/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_v12_0_ppsmc.h" #include "smu12_driver_if.h" #include "smu_v12_0.h" #include "renoir_ppt.h" #include "smu_cmn.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define mmMP1_SMN_C2PMSG_66 0x0282 #define mmMP1_SMN_C2PMSG_66_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_82 0x0292 #define mmMP1_SMN_C2PMSG_82_BASE_IDX 0 #define mmMP1_SMN_C2PMSG_90 0x029a #define mmMP1_SMN_C2PMSG_90_BASE_IDX 0 static struct cmn2asic_msg_mapping renoir_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(PowerUpGfx, PPSMC_MSG_PowerUpGfx, 1), MSG_MAP(AllowGfxOff, PPSMC_MSG_EnableGfxOff, 1), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisableGfxOff, 1), MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile, 1), MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile, 1), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 1), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 1), MSG_MAP(PowerDownSdma, PPSMC_MSG_PowerDownSdma, 1), MSG_MAP(PowerUpSdma, PPSMC_MSG_PowerUpSdma, 1), MSG_MAP(SetHardMinIspclkByFreq, PPSMC_MSG_SetHardMinIspclkByFreq, 1), MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 1), MSG_MAP(SetAllowFclkSwitch, PPSMC_MSG_SetAllowFclkSwitch, 1), MSG_MAP(SetMinVideoGfxclkFreq, PPSMC_MSG_SetMinVideoGfxclkFreq, 1), MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify, 1), MSG_MAP(SetCustomPolicy, PPSMC_MSG_SetCustomPolicy, 1), MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 1), MSG_MAP(NumOfDisplays, PPSMC_MSG_SetDisplayCount, 1), MSG_MAP(QueryPowerLimit, PPSMC_MSG_QueryPowerLimit, 1), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 1), MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 1), MSG_MAP(SetGfxclkOverdriveByFreqVid, PPSMC_MSG_SetGfxclkOverdriveByFreqVid, 1), MSG_MAP(SetHardMinDcfclkByFreq, PPSMC_MSG_SetHardMinDcfclkByFreq, 1), MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 1), MSG_MAP(ControlIgpuATS, PPSMC_MSG_ControlIgpuATS, 1), MSG_MAP(SetMinVideoFclkFreq, PPSMC_MSG_SetMinVideoFclkFreq, 1), MSG_MAP(SetMinDeepSleepDcfclk, PPSMC_MSG_SetMinDeepSleepDcfclk, 1), MSG_MAP(ForcePowerDownGfx, PPSMC_MSG_ForcePowerDownGfx, 1), MSG_MAP(SetPhyclkVoltageByFreq, PPSMC_MSG_SetPhyclkVoltageByFreq, 1), MSG_MAP(SetDppclkVoltageByFreq, PPSMC_MSG_SetDppclkVoltageByFreq, 1), MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 1), MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode, 1), MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 1), MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 1), MSG_MAP(GetMinGfxclkFrequency, PPSMC_MSG_GetMinGfxclkFrequency, 1), MSG_MAP(GetMaxGfxclkFrequency, PPSMC_MSG_GetMaxGfxclkFrequency, 1), MSG_MAP(SoftReset, PPSMC_MSG_SoftReset, 1), MSG_MAP(SetGfxCGPG, PPSMC_MSG_SetGfxCGPG, 1), MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 1), MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 1), MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 1), MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 1), MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 1), MSG_MAP(PowerGateMmHub, PPSMC_MSG_PowerGateMmHub, 1), MSG_MAP(UpdatePmeRestore, PPSMC_MSG_UpdatePmeRestore, 1), MSG_MAP(GpuChangeState, PPSMC_MSG_GpuChangeState, 1), MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 1), MSG_MAP(ForceGfxContentSave, PPSMC_MSG_ForceGfxContentSave, 1), MSG_MAP(EnableTmdp48MHzRefclkPwrDown, PPSMC_MSG_EnableTmdp48MHzRefclkPwrDown, 1), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 1), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 1), MSG_MAP(PowerGateAtHub, PPSMC_MSG_PowerGateAtHub, 1), MSG_MAP(SetSoftMinJpeg, PPSMC_MSG_SetSoftMinJpeg, 1), MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 1), }; static struct cmn2asic_mapping renoir_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, CLOCK_GFXCLK), CLK_MAP(SCLK, CLOCK_GFXCLK), CLK_MAP(SOCCLK, CLOCK_SOCCLK), CLK_MAP(UCLK, CLOCK_FCLK), CLK_MAP(MCLK, CLOCK_FCLK), CLK_MAP(VCLK, CLOCK_VCLK), CLK_MAP(DCLK, CLOCK_DCLK), }; static struct cmn2asic_mapping renoir_table_map[SMU_TABLE_COUNT] = { TAB_MAP_VALID(WATERMARKS), TAB_MAP_INVALID(CUSTOM_DPM), TAB_MAP_VALID(DPMCLOCKS), TAB_MAP_VALID(SMU_METRICS), }; static struct cmn2asic_mapping renoir_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static const uint8_t renoir_throttler_map[] = { [THROTTLER_STATUS_BIT_SPL] = (SMU_THROTTLER_SPL_BIT), [THROTTLER_STATUS_BIT_FPPT] = (SMU_THROTTLER_FPPT_BIT), [THROTTLER_STATUS_BIT_SPPT] = (SMU_THROTTLER_SPPT_BIT), [THROTTLER_STATUS_BIT_SPPT_APU] = (SMU_THROTTLER_SPPT_APU_BIT), [THROTTLER_STATUS_BIT_THM_CORE] = (SMU_THROTTLER_TEMP_CORE_BIT), [THROTTLER_STATUS_BIT_THM_GFX] = (SMU_THROTTLER_TEMP_GPU_BIT), [THROTTLER_STATUS_BIT_THM_SOC] = (SMU_THROTTLER_TEMP_SOC_BIT), [THROTTLER_STATUS_BIT_TDC_VDD] = (SMU_THROTTLER_TDC_VDD_BIT), [THROTTLER_STATUS_BIT_TDC_SOC] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_STATUS_BIT_PROCHOT_CPU] = (SMU_THROTTLER_PROCHOT_CPU_BIT), [THROTTLER_STATUS_BIT_PROCHOT_GFX] = (SMU_THROTTLER_PROCHOT_GFX_BIT), [THROTTLER_STATUS_BIT_EDC_CPU] = (SMU_THROTTLER_EDC_CPU_BIT), [THROTTLER_STATUS_BIT_EDC_GFX] = (SMU_THROTTLER_EDC_GFX_BIT), }; static int renoir_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL); if (!smu_table->clocks_table) goto err0_out; smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) goto err1_out; smu_table->metrics_time = 0; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_2); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err3_out; return 0; err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->metrics_table); err1_out: kfree(smu_table->clocks_table); err0_out: return -ENOMEM; } /* * This interface just for getting uclk ultimate freq and should't introduce * other likewise function result in overmuch callback. */ static int renoir_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t dpm_level, uint32_t *freq) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; if (!clk_table || clk_type >= SMU_CLK_COUNT) return -EINVAL; switch (clk_type) { case SMU_SOCCLK: if (dpm_level >= NUM_SOCCLK_DPM_LEVELS) return -EINVAL; *freq = clk_table->SocClocks[dpm_level].Freq; break; case SMU_UCLK: case SMU_MCLK: if (dpm_level >= NUM_FCLK_DPM_LEVELS) return -EINVAL; *freq = clk_table->FClocks[dpm_level].Freq; break; case SMU_DCEFCLK: if (dpm_level >= NUM_DCFCLK_DPM_LEVELS) return -EINVAL; *freq = clk_table->DcfClocks[dpm_level].Freq; break; case SMU_FCLK: if (dpm_level >= NUM_FCLK_DPM_LEVELS) return -EINVAL; *freq = clk_table->FClocks[dpm_level].Freq; break; case SMU_VCLK: if (dpm_level >= NUM_VCN_DPM_LEVELS) return -EINVAL; *freq = clk_table->VClocks[dpm_level].Freq; break; case SMU_DCLK: if (dpm_level >= NUM_VCN_DPM_LEVELS) return -EINVAL; *freq = clk_table->DClocks[dpm_level].Freq; break; default: return -EINVAL; } return 0; } static int renoir_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { if (sclk_mask) *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { if (mclk_mask) /* mclk levels are in reverse order */ *mclk_mask = NUM_MEMCLK_DPM_LEVELS - 1; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { if (sclk_mask) /* The sclk as gfxclk and has three level about max/min/current */ *sclk_mask = 3 - 1; if (mclk_mask) /* mclk levels are in reverse order */ *mclk_mask = 0; if (soc_mask) *soc_mask = NUM_SOCCLK_DPM_LEVELS - 1; } return 0; } static int renoir_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0; uint32_t mclk_mask, soc_mask; uint32_t clock_limit; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } if (max) { ret = renoir_get_profiling_clk_mask(smu, AMD_DPM_FORCED_LEVEL_PROFILE_PEAK, NULL, &mclk_mask, &soc_mask); if (ret) goto failed; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMaxGfxclkFrequency, max); if (ret) { dev_err(smu->adev->dev, "Attempt to get max GX frequency from SMC Failed !\n"); goto failed; } break; case SMU_UCLK: case SMU_FCLK: case SMU_MCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, mclk_mask, max); if (ret) goto failed; break; case SMU_SOCCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, soc_mask, max); if (ret) goto failed; break; default: ret = -EINVAL; goto failed; } } if (min) { switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetMinGfxclkFrequency, min); if (ret) { dev_err(smu->adev->dev, "Attempt to get min GX frequency from SMC Failed !\n"); goto failed; } break; case SMU_UCLK: case SMU_FCLK: case SMU_MCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, NUM_MEMCLK_DPM_LEVELS - 1, min); if (ret) goto failed; break; case SMU_SOCCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, 0, min); if (ret) goto failed; break; default: ret = -EINVAL; goto failed; } } failed: return ret; } static int renoir_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { int ret = 0; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!(smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL)) { dev_warn(smu->adev->dev, "pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n"); return -EINVAL; } switch (type) { case PP_OD_EDIT_SCLK_VDDC_TABLE: if (size != 2) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { if (input[1] < smu->gfx_default_hard_min_freq) { dev_warn(smu->adev->dev, "Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], smu->gfx_default_hard_min_freq); return -EINVAL; } smu->gfx_actual_hard_min_freq = input[1]; } else if (input[0] == 1) { if (input[1] > smu->gfx_default_soft_max_freq) { dev_warn(smu->adev->dev, "Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], smu->gfx_default_soft_max_freq); return -EINVAL; } smu->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; break; case PP_OD_COMMIT_DPM_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) { dev_err(smu->adev->dev, "The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu->gfx_actual_hard_min_freq, smu->gfx_actual_soft_max_freq); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, smu->gfx_actual_hard_min_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set hard min sclk failed!"); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, smu->gfx_actual_soft_max_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set soft max sclk failed!"); return ret; } } break; default: return -ENOSYS; } return ret; } static int renoir_set_fine_grain_gfx_freq_parameters(struct smu_context *smu) { uint32_t min = 0, max = 0; uint32_t ret = 0; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinGfxclkFrequency, 0, &min); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxGfxclkFrequency, 0, &max); if (ret) return ret; smu->gfx_default_hard_min_freq = min; smu->gfx_default_soft_max_freq = max; smu->gfx_actual_hard_min_freq = 0; smu->gfx_actual_soft_max_freq = 0; return 0; } static int renoir_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int i, idx, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0, min = 0, max = 0; SmuMetrics_t metrics; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); bool cur_value_match_level = false; memset(&metrics, 0, sizeof(metrics)); ret = smu_cmn_get_metrics_table(smu, &metrics, false); if (ret) return ret; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_OD_RANGE: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinGfxclkFrequency, 0, &min); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxGfxclkFrequency, 0, &max); if (ret) return ret; size += sysfs_emit_at(buf, size, "OD_RANGE\nSCLK: %10uMhz %10uMhz\n", min, max); } break; case SMU_OD_SCLK: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { min = (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq; max = (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq; size += sysfs_emit_at(buf, size, "OD_SCLK\n"); size += sysfs_emit_at(buf, size, "0:%10uMhz\n", min); size += sysfs_emit_at(buf, size, "1:%10uMhz\n", max); } break; case SMU_GFXCLK: case SMU_SCLK: /* retirve table returned paramters unit is MHz */ cur_value = metrics.ClockFrequency[CLOCK_GFXCLK]; ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min, &max); if (!ret) { /* driver only know min/max gfx_clk, Add level 1 for all other gfx clks */ if (cur_value == max) i = 2; else if (cur_value == min) i = 0; else i = 1; size += sysfs_emit_at(buf, size, "0: %uMhz %s\n", min, i == 0 ? "*" : ""); size += sysfs_emit_at(buf, size, "1: %uMhz %s\n", i == 1 ? cur_value : RENOIR_UMD_PSTATE_GFXCLK, i == 1 ? "*" : ""); size += sysfs_emit_at(buf, size, "2: %uMhz %s\n", max, i == 2 ? "*" : ""); } return size; case SMU_SOCCLK: count = NUM_SOCCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_SOCCLK]; break; case SMU_MCLK: count = NUM_MEMCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_FCLK]; break; case SMU_DCEFCLK: count = NUM_DCFCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_DCFCLK]; break; case SMU_FCLK: count = NUM_FCLK_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_FCLK]; break; case SMU_VCLK: count = NUM_VCN_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_VCLK]; break; case SMU_DCLK: count = NUM_VCN_DPM_LEVELS; cur_value = metrics.ClockFrequency[CLOCK_DCLK]; break; default: break; } switch (clk_type) { case SMU_SOCCLK: case SMU_MCLK: case SMU_DCEFCLK: case SMU_FCLK: case SMU_VCLK: case SMU_DCLK: for (i = 0; i < count; i++) { idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i; ret = renoir_get_dpm_clk_limited(smu, clk_type, idx, &value); if (ret) return ret; if (!value) continue; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); if (cur_value == value) cur_value_match_level = true; } if (!cur_value_match_level) size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value); break; default: break; } return size; } static enum amd_pm_state_type renoir_get_current_power_state(struct smu_context *smu) { enum amd_pm_state_type pm_type; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu_dpm_ctx->dpm_context || !smu_dpm_ctx->dpm_current_power_state) return -EINVAL; switch (smu_dpm_ctx->dpm_current_power_state->classification.ui_label) { case SMU_STATE_UI_LABEL_BATTERY: pm_type = POWER_STATE_TYPE_BATTERY; break; case SMU_STATE_UI_LABEL_BALLANCED: pm_type = POWER_STATE_TYPE_BALANCED; break; case SMU_STATE_UI_LABEL_PERFORMANCE: pm_type = POWER_STATE_TYPE_PERFORMANCE; break; default: if (smu_dpm_ctx->dpm_current_power_state->classification.flags & SMU_STATE_CLASSIFICATION_FLAG_BOOT) pm_type = POWER_STATE_TYPE_INTERNAL_BOOT; else pm_type = POWER_STATE_TYPE_DEFAULT; break; } return pm_type; } static int renoir_dpm_set_vcn_enable(struct smu_context *smu, bool enable, int inst) { int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL); if (ret) return ret; } } return ret; } static int renoir_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); if (ret) return ret; } } else { if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); if (ret) return ret; } } return ret; } static int renoir_force_dpm_limit_value(struct smu_context *smu, bool highest) { int ret = 0, i = 0; uint32_t min_freq, max_freq, force_freq; enum smu_clk_type clk_type; enum smu_clk_type clks[] = { SMU_GFXCLK, SMU_MCLK, SMU_SOCCLK, }; for (i = 0; i < ARRAY_SIZE(clks); i++) { clk_type = clks[i]; ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; force_freq = highest ? max_freq : min_freq; ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, force_freq, force_freq, false); if (ret) return ret; } return ret; } static int renoir_unforce_dpm_levels(struct smu_context *smu) { int ret = 0, i = 0; uint32_t min_freq, max_freq; enum smu_clk_type clk_type; struct clk_feature_map { enum smu_clk_type clk_type; uint32_t feature; } clk_feature_map[] = { {SMU_GFXCLK, SMU_FEATURE_DPM_GFXCLK_BIT}, {SMU_MCLK, SMU_FEATURE_DPM_UCLK_BIT}, {SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT}, }; for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) { if (!smu_cmn_feature_is_enabled(smu, clk_feature_map[i].feature)) continue; clk_type = clk_feature_map[i].clk_type; ret = renoir_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; ret = smu_v12_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq, false); if (ret) return ret; } return ret; } /* * This interface get dpm clock table for dc */ static int renoir_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table) { DpmClocks_t *table = smu->smu_table.clocks_table; int i; if (!clock_table || !table) return -EINVAL; for (i = 0; i < NUM_DCFCLK_DPM_LEVELS; i++) { clock_table->DcfClocks[i].Freq = table->DcfClocks[i].Freq; clock_table->DcfClocks[i].Vol = table->DcfClocks[i].Vol; } for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) { clock_table->SocClocks[i].Freq = table->SocClocks[i].Freq; clock_table->SocClocks[i].Vol = table->SocClocks[i].Vol; } for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) { clock_table->FClocks[i].Freq = table->FClocks[i].Freq; clock_table->FClocks[i].Vol = table->FClocks[i].Vol; } for (i = 0; i< NUM_MEMCLK_DPM_LEVELS; i++) { clock_table->MemClocks[i].Freq = table->MemClocks[i].Freq; clock_table->MemClocks[i].Vol = table->MemClocks[i].Vol; } for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) { clock_table->VClocks[i].Freq = table->VClocks[i].Freq; clock_table->VClocks[i].Vol = table->VClocks[i].Vol; } for (i = 0; i < NUM_VCN_DPM_LEVELS; i++) { clock_table->DClocks[i].Freq = table->DClocks[i].Freq; clock_table->DClocks[i].Vol = table->DClocks[i].Vol; } return 0; } static int renoir_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { int ret = 0 ; uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: if (soft_min_level > 2 || soft_max_level > 2) { dev_info(smu->adev->dev, "Currently sclk only support 3 levels on APU\n"); return -EINVAL; } ret = renoir_get_dpm_ultimate_freq(smu, SMU_GFXCLK, &min_freq, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, soft_max_level == 0 ? min_freq : soft_max_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : max_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, soft_min_level == 2 ? max_freq : soft_min_level == 1 ? RENOIR_UMD_PSTATE_GFXCLK : min_freq, NULL); if (ret) return ret; break; case SMU_SOCCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL); if (ret) return ret; break; case SMU_MCLK: case SMU_FCLK: ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = renoir_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL); if (ret) return ret; break; default: break; } return ret; } static int renoir_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { int workload_type, ret; uint32_t profile_mode = input[size]; if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode); return -EINVAL; } if (profile_mode == PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT || profile_mode == PP_SMC_POWER_PROFILE_POWERSAVING) return 0; /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, profile_mode); if (workload_type < 0) { /* * TODO: If some case need switch to powersave/default power mode * then can consider enter WORKLOAD_COMPUTE/WORKLOAD_CUSTOM for power saving. */ dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on RENOIR\n", profile_mode); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ActiveProcessNotify, smu->workload_mask, NULL); if (ret) { dev_err_once(smu->adev->dev, "Fail to set workload type %d\n", workload_type); return ret; } smu_cmn_assign_power_profile(smu); return 0; } static int renoir_set_peak_clock_by_device(struct smu_context *smu) { int ret = 0; uint32_t sclk_freq = 0, uclk_freq = 0; ret = renoir_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk_freq); if (ret) return ret; ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_SCLK, sclk_freq, sclk_freq, false); if (ret) return ret; ret = renoir_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &uclk_freq); if (ret) return ret; ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_UCLK, uclk_freq, uclk_freq, false); if (ret) return ret; return ret; } static int renior_set_dpm_profile_freq(struct smu_context *smu, enum amd_dpm_forced_level level, enum smu_clk_type clk_type) { int ret = 0; uint32_t sclk = 0, socclk = 0, fclk = 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: sclk = RENOIR_UMD_PSTATE_GFXCLK; if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) renoir_get_dpm_ultimate_freq(smu, SMU_SCLK, NULL, &sclk); else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) renoir_get_dpm_ultimate_freq(smu, SMU_SCLK, &sclk, NULL); break; case SMU_SOCCLK: socclk = RENOIR_UMD_PSTATE_SOCCLK; if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) renoir_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk); break; case SMU_FCLK: case SMU_MCLK: fclk = RENOIR_UMD_PSTATE_FCLK; if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) renoir_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk); else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) renoir_get_dpm_ultimate_freq(smu, SMU_FCLK, &fclk, NULL); break; default: ret = -EINVAL; break; } if (sclk) ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_SCLK, sclk, sclk, false); if (socclk) ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk, socclk, false); if (fclk) ret = smu_v12_0_set_soft_freq_limited_range(smu, SMU_FCLK, fclk, fclk, false); return ret; } static int renoir_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = renoir_force_dpm_limit_value(smu, true); break; case AMD_DPM_FORCED_LEVEL_LOW: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = renoir_force_dpm_limit_value(smu, false); break; case AMD_DPM_FORCED_LEVEL_AUTO: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = renoir_unforce_dpm_levels(smu); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, RENOIR_UMD_PSTATE_GFXCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, RENOIR_UMD_PSTATE_FCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, RENOIR_UMD_PSTATE_SOCCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinVcn, RENOIR_UMD_PSTATE_VCNCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, RENOIR_UMD_PSTATE_GFXCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, RENOIR_UMD_PSTATE_FCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, RENOIR_UMD_PSTATE_SOCCLK, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxVcn, RENOIR_UMD_PSTATE_VCNCLK, NULL); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; renior_set_dpm_profile_freq(smu, level, SMU_SCLK); renior_set_dpm_profile_freq(smu, level, SMU_MCLK); renior_set_dpm_profile_freq(smu, level, SMU_SOCCLK); break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = renoir_set_peak_clock_by_device(smu); break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: break; } return ret; } /* save watermark settings into pplib smu structure, * also pass data to smu controller */ static int renoir_set_watermarks_table( struct smu_context *smu, struct pp_smu_wm_range_sets *clock_ranges) { Watermarks_t *table = smu->smu_table.watermarks_table; int ret = 0; int i; if (clock_ranges) { if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES || clock_ranges->num_writer_wm_sets > NUM_WM_RANGES) return -EINVAL; /* save into smu->smu_table.tables[SMU_TABLE_WATERMARKS]->cpu_addr*/ for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) { table->WatermarkRow[WM_DCFCLK][i].MinClock = clock_ranges->reader_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxClock = clock_ranges->reader_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MinMclk = clock_ranges->reader_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxMclk = clock_ranges->reader_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].WmSetting = clock_ranges->reader_wm_sets[i].wm_inst; table->WatermarkRow[WM_DCFCLK][i].WmType = clock_ranges->reader_wm_sets[i].wm_type; } for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = clock_ranges->writer_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxClock = clock_ranges->writer_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MinMclk = clock_ranges->writer_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxMclk = clock_ranges->writer_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].WmSetting = clock_ranges->writer_wm_sets[i].wm_inst; table->WatermarkRow[WM_SOCCLK][i].WmType = clock_ranges->writer_wm_sets[i].wm_type; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } /* pass data to smu controller */ if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static int renoir_get_power_profile_mode(struct smu_context *smu, char *buf) { uint32_t i, size = 0; int16_t workload_type = 0; if (!buf) return -EINVAL; for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT * Not all profile modes are supported on arcturus. */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type < 0) continue; size += sysfs_emit_at(buf, size, "%2d %14s%s\n", i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); } return size; } static void renoir_get_ss_power_percent(SmuMetrics_t *metrics, uint32_t *apu_percent, uint32_t *dgpu_percent) { uint32_t apu_boost = 0; uint32_t dgpu_boost = 0; uint16_t apu_limit = 0; uint16_t dgpu_limit = 0; uint16_t apu_power = 0; uint16_t dgpu_power = 0; apu_power = metrics->ApuPower; apu_limit = metrics->StapmOriginalLimit; if (apu_power > apu_limit && apu_limit != 0) apu_boost = ((apu_power - apu_limit) * 100) / apu_limit; apu_boost = (apu_boost > 100) ? 100 : apu_boost; dgpu_power = metrics->dGpuPower; if (metrics->StapmCurrentLimit > metrics->StapmOriginalLimit) dgpu_limit = metrics->StapmCurrentLimit - metrics->StapmOriginalLimit; if (dgpu_power > dgpu_limit && dgpu_limit != 0) dgpu_boost = ((dgpu_power - dgpu_limit) * 100) / dgpu_limit; dgpu_boost = (dgpu_boost > 100) ? 100 : dgpu_boost; if (dgpu_boost >= apu_boost) apu_boost = 0; else dgpu_boost = 0; *apu_percent = apu_boost; *dgpu_percent = dgpu_boost; } static int renoir_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; uint32_t apu_percent = 0; uint32_t dgpu_percent = 0; struct amdgpu_device *adev = smu->adev; ret = smu_cmn_get_metrics_table(smu, NULL, false); if (ret) return ret; switch (member) { case METRICS_AVERAGE_GFXCLK: *value = metrics->ClockFrequency[CLOCK_GFXCLK]; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->ClockFrequency[CLOCK_SOCCLK]; break; case METRICS_AVERAGE_UCLK: *value = metrics->ClockFrequency[CLOCK_FCLK]; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity / 100; break; case METRICS_AVERAGE_VCNACTIVITY: *value = metrics->AverageUvdActivity / 100; break; case METRICS_CURR_SOCKETPOWER: if (((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(12, 0, 1)) && (adev->pm.fw_version >= 0x40000f)) || ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(12, 0, 0)) && (adev->pm.fw_version >= 0x373200))) *value = metrics->CurrentSocketPower << 8; else *value = (metrics->CurrentSocketPower << 8) / 1000; break; case METRICS_TEMPERATURE_EDGE: *value = (metrics->GfxTemperature / 100) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = (metrics->SocTemperature / 100) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_VOLTAGE_VDDGFX: *value = metrics->Voltage[0]; break; case METRICS_VOLTAGE_VDDSOC: *value = metrics->Voltage[1]; break; case METRICS_SS_APU_SHARE: /* return the percentage of APU power boost * with respect to APU's power limit. */ renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent); *value = apu_percent; break; case METRICS_SS_DGPU_SHARE: /* return the percentage of dGPU power boost * with respect to dGPU's power limit. */ renoir_get_ss_power_percent(metrics, &apu_percent, &dgpu_percent); *value = dgpu_percent; break; default: *value = UINT_MAX; break; } return ret; } static int renoir_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (!data || !size) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = renoir_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = renoir_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = renoir_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = renoir_get_smu_metrics_data(smu, METRICS_AVERAGE_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = renoir_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = renoir_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDGFX, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDNB: ret = renoir_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDSOC, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: ret = renoir_get_smu_metrics_data(smu, METRICS_CURR_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_SS_APU_SHARE: ret = renoir_get_smu_metrics_data(smu, METRICS_SS_APU_SHARE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_SS_DGPU_SHARE: ret = renoir_get_smu_metrics_data(smu, METRICS_SS_DGPU_SHARE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_AVG_POWER: default: ret = -EOPNOTSUPP; break; } return ret; } static bool renoir_is_dpm_running(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; /* * Until now, the pmfw hasn't exported the interface of SMU * feature mask to APU SKU so just force on all the feature * at early initial stage. */ if (adev->in_suspend) return false; else return true; } static ssize_t renoir_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v2_2 *gpu_metrics = (struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table; SmuMetrics_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2); gpu_metrics->temperature_gfx = metrics.GfxTemperature; gpu_metrics->temperature_soc = metrics.SocTemperature; memcpy(&gpu_metrics->temperature_core[0], &metrics.CoreTemperature[0], sizeof(uint16_t) * 8); gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0]; gpu_metrics->temperature_l3[1] = metrics.L3Temperature[1]; gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity; gpu_metrics->average_mm_activity = metrics.AverageUvdActivity; gpu_metrics->average_socket_power = metrics.CurrentSocketPower; gpu_metrics->average_cpu_power = metrics.Power[0]; gpu_metrics->average_soc_power = metrics.Power[1]; memcpy(&gpu_metrics->average_core_power[0], &metrics.CorePower[0], sizeof(uint16_t) * 8); gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency; gpu_metrics->average_fclk_frequency = metrics.AverageFclkFrequency; gpu_metrics->average_vclk_frequency = metrics.AverageVclkFrequency; gpu_metrics->current_gfxclk = metrics.ClockFrequency[CLOCK_GFXCLK]; gpu_metrics->current_socclk = metrics.ClockFrequency[CLOCK_SOCCLK]; gpu_metrics->current_uclk = metrics.ClockFrequency[CLOCK_UMCCLK]; gpu_metrics->current_fclk = metrics.ClockFrequency[CLOCK_FCLK]; gpu_metrics->current_vclk = metrics.ClockFrequency[CLOCK_VCLK]; gpu_metrics->current_dclk = metrics.ClockFrequency[CLOCK_DCLK]; memcpy(&gpu_metrics->current_coreclk[0], &metrics.CoreFrequency[0], sizeof(uint16_t) * 8); gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0]; gpu_metrics->current_l3clk[1] = metrics.L3Frequency[1]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, renoir_throttler_map); gpu_metrics->fan_pwm = metrics.FanPwm; gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v2_2); } static int renoir_gfx_state_change_set(struct smu_context *smu, uint32_t state) { return 0; } static int renoir_get_enabled_mask(struct smu_context *smu, uint64_t *feature_mask) { if (!feature_mask) return -EINVAL; memset(feature_mask, 0xff, sizeof(*feature_mask)); return 0; } static const struct pptable_funcs renoir_ppt_funcs = { .set_power_state = NULL, .print_clk_levels = renoir_print_clk_levels, .get_current_power_state = renoir_get_current_power_state, .dpm_set_vcn_enable = renoir_dpm_set_vcn_enable, .dpm_set_jpeg_enable = renoir_dpm_set_jpeg_enable, .force_clk_levels = renoir_force_clk_levels, .set_power_profile_mode = renoir_set_power_profile_mode, .set_performance_level = renoir_set_performance_level, .get_dpm_clock_table = renoir_get_dpm_clock_table, .set_watermarks_table = renoir_set_watermarks_table, .get_power_profile_mode = renoir_get_power_profile_mode, .read_sensor = renoir_read_sensor, .check_fw_status = smu_v12_0_check_fw_status, .check_fw_version = smu_v12_0_check_fw_version, .powergate_sdma = smu_v12_0_powergate_sdma, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .set_gfx_cgpg = smu_v12_0_set_gfx_cgpg, .gfx_off_control = smu_v12_0_gfx_off_control, .get_gfx_off_status = smu_v12_0_get_gfxoff_status, .init_smc_tables = renoir_init_smc_tables, .fini_smc_tables = smu_v12_0_fini_smc_tables, .set_default_dpm_table = smu_v12_0_set_default_dpm_tables, .get_enabled_mask = renoir_get_enabled_mask, .feature_is_enabled = smu_cmn_feature_is_enabled, .disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception, .get_dpm_ultimate_freq = renoir_get_dpm_ultimate_freq, .mode2_reset = smu_v12_0_mode2_reset, .set_soft_freq_limited_range = smu_v12_0_set_soft_freq_limited_range, .set_driver_table_location = smu_v12_0_set_driver_table_location, .is_dpm_running = renoir_is_dpm_running, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_pp_feature_mask = smu_cmn_set_pp_feature_mask, .get_gpu_metrics = renoir_get_gpu_metrics, .gfx_state_change_set = renoir_gfx_state_change_set, .set_fine_grain_gfx_freq_parameters = renoir_set_fine_grain_gfx_freq_parameters, .od_edit_dpm_table = renoir_od_edit_dpm_table, .get_vbios_bootup_values = smu_v12_0_get_vbios_bootup_values, }; void renoir_set_ppt_funcs(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->ppt_funcs = &renoir_ppt_funcs; smu->message_map = renoir_message_map; smu->clock_map = renoir_clk_map; smu->table_map = renoir_table_map; smu->workload_map = renoir_workload_map; smu->smc_driver_if_version = SMU12_DRIVER_IF_VERSION; smu->is_apu = true; smu->param_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_82); smu->msg_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_66); smu->resp_reg = SOC15_REG_OFFSET(MP1, 0, mmMP1_SMN_C2PMSG_90); }