c", connector->base.id, connector->name, tile->tile_cap, connector->tile_h_size, connector->tile_v_size, connector->num_h_tile, connector->num_v_tile, connector->tile_h_loc, connector->tile_v_loc, tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); if (!tg) tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); if (!tg) return; if (connector->tile_group != tg) { /* if we haven't got a pointer, take the reference, drop ref to old tile group */ if (connector->tile_group) drm_mode_put_tile_group(connector->dev, connector->tile_group); connector->tile_group = tg; } else { /* if same tile group, then release the ref we just took. */ drm_mode_put_tile_group(connector->dev, tg); } } static bool displayid_is_tiled_block(const struct displayid_iter *iter, const struct displayid_block *block) { return (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_12 && block->tag == DATA_BLOCK_TILED_DISPLAY) || (displayid_version(iter) == DISPLAY_ID_STRUCTURE_VER_20 && block->tag == DATA_BLOCK_2_TILED_DISPLAY_TOPOLOGY); } static void _drm_update_tile_info(struct drm_connector *connector, const struct drm_edid *drm_edid) { const struct displayid_block *block; struct displayid_iter iter; connector->has_tile = false; displayid_iter_edid_begin(drm_edid, &iter); displayid_iter_for_each(block, &iter) { if (displayid_is_tiled_block(&iter, block)) drm_parse_tiled_block(connector, block); } displayid_iter_end(&iter); if (!connector->has_tile && connector->tile_group) { drm_mode_put_tile_group(connector->dev, connector->tile_group); connector->tile_group = NULL; } } /** * drm_edid_is_digital - is digital? * @drm_edid: The EDID * * Return true if input is digital. */ bool drm_edid_is_digital(const struct drm_edid *drm_edid) { return drm_edid && drm_edid->edid && drm_edid->edid->input & DRM_EDID_INPUT_DIGITAL; } EXPORT_SYMBOL(drm_edid_is_digital);