/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #define SWSMU_CODE_LAYER_L1 #include #include #include #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_internal.h" #include "atom.h" #include "arcturus_ppt.h" #include "navi10_ppt.h" #include "sienna_cichlid_ppt.h" #include "renoir_ppt.h" #include "vangogh_ppt.h" #include "aldebaran_ppt.h" #include "yellow_carp_ppt.h" #include "cyan_skillfish_ppt.h" #include "smu_v13_0_0_ppt.h" #include "smu_v13_0_4_ppt.h" #include "smu_v13_0_5_ppt.h" #include "smu_v13_0_6_ppt.h" #include "smu_v13_0_7_ppt.h" #include "smu_v14_0_0_ppt.h" #include "smu_v14_0_2_ppt.h" #include "amd_pcie.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug static const struct amd_pm_funcs swsmu_pm_funcs; static int smu_force_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask); static int smu_handle_task(struct smu_context *smu, enum amd_dpm_forced_level level, enum amd_pp_task task_id); static int smu_reset(struct smu_context *smu); static int smu_set_fan_speed_pwm(void *handle, u32 speed); static int smu_set_fan_control_mode(void *handle, u32 value); static int smu_set_power_limit(void *handle, uint32_t limit); static int smu_set_fan_speed_rpm(void *handle, uint32_t speed); static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled); static int smu_set_mp1_state(void *handle, enum pp_mp1_state mp1_state); static void smu_power_profile_mode_get(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile_mode); static void smu_power_profile_mode_put(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile_mode); static int smu_sys_get_pp_feature_mask(void *handle, char *buf) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; return smu_get_pp_feature_mask(smu, buf); } static int smu_sys_set_pp_feature_mask(void *handle, uint64_t new_mask) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; return smu_set_pp_feature_mask(smu, new_mask); } int smu_set_residency_gfxoff(struct smu_context *smu, bool value) { if (!smu->ppt_funcs->set_gfx_off_residency) return -EINVAL; return smu_set_gfx_off_residency(smu, value); } int smu_get_residency_gfxoff(struct smu_context *smu, u32 *value) { if (!smu->ppt_funcs->get_gfx_off_residency) return -EINVAL; return smu_get_gfx_off_residency(smu, value); } int smu_get_entrycount_gfxoff(struct smu_context *smu, u64 *value) { if (!smu->ppt_funcs->get_gfx_off_entrycount) return -EINVAL; return smu_get_gfx_off_entrycount(smu, value); } int smu_get_status_gfxoff(struct smu_context *smu, uint32_t *value) { if (!smu->ppt_funcs->get_gfx_off_status) return -EINVAL; *value = smu_get_gfx_off_status(smu); return 0; } int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0; if (smu->ppt_funcs->set_soft_freq_limited_range) ret = smu->ppt_funcs->set_soft_freq_limited_range(smu, clk_type, min, max, false); return ret; } int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = -ENOTSUPP; if (!min && !max) return -EINVAL; if (smu->ppt_funcs->get_dpm_ultimate_freq) ret = smu->ppt_funcs->get_dpm_ultimate_freq(smu, clk_type, min, max); return ret; } int smu_set_gfx_power_up_by_imu(struct smu_context *smu) { int ret = 0; struct amdgpu_device *adev = smu->adev; if (smu->ppt_funcs->set_gfx_power_up_by_imu) { ret = smu->ppt_funcs->set_gfx_power_up_by_imu(smu); if (ret) dev_err(adev->dev, "Failed to enable gfx imu!\n"); } return ret; } static u32 smu_get_mclk(void *handle, bool low) { struct smu_context *smu = handle; uint32_t clk_freq; int ret = 0; ret = smu_get_dpm_freq_range(smu, SMU_UCLK, low ? &clk_freq : NULL, !low ? &clk_freq : NULL); if (ret) return 0; return clk_freq * 100; } static u32 smu_get_sclk(void *handle, bool low) { struct smu_context *smu = handle; uint32_t clk_freq; int ret = 0; ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, low ? &clk_freq : NULL, !low ? &clk_freq : NULL); if (ret) return 0; return clk_freq * 100; } static int smu_set_gfx_imu_enable(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) return 0; if (amdgpu_in_reset(smu->adev) || adev->in_s0ix) return 0; return smu_set_gfx_power_up_by_imu(smu); } static bool is_vcn_enabled(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->num_ip_blocks; i++) { if ((adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_VCN || adev->ip_blocks[i].version->type == AMD_IP_BLOCK_TYPE_JPEG) && !adev->ip_blocks[i].status.valid) return false; } return true; } static int smu_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; /* * don't poweron vcn/jpeg when they are skipped. */ if (!is_vcn_enabled(smu->adev)) return 0; if (!smu->ppt_funcs->dpm_set_vcn_enable) return 0; if (atomic_read(&power_gate->vcn_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_vcn_enable(smu, enable, 0xff); if (!ret) atomic_set(&power_gate->vcn_gated, !enable); return ret; } static int smu_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (!is_vcn_enabled(smu->adev)) return 0; if (!smu->ppt_funcs->dpm_set_jpeg_enable) return 0; if (atomic_read(&power_gate->jpeg_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_jpeg_enable(smu, enable); if (!ret) atomic_set(&power_gate->jpeg_gated, !enable); return ret; } static int smu_dpm_set_vpe_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (!smu->ppt_funcs->dpm_set_vpe_enable) return 0; if (atomic_read(&power_gate->vpe_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_vpe_enable(smu, enable); if (!ret) atomic_set(&power_gate->vpe_gated, !enable); return ret; } static int smu_dpm_set_umsch_mm_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (!smu->adev->enable_umsch_mm) return 0; if (!smu->ppt_funcs->dpm_set_umsch_mm_enable) return 0; if (atomic_read(&power_gate->umsch_mm_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_umsch_mm_enable(smu, enable); if (!ret) atomic_set(&power_gate->umsch_mm_gated, !enable); return ret; } static int smu_set_mall_enable(struct smu_context *smu) { int ret = 0; if (!smu->ppt_funcs->set_mall_enable) return 0; ret = smu->ppt_funcs->set_mall_enable(smu); return ret; } /** * smu_dpm_set_power_gate - power gate/ungate the specific IP block * * @handle: smu_context pointer * @block_type: the IP block to power gate/ungate * @gate: to power gate if true, ungate otherwise * * This API uses no smu->mutex lock protection due to: * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce). * This is guarded to be race condition free by the caller. * 2. Or get called on user setting request of power_dpm_force_performance_level. * Under this case, the smu->mutex lock protection is already enforced on * the parent API smu_force_performance_level of the call path. */ static int smu_dpm_set_power_gate(void *handle, uint32_t block_type, bool gate) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) { dev_WARN(smu->adev->dev, "SMU uninitialized but power %s requested for %u!\n", gate ? "gate" : "ungate", block_type); return -EOPNOTSUPP; } switch (block_type) { /* * Some legacy code of amdgpu_vcn.c and vcn_v2*.c still uses * AMD_IP_BLOCK_TYPE_UVD for VCN. So, here both of them are kept. */ case AMD_IP_BLOCK_TYPE_UVD: case AMD_IP_BLOCK_TYPE_VCN: ret = smu_dpm_set_vcn_enable(smu, !gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s VCN!\n", gate ? "gate" : "ungate"); break; case AMD_IP_BLOCK_TYPE_GFX: ret = smu_gfx_off_control(smu, gate); if (ret) dev_err(smu->adev->dev, "Failed to %s gfxoff!\n", gate ? "enable" : "disable"); break; case AMD_IP_BLOCK_TYPE_SDMA: ret = smu_powergate_sdma(smu, gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s SDMA!\n", gate ? "gate" : "ungate"); break; case AMD_IP_BLOCK_TYPE_JPEG: ret = smu_dpm_set_jpeg_enable(smu, !gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s JPEG!\n", gate ? "gate" : "ungate"); break; case AMD_IP_BLOCK_TYPE_VPE: ret = smu_dpm_set_vpe_enable(smu, !gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s VPE!\n", gate ? "gate" : "ungate"); break; default: dev_err(smu->adev->dev, "Unsupported block type!\n"); return -EINVAL; } return ret; } /** * smu_set_user_clk_dependencies - set user profile clock dependencies * * @smu: smu_context pointer * @clk: enum smu_clk_type type * * Enable/Disable the clock dependency for the @clk type. */ static void smu_set_user_clk_dependencies(struct smu_context *smu, enum smu_clk_type clk) { if (smu->adev->in_suspend) return; if (clk == SMU_MCLK) { smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_FCLK) | BIT(SMU_SOCCLK); } else if (clk == SMU_FCLK) { /* MCLK takes precedence over FCLK */ if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK))) return; smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_SOCCLK); } else if (clk == SMU_SOCCLK) { /* MCLK takes precedence over SOCCLK */ if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK))) return; smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_FCLK); } else /* Add clk dependencies here, if any */ return; } /** * smu_restore_dpm_user_profile - reinstate user dpm profile * * @smu: smu_context pointer * * Restore the saved user power configurations include power limit, * clock frequencies, fan control mode and fan speed. */ static void smu_restore_dpm_user_profile(struct smu_context *smu) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->adev->in_suspend) return; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return; /* Enable restore flag */ smu->user_dpm_profile.flags |= SMU_DPM_USER_PROFILE_RESTORE; /* set the user dpm power limit */ if (smu->user_dpm_profile.power_limit) { ret = smu_set_power_limit(smu, smu->user_dpm_profile.power_limit); if (ret) dev_err(smu->adev->dev, "Failed to set power limit value\n"); } /* set the user dpm clock configurations */ if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { enum smu_clk_type clk_type; for (clk_type = 0; clk_type < SMU_CLK_COUNT; clk_type++) { /* * Iterate over smu clk type and force the saved user clk * configs, skip if clock dependency is enabled */ if (!(smu->user_dpm_profile.clk_dependency & BIT(clk_type)) && smu->user_dpm_profile.clk_mask[clk_type]) { ret = smu_force_smuclk_levels(smu, clk_type, smu->user_dpm_profile.clk_mask[clk_type]); if (ret) dev_err(smu->adev->dev, "Failed to set clock type = %d\n", clk_type); } } } /* set the user dpm fan configurations */ if (smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_MANUAL || smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_NONE) { ret = smu_set_fan_control_mode(smu, smu->user_dpm_profile.fan_mode); if (ret != -EOPNOTSUPP) { smu->user_dpm_profile.fan_speed_pwm = 0; smu->user_dpm_profile.fan_speed_rpm = 0; smu->user_dpm_profile.fan_mode = AMD_FAN_CTRL_AUTO; dev_err(smu->adev->dev, "Failed to set manual fan control mode\n"); } if (smu->user_dpm_profile.fan_speed_pwm) { ret = smu_set_fan_speed_pwm(smu, smu->user_dpm_profile.fan_speed_pwm); if (ret != -EOPNOTSUPP) dev_err(smu->adev->dev, "Failed to set manual fan speed in pwm\n"); } if (smu->user_dpm_profile.fan_speed_rpm) { ret = smu_set_fan_speed_rpm(smu, smu->user_dpm_profile.fan_speed_rpm); if (ret != -EOPNOTSUPP) dev_err(smu->adev->dev, "Failed to set manual fan speed in rpm\n"); } } /* Restore user customized OD settings */ if (smu->user_dpm_profile.user_od) { if (smu->ppt_funcs->restore_user_od_settings) { ret = smu->ppt_funcs->restore_user_od_settings(smu); if (ret) dev_err(smu->adev->dev, "Failed to upload customized OD settings\n"); } } /* Disable restore flag */ smu->user_dpm_profile.flags &= ~SMU_DPM_USER_PROFILE_RESTORE; } static int smu_get_power_num_states(void *handle, struct pp_states_info *state_info) { if (!state_info) return -EINVAL; /* not support power state */ memset(state_info, 0, sizeof(struct pp_states_info)); state_info->nums = 1; state_info->states[0] = POWER_STATE_TYPE_DEFAULT; return 0; } bool is_support_sw_smu(struct amdgpu_device *adev) { /* vega20 is 11.0.2, but it's supported via the powerplay code */ if (adev->asic_type == CHIP_VEGA20) return false; if ((amdgpu_ip_version(adev, MP1_HWIP, 0) >= IP_VERSION(11, 0, 0)) && amdgpu_device_ip_is_valid(adev, AMD_IP_BLOCK_TYPE_SMC)) return true; return false; } bool is_support_cclk_dpm(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; if (!smu_feature_is_enabled(smu, SMU_FEATURE_CCLK_DPM_BIT)) return false; return true; } static int smu_sys_get_pp_table(void *handle, char **table) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu_table->power_play_table && !smu_table->hardcode_pptable) return -EINVAL; if (smu_table->hardcode_pptable) *table = smu_table->hardcode_pptable; else *table = smu_table->power_play_table; return smu_table->power_play_table_size; } static int smu_sys_set_pp_table(void *handle, const char *buf, size_t size) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (header->usStructureSize != size) { dev_err(smu->adev->dev, "pp table size not matched !\n"); return -EIO; } if (!smu_table->hardcode_pptable) { smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL); if (!smu_table->hardcode_pptable) return -ENOMEM; } memcpy(smu_table->hardcode_pptable, buf, size); smu_table->power_play_table = smu_table->hardcode_pptable; smu_table->power_play_table_size = size; /* * Special hw_fini action(for Navi1x, the DPMs disablement will be * skipped) may be needed for custom pptable uploading. */ smu->uploading_custom_pp_table = true; ret = smu_reset(smu); if (ret) dev_info(smu->adev->dev, "smu reset failed, ret = %d\n", ret); smu->uploading_custom_pp_table = false; return ret; } static int smu_get_driver_allowed_feature_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32]; int ret = 0; /* * With SCPM enabled, the allowed featuremasks setting(via * PPSMC_MSG_SetAllowedFeaturesMaskLow/High) is not permitted. * That means there is no way to let PMFW knows the settings below. * Thus, we just assume all the features are allowed under * such scenario. */ if (smu->adev->scpm_enabled) { bitmap_fill(feature->allowed, SMU_FEATURE_MAX); return 0; } bitmap_zero(feature->allowed, SMU_FEATURE_MAX); ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask, SMU_FEATURE_MAX/32); if (ret) return ret; bitmap_or(feature->allowed, feature->allowed, (unsigned long *)allowed_feature_mask, feature->feature_num); return ret; } static int smu_set_funcs(struct amdgpu_device *adev) { struct smu_context *smu = adev->powerplay.pp_handle; if (adev->pm.pp_feature & PP_OVERDRIVE_MASK) smu->od_enabled = true; switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 5): case IP_VERSION(11, 0, 9): navi10_set_ppt_funcs(smu); break; case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 11): case IP_VERSION(11, 0, 12): case IP_VERSION(11, 0, 13): sienna_cichlid_set_ppt_funcs(smu); break; case IP_VERSION(12, 0, 0): case IP_VERSION(12, 0, 1): renoir_set_ppt_funcs(smu); break; case IP_VERSION(11, 5, 0): vangogh_set_ppt_funcs(smu); break; case IP_VERSION(13, 0, 1): case IP_VERSION(13, 0, 3): case IP_VERSION(13, 0, 8): yellow_carp_set_ppt_funcs(smu); break; case IP_VERSION(13, 0, 4): case IP_VERSION(13, 0, 11): smu_v13_0_4_set_ppt_funcs(smu); break; case IP_VERSION(13, 0, 5): smu_v13_0_5_set_ppt_funcs(smu); break; case IP_VERSION(11, 0, 8): cyan_skillfish_set_ppt_funcs(smu); break; case IP_VERSION(11, 0, 2): adev->pm.pp_feature &= ~PP_GFXOFF_MASK; arcturus_set_ppt_funcs(smu); /* OD is not supported on Arcturus */ smu->od_enabled = false; break; case IP_VERSION(13, 0, 2): aldebaran_set_ppt_funcs(smu); /* Enable pp_od_clk_voltage node */ smu->od_enabled = true; break; case IP_VERSION(13, 0, 0): case IP_VERSION(13, 0, 10): smu_v13_0_0_set_ppt_funcs(smu); break; case IP_VERSION(13, 0, 6): case IP_VERSION(13, 0, 14): smu_v13_0_6_set_ppt_funcs(smu); /* Enable pp_od_clk_voltage node */ smu->od_enabled = true; break; case IP_VERSION(13, 0, 7): smu_v13_0_7_set_ppt_funcs(smu); break; case IP_VERSION(14, 0, 0): case IP_VERSION(14, 0, 1): case IP_VERSION(14, 0, 4): smu_v14_0_0_set_ppt_funcs(smu); break; case IP_VERSION(14, 0, 2): case IP_VERSION(14, 0, 3): smu_v14_0_2_set_ppt_funcs(smu); break; default: return -EINVAL; } return 0; } static int smu_early_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu; int r; smu = kzalloc(sizeof(struct smu_context), GFP_KERNEL); if (!smu) return -ENOMEM; smu->adev = adev; smu->pm_enabled = !!amdgpu_dpm; smu->is_apu = false; smu->smu_baco.state = SMU_BACO_STATE_NONE; smu->smu_baco.platform_support = false; smu->smu_baco.maco_support = false; smu->user_dpm_profile.fan_mode = -1; mutex_init(&smu->message_lock); adev->powerplay.pp_handle = smu; adev->powerplay.pp_funcs = &swsmu_pm_funcs; r = smu_set_funcs(adev); if (r) return r; return smu_init_microcode(smu); } static int smu_set_default_dpm_table(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int vcn_gate, jpeg_gate; int ret = 0; if (!smu->ppt_funcs->set_default_dpm_table) return 0; if (adev->pg_flags & AMD_PG_SUPPORT_VCN) vcn_gate = atomic_read(&power_gate->vcn_gated); if (adev->pg_flags & AMD_PG_SUPPORT_JPEG) jpeg_gate = atomic_read(&power_gate->jpeg_gated); if (adev->pg_flags & AMD_PG_SUPPORT_VCN) { ret = smu_dpm_set_vcn_enable(smu, true); if (ret) return ret; } if (adev->pg_flags & AMD_PG_SUPPORT_JPEG) { ret = smu_dpm_set_jpeg_enable(smu, true); if (ret) goto err_out; } ret = smu->ppt_funcs->set_default_dpm_table(smu); if (ret) dev_err(smu->adev->dev, "Failed to setup default dpm clock tables!\n"); if (adev->pg_flags & AMD_PG_SUPPORT_JPEG) smu_dpm_set_jpeg_enable(smu, !jpeg_gate); err_out: if (adev->pg_flags & AMD_PG_SUPPORT_VCN) smu_dpm_set_vcn_enable(smu, !vcn_gate); return ret; } static int smu_apply_default_config_table_settings(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; ret = smu_get_default_config_table_settings(smu, &adev->pm.config_table); if (ret) return ret; return smu_set_config_table(smu, &adev->pm.config_table); } static int smu_late_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; int ret = 0; smu_set_fine_grain_gfx_freq_parameters(smu); if (!smu->pm_enabled) return 0; ret = smu_post_init(smu); if (ret) { dev_err(adev->dev, "Failed to post smu init!\n"); return ret; } /* * Explicitly notify PMFW the power mode the system in. Since * the PMFW may boot the ASIC with a different mode. * For those supporting ACDC switch via gpio, PMFW will * handle the switch automatically. Driver involvement * is unnecessary. */ adev->pm.ac_power = power_supply_is_system_supplied() > 0; smu_set_ac_dc(smu); if ((amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 1)) || (amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 3))) return 0; if (!amdgpu_sriov_vf(adev) || smu->od_enabled) { ret = smu_set_default_od_settings(smu); if (ret) { dev_err(adev->dev, "Failed to setup default OD settings!\n"); return ret; } } ret = smu_populate_umd_state_clk(smu); if (ret) { dev_err(adev->dev, "Failed to populate UMD state clocks!\n"); return ret; } ret = smu_get_asic_power_limits(smu, &smu->current_power_limit, &smu->default_power_limit, &smu->max_power_limit, &smu->min_power_limit); if (ret) { dev_err(adev->dev, "Failed to get asic power limits!\n"); return ret; } if (!amdgpu_sriov_vf(adev)) smu_get_unique_id(smu); smu_get_fan_parameters(smu); smu_handle_task(smu, smu->smu_dpm.dpm_level, AMD_PP_TASK_COMPLETE_INIT); ret = smu_apply_default_config_table_settings(smu); if (ret && (ret != -EOPNOTSUPP)) { dev_err(adev->dev, "Failed to apply default DriverSmuConfig settings!\n"); return ret; } smu_restore_dpm_user_profile(smu); return 0; } static int smu_init_fb_allocations(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; struct smu_table *driver_table = &(smu_table->driver_table); uint32_t max_table_size = 0; int ret, i; /* VRAM allocation for tool table */ if (tables[SMU_TABLE_PMSTATUSLOG].size) { ret = amdgpu_bo_create_kernel(adev, tables[SMU_TABLE_PMSTATUSLOG].size, tables[SMU_TABLE_PMSTATUSLOG].align, tables[SMU_TABLE_PMSTATUSLOG].domain, &tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); if (ret) { dev_err(adev->dev, "VRAM allocation for tool table failed!\n"); return ret; } } driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT; /* VRAM allocation for driver table */ for (i = 0; i < SMU_TABLE_COUNT; i++) { if (tables[i].size == 0) continue; /* If one of the tables has VRAM domain restriction, keep it in * VRAM */ if ((tables[i].domain & (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT)) == AMDGPU_GEM_DOMAIN_VRAM) driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM; if (i == SMU_TABLE_PMSTATUSLOG) continue; if (max_table_size < tables[i].size) max_table_size = tables[i].size; } driver_table->size = max_table_size; driver_table->align = PAGE_SIZE; ret = amdgpu_bo_create_kernel(adev, driver_table->size, driver_table->align, driver_table->domain, &driver_table->bo, &driver_table->mc_address, &driver_table->cpu_addr); if (ret) { dev_err(adev->dev, "VRAM allocation for driver table failed!\n"); if (tables[SMU_TABLE_PMSTATUSLOG].mc_address) amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); } return ret; } static int smu_fini_fb_allocations(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; struct smu_table *driver_table = &(smu_table->driver_table); if (tables[SMU_TABLE_PMSTATUSLOG].mc_address) amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); amdgpu_bo_free_kernel(&driver_table->bo, &driver_table->mc_address, &driver_table->cpu_addr); return 0; } /** * smu_alloc_memory_pool - allocate memory pool in the system memory * * @smu: amdgpu_device pointer * * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr * and DramLogSetDramAddr can notify it changed. * * Returns 0 on success, error on failure. */ static int smu_alloc_memory_pool(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; uint64_t pool_size = smu->pool_size; int ret = 0; if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO) return ret; memory_pool->size = pool_size; memory_pool->align = PAGE_SIZE; memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT; switch (pool_size) { case SMU_MEMORY_POOL_SIZE_256_MB: case SMU_MEMORY_POOL_SIZE_512_MB: case SMU_MEMORY_POOL_SIZE_1_GB: case SMU_MEMORY_POOL_SIZE_2_GB: ret = amdgpu_bo_create_kernel(adev, memory_pool->size, memory_pool->align, memory_pool->domain, &memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); if (ret) dev_err(adev->dev, "VRAM allocation for dramlog failed!\n"); break; default: break; } return ret; } static int smu_free_memory_pool(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO) return 0; amdgpu_bo_free_kernel(&memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); memset(memory_pool, 0, sizeof(struct smu_table)); return 0; } static int smu_alloc_dummy_read_table(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *dummy_read_1_table = &smu_table->dummy_read_1_table; struct amdgpu_device *adev = smu->adev; int ret = 0; if (!dummy_read_1_table->size) return 0; ret = amdgpu_bo_create_kernel(adev, dummy_read_1_table->size, dummy_read_1_table->align, dummy_read_1_table->domain, &dummy_read_1_table->bo, &dummy_read_1_table->mc_address, &dummy_read_1_table->cpu_addr); if (ret) dev_err(adev->dev, "VRAM allocation for dummy read table failed!\n"); return ret; } static void smu_free_dummy_read_table(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *dummy_read_1_table = &smu_table->dummy_read_1_table; amdgpu_bo_free_kernel(&dummy_read_1_table->bo, &dummy_read_1_table->mc_address, &dummy_read_1_table->cpu_addr); memset(dummy_read_1_table, 0, sizeof(struct smu_table)); } static int smu_smc_table_sw_init(struct smu_context *smu) { int ret; /** * Create smu_table structure, and init smc tables such as * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc. */ ret = smu_init_smc_tables(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smc tables!\n"); return ret; } /** * Create smu_power_context structure, and allocate smu_dpm_context and * context size to fill the smu_power_context data. */ ret = smu_init_power(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smu_init_power!\n"); return ret; } /* * allocate vram bos to store smc table contents. */ ret = smu_init_fb_allocations(smu); if (ret) return ret; ret = smu_alloc_memory_pool(smu); if (ret) return ret; ret = smu_alloc_dummy_read_table(smu); if (ret) return ret; ret = smu_i2c_init(smu); if (ret) return ret; return 0; } static int smu_smc_table_sw_fini(struct smu_context *smu) { int ret; smu_i2c_fini(smu); smu_free_dummy_read_table(smu); ret = smu_free_memory_pool(smu); if (ret) return ret; ret = smu_fini_fb_allocations(smu); if (ret) return ret; ret = smu_fini_power(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smu_fini_power!\n"); return ret; } ret = smu_fini_smc_tables(smu); if (ret) { dev_err(smu->adev->dev, "Failed to smu_fini_smc_tables!\n"); return ret; } return 0; } static void smu_throttling_logging_work_fn(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, throttling_logging_work); smu_log_thermal_throttling(smu); } static void smu_interrupt_work_fn(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, interrupt_work); if (smu->ppt_funcs && smu->ppt_funcs->interrupt_work) smu->ppt_funcs->interrupt_work(smu); } static void smu_swctf_delayed_work_handler(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, swctf_delayed_work.work); struct smu_temperature_range *range = &smu->thermal_range; struct amdgpu_device *adev = smu->adev; uint32_t hotspot_tmp, size; /* * If the hotspot temperature is confirmed as below SW CTF setting point * after the delay enforced, nothing will be done. * Otherwise, a graceful shutdown will be performed to prevent further damage. */ if (range->software_shutdown_temp && smu->ppt_funcs->read_sensor && !smu->ppt_funcs->read_sensor(smu, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, &hotspot_tmp, &size) && hotspot_tmp / 1000 < range->software_shutdown_temp) return; dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); } static void smu_init_xgmi_plpd_mode(struct smu_context *smu) { struct smu_dpm_context *dpm_ctxt = &(smu->smu_dpm); struct smu_dpm_policy_ctxt *policy_ctxt; struct smu_dpm_policy *policy; policy = smu_get_pm_policy(smu, PP_PM_POLICY_XGMI_PLPD); if (amdgpu_ip_version(smu->adev, MP1_HWIP, 0) == IP_VERSION(11, 0, 2)) { if (policy) policy->current_level = XGMI_PLPD_DEFAULT; return; } /* PMFW put PLPD into default policy after enabling the feature */ if (smu_feature_is_enabled(smu, SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT)) { if (policy) policy->current_level = XGMI_PLPD_DEFAULT; } else { policy_ctxt = dpm_ctxt->dpm_policies; if (policy_ctxt) policy_ctxt->policy_mask &= ~BIT(PP_PM_POLICY_XGMI_PLPD); } } static bool smu_is_workload_profile_available(struct smu_context *smu, u32 profile) { if (profile >= PP_SMC_POWER_PROFILE_COUNT) return false; return smu->workload_map && smu->workload_map[profile].valid_mapping; } static int smu_sw_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; int ret; smu->pool_size = adev->pm.smu_prv_buffer_size; smu->smu_feature.feature_num = SMU_FEATURE_MAX; bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX); bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX); INIT_WORK(&smu->throttling_logging_work, smu_throttling_logging_work_fn); INIT_WORK(&smu->interrupt_work, smu_interrupt_work_fn); atomic64_set(&smu->throttle_int_counter, 0); smu->watermarks_bitmap = 0; atomic_set(&smu->smu_power.power_gate.vcn_gated, 1); atomic_set(&smu->smu_power.power_gate.jpeg_gated, 1); atomic_set(&smu->smu_power.power_gate.vpe_gated, 1); atomic_set(&smu->smu_power.power_gate.umsch_mm_gated, 1); if (smu->is_apu || !smu_is_workload_profile_available(smu, PP_SMC_POWER_PROFILE_FULLSCREEN3D)) smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; else smu->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; smu_power_profile_mode_get(smu, smu->power_profile_mode); smu->display_config = &adev->pm.pm_display_cfg; smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; INIT_DELAYED_WORK(&smu->swctf_delayed_work, smu_swctf_delayed_work_handler); ret = smu_smc_table_sw_init(smu); if (ret) { dev_err(adev->dev, "Failed to sw init smc table!\n"); return ret; } /* get boot_values from vbios to set revision, gfxclk, and etc. */ ret = smu_get_vbios_bootup_values(smu); if (ret) { dev_err(adev->dev, "Failed to get VBIOS boot clock values!\n"); return ret; } ret = smu_init_pptable_microcode(smu); if (ret) { dev_err(adev->dev, "Failed to setup pptable firmware!\n"); return ret; } ret = smu_register_irq_handler(smu); if (ret) { dev_err(adev->dev, "Failed to register smc irq handler!\n"); return ret; } /* If there is no way to query fan control mode, fan control is not supported */ if (!smu->ppt_funcs->get_fan_control_mode) smu->adev->pm.no_fan = true; return 0; } static int smu_sw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; int ret; ret = smu_smc_table_sw_fini(smu); if (ret) { dev_err(adev->dev, "Failed to sw fini smc table!\n"); return ret; } if (smu->custom_profile_params) { kfree(smu->custom_profile_params); smu->custom_profile_params = NULL; } smu_fini_microcode(smu); return 0; } static int smu_get_thermal_temperature_range(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_temperature_range *range = &smu->thermal_range; int ret = 0; if (!smu->ppt_funcs->get_thermal_temperature_range) return 0; ret = smu->ppt_funcs->get_thermal_temperature_range(smu, range); if (ret) return ret; adev->pm.dpm.thermal.min_temp = range->min; adev->pm.dpm.thermal.max_temp = range->max; adev->pm.dpm.thermal.max_edge_emergency_temp = range->edge_emergency_max; adev->pm.dpm.thermal.min_hotspot_temp = range->hotspot_min; adev->pm.dpm.thermal.max_hotspot_crit_temp = range->hotspot_crit_max; adev->pm.dpm.thermal.max_hotspot_emergency_temp = range->hotspot_emergency_max; adev->pm.dpm.thermal.min_mem_temp = range->mem_min; adev->pm.dpm.thermal.max_mem_crit_temp = range->mem_crit_max; adev->pm.dpm.thermal.max_mem_emergency_temp = range->mem_emergency_max; return ret; } /** * smu_wbrf_handle_exclusion_ranges - consume the wbrf exclusion ranges * * @smu: smu_context pointer * * Retrieve the wbrf exclusion ranges and send them to PMFW for proper handling. * Returns 0 on success, error on failure. */ static int smu_wbrf_handle_exclusion_ranges(struct smu_context *smu) { struct wbrf_ranges_in_out wbrf_exclusion = {0}; struct freq_band_range *wifi_bands = wbrf_exclusion.band_list; struct amdgpu_device *adev = smu->adev; uint32_t num_of_wbrf_ranges = MAX_NUM_OF_WBRF_RANGES; uint64_t start, end; int ret, i, j; ret = amd_wbrf_retrieve_freq_band(adev->dev, &wbrf_exclusion); if (ret) { dev_err(adev->dev, "Failed to retrieve exclusion ranges!\n"); return ret; } /* * The exclusion ranges array we got might be filled with holes and duplicate * entries. For example: * {(2400, 2500), (0, 0), (6882, 6962), (2400, 2500), (0, 0), (6117, 6189), (0, 0)...} * We need to do some sortups to eliminate those holes and duplicate entries. * Expected output: {(2400, 2500), (6117, 6189), (6882, 6962), (0, 0)...} */ for (i = 0; i < num_of_wbrf_ranges; i++) { start = wifi_bands[i].start; end = wifi_bands[i].end; /* get the last valid entry to fill the intermediate hole */ if (!start && !end) { for (j = num_of_wbrf_ranges - 1; j > i; j--) if (wifi_bands[j].start && wifi_bands[j].end) break; /* no valid entry left */ if (j <= i) break; start = wifi_bands[i].start = wifi_bands[j].start; end = wifi_bands[i].end = wifi_bands[j].end; wifi_bands[j].start = 0; wifi_bands[j].end = 0; num_of_wbrf_ranges = j; } /* eliminate duplicate entries */ for (j = i + 1; j < num_of_wbrf_ranges; j++) { if ((wifi_bands[j].start == start) && (wifi_bands[j].end == end)) { wifi_bands[j].start = 0; wifi_bands[j].end = 0; } } } /* Send the sorted wifi_bands to PMFW */ ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands); /* Try to set the wifi_bands again */ if (unlikely(ret == -EBUSY)) { mdelay(5); ret = smu_set_wbrf_exclusion_ranges(smu, wifi_bands); } return ret; } /** * smu_wbrf_event_handler - handle notify events * * @nb: notifier block * @action: event type * @_arg: event data * * Calls relevant amdgpu function in response to wbrf event * notification from kernel. */ static int smu_wbrf_event_handler(struct notifier_block *nb, unsigned long action, void *_arg) { struct smu_context *smu = container_of(nb, struct smu_context, wbrf_notifier); switch (action) { case WBRF_CHANGED: schedule_delayed_work(&smu->wbrf_delayed_work, msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE)); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } /** * smu_wbrf_delayed_work_handler - callback on delayed work timer expired * * @work: struct work_struct pointer * * Flood is over and driver will consume the latest exclusion ranges. */ static void smu_wbrf_delayed_work_handler(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, wbrf_delayed_work.work); smu_wbrf_handle_exclusion_ranges(smu); } /** * smu_wbrf_support_check - check wbrf support * * @smu: smu_context pointer * * Verifies the ACPI interface whether wbrf is supported. */ static void smu_wbrf_support_check(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->wbrf_supported = smu_is_asic_wbrf_supported(smu) && amdgpu_wbrf && acpi_amd_wbrf_supported_consumer(adev->dev); if (smu->wbrf_supported) dev_info(adev->dev, "RF interference mitigation is supported\n"); } /** * smu_wbrf_init - init driver wbrf support * * @smu: smu_context pointer * * Verifies the AMD ACPI interfaces and registers with the wbrf * notifier chain if wbrf feature is supported. * Returns 0 on success, error on failure. */ static int smu_wbrf_init(struct smu_context *smu) { int ret; if (!smu->wbrf_supported) return 0; INIT_DELAYED_WORK(&smu->wbrf_delayed_work, smu_wbrf_delayed_work_handler); smu->wbrf_notifier.notifier_call = smu_wbrf_event_handler; ret = amd_wbrf_register_notifier(&smu->wbrf_notifier); if (ret) return ret; /* * Some wifiband exclusion ranges may be already there * before our driver loaded. To make sure our driver * is awared of those exclusion ranges. */ schedule_delayed_work(&smu->wbrf_delayed_work, msecs_to_jiffies(SMU_WBRF_EVENT_HANDLING_PACE)); return 0; } /** * smu_wbrf_fini - tear down driver wbrf support * * @smu: smu_context pointer * * Unregisters with the wbrf notifier chain. */ static void smu_wbrf_fini(struct smu_context *smu) { if (!smu->wbrf_supported) return; amd_wbrf_unregister_notifier(&smu->wbrf_notifier); cancel_delayed_work_sync(&smu->wbrf_delayed_work); } static int smu_smc_hw_setup(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; struct amdgpu_device *adev = smu->adev; uint8_t pcie_gen = 0, pcie_width = 0; uint64_t features_supported; int ret = 0; switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 11): case IP_VERSION(11, 5, 0): case IP_VERSION(11, 0, 12): if (adev->in_suspend && smu_is_dpm_running(smu)) { dev_info(adev->dev, "dpm has been enabled\n"); ret = smu_system_features_control(smu, true); if (ret) dev_err(adev->dev, "Failed system features control!\n"); return ret; } break; default: break; } ret = smu_init_display_count(smu, 0); if (ret) { dev_info(adev->dev, "Failed to pre-set display count as 0!\n"); return ret; } ret = smu_set_driver_table_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetDriverDramAddr!\n"); return ret; } /* * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools. */ ret = smu_set_tool_table_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetToolsDramAddr!\n"); return ret; } /* * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify * pool location. */ ret = smu_notify_memory_pool_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetDramLogDramAddr!\n"); return ret; } /* * It is assumed the pptable used before runpm is same as * the one used afterwards. Thus, we can reuse the stored * copy and do not need to resetup the pptable again. */ if (!adev->in_runpm) { ret = smu_setup_pptable(smu); if (ret) { dev_err(adev->dev, "Failed to setup pptable!\n"); return ret; } } /* smu_dump_pptable(smu); */ /* * With SCPM enabled, PSP is responsible for the PPTable transferring * (to SMU). Driver involvement is not needed and permitted. */ if (!adev->scpm_enabled) { /* * Copy pptable bo in the vram to smc with SMU MSGs such as * SetDriverDramAddr and TransferTableDram2Smu. */ ret = smu_write_pptable(smu); if (ret) { dev_err(adev->dev, "Failed to transfer pptable to SMC!\n"); return ret; } } /* issue Run*Btc msg */ ret = smu_run_btc(smu); if (ret) return ret; /* Enable UclkShadow on wbrf supported */ if (smu->wbrf_supported) { ret = smu_enable_uclk_shadow(smu, true); if (ret) { dev_err(adev->dev, "Failed to enable UclkShadow feature to support wbrf!\n"); return ret; } } /* * With SCPM enabled, these actions(and relevant messages) are * not needed and permitted. */ if (!adev->scpm_enabled) { ret = smu_feature_set_allowed_mask(smu); if (ret) { dev_err(adev->dev, "Failed to set driver allowed features mask!\n"); return ret; } } ret = smu_system_features_control(smu, true); if (ret) { dev_err(adev->dev, "Failed to enable requested dpm features!\n"); return ret; } smu_init_xgmi_plpd_mode(smu); ret = smu_feature_get_enabled_mask(smu, &features_supported); if (ret) { dev_err(adev->dev, "Failed to retrieve supported dpm features!\n"); return ret; } bitmap_copy(feature->supported, (unsigned long *)&features_supported, feature->feature_num); if (!smu_is_dpm_running(smu)) dev_info(adev->dev, "dpm has been disabled\n"); /* * Set initialized values (get from vbios) to dpm tables context such as * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each * type of clks. */ ret = smu_set_default_dpm_table(smu); if (ret) { dev_err(adev->dev, "Failed to setup default dpm clock tables!\n"); return ret; } if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN5) pcie_gen = 4; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X32) pcie_width = 7; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width); if (ret) { dev_err(adev->dev, "Attempt to override pcie params failed!\n"); return ret; } ret = smu_get_thermal_temperature_range(smu); if (ret) { dev_err(adev->dev, "Failed to get thermal temperature ranges!\n"); return ret; } ret = smu_enable_thermal_alert(smu); if (ret) { dev_err(adev->dev, "Failed to enable thermal alert!\n"); return ret; } ret = smu_notify_display_change(smu); if (ret) { dev_err(adev->dev, "Failed to notify display change!\n"); return ret; } /* * Set min deep sleep dce fclk with bootup value from vbios via * SetMinDeepSleepDcefclk MSG. */ ret = smu_set_min_dcef_deep_sleep(smu, smu->smu_table.boot_values.dcefclk / 100); if (ret) { dev_err(adev->dev, "Error setting min deepsleep dcefclk\n"); return ret; } /* Init wbrf support. Properly setup the notifier */ ret = smu_wbrf_init(smu); if (ret) dev_err(adev->dev, "Error during wbrf init call\n"); return ret; } static int smu_start_smc_engine(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; smu->smc_fw_state = SMU_FW_INIT; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { if (amdgpu_ip_version(adev, MP1_HWIP, 0) < IP_VERSION(11, 0, 0)) { if (smu->ppt_funcs->load_microcode) { ret = smu->ppt_funcs->load_microcode(smu); if (ret) return ret; } } } if (smu->ppt_funcs->check_fw_status) { ret = smu->ppt_funcs->check_fw_status(smu); if (ret) { dev_err(adev->dev, "SMC is not ready\n"); return ret; } } /* * Send msg GetDriverIfVersion to check if the return value is equal * with DRIVER_IF_VERSION of smc header. */ ret = smu_check_fw_version(smu); if (ret) return ret; return ret; } static int smu_hw_init(struct amdgpu_ip_block *ip_block) { int ret; struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) { smu->pm_enabled = false; return 0; } ret = smu_start_smc_engine(smu); if (ret) { dev_err(adev->dev, "SMC engine is not correctly up!\n"); return ret; } /* * Check whether wbrf is supported. This needs to be done * before SMU setup starts since part of SMU configuration * relies on this. */ smu_wbrf_support_check(smu); if (smu->is_apu) { ret = smu_set_gfx_imu_enable(smu); if (ret) return ret; smu_dpm_set_vcn_enable(smu, true); smu_dpm_set_jpeg_enable(smu, true); smu_dpm_set_vpe_enable(smu, true); smu_dpm_set_umsch_mm_enable(smu, true); smu_set_mall_enable(smu); smu_set_gfx_cgpg(smu, true); } if (!smu->pm_enabled) return 0; ret = smu_get_driver_allowed_feature_mask(smu); if (ret) return ret; ret = smu_smc_hw_setup(smu); if (ret) { dev_err(adev->dev, "Failed to setup smc hw!\n"); return ret; } /* * Move maximum sustainable clock retrieving here considering * 1. It is not needed on resume(from S3). * 2. DAL settings come between .hw_init and .late_init of SMU. * And DAL needs to know the maximum sustainable clocks. Thus * it cannot be put in .late_init(). */ ret = smu_init_max_sustainable_clocks(smu); if (ret) { dev_err(adev->dev, "Failed to init max sustainable clocks!\n"); return ret; } adev->pm.dpm_enabled = true; dev_info(adev->dev, "SMU is initialized successfully!\n"); return 0; } static int smu_disable_dpms(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; bool use_baco = !smu->is_apu && ((amdgpu_in_reset(adev) && (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) || ((adev->in_runpm || adev->in_s4) && amdgpu_asic_supports_baco(adev))); /* * For SMU 13.0.0 and 13.0.7, PMFW will handle the DPM features(disablement or others) * properly on suspend/reset/unload. Driver involvement may cause some unexpected issues. */ switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(13, 0, 0): case IP_VERSION(13, 0, 7): case IP_VERSION(13, 0, 10): case IP_VERSION(14, 0, 2): case IP_VERSION(14, 0, 3): return 0; default: break; } /* * For custom pptable uploading, skip the DPM features * disable process on Navi1x ASICs. * - As the gfx related features are under control of * RLC on those ASICs. RLC reinitialization will be * needed to reenable them. That will cost much more * efforts. * * - SMU firmware can handle the DPM reenablement * properly. */ if (smu->uploading_custom_pp_table) { switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 5): case IP_VERSION(11, 0, 9): case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 11): case IP_VERSION(11, 5, 0): case IP_VERSION(11, 0, 12): case IP_VERSION(11, 0, 13): return 0; default: break; } } /* * For Sienna_Cichlid, PMFW will handle the features disablement properly * on BACO in. Driver involvement is unnecessary. */ if (use_baco) { switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 5): case IP_VERSION(11, 0, 9): case IP_VERSION(13, 0, 7): return 0; default: break; } } /* * For GFX11 and subsequent APUs, PMFW will handle the features disablement properly * for gpu reset and S0i3 cases. Driver involvement is unnecessary. */ if (IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) >= 11 && smu->is_apu && (amdgpu_in_reset(adev) || adev->in_s0ix)) return 0; /* * For gpu reset, runpm and hibernation through BACO, * BACO feature has to be kept enabled. */ if (use_baco && smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) { ret = smu_disable_all_features_with_exception(smu, SMU_FEATURE_BACO_BIT); if (ret) dev_err(adev->dev, "Failed to disable smu features except BACO.\n"); } else { /* DisableAllSmuFeatures message is not permitted with SCPM enabled */ if (!adev->scpm_enabled) { ret = smu_system_features_control(smu, false); if (ret) dev_err(adev->dev, "Failed to disable smu features.\n"); } } /* Notify SMU RLC is going to be off, stop RLC and SMU interaction. * otherwise SMU will hang while interacting with RLC if RLC is halted * this is a WA for Vangogh asic which fix the SMU hang issue. */ ret = smu_notify_rlc_state(smu, false); if (ret) { dev_err(adev->dev, "Fail to notify rlc status!\n"); return ret; } if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(9, 4, 2) && !((adev->flags & AMD_IS_APU) && adev->gfx.imu.funcs) && !amdgpu_sriov_vf(adev) && adev->gfx.rlc.funcs->stop) adev->gfx.rlc.funcs->stop(adev); return ret; } static int smu_smc_hw_cleanup(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; smu_wbrf_fini(smu); cancel_work_sync(&smu->throttling_logging_work); cancel_work_sync(&smu->interrupt_work); ret = smu_disable_thermal_alert(smu); if (ret) { dev_err(adev->dev, "Fail to disable thermal alert!\n"); return ret; } cancel_delayed_work_sync(&smu->swctf_delayed_work); ret = smu_disable_dpms(smu); if (ret) { dev_err(adev->dev, "Fail to disable dpm features!\n"); return ret; } return 0; } static int smu_reset_mp1_state(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; if ((!adev->in_runpm) && (!adev->in_suspend) && (!amdgpu_in_reset(adev)) && amdgpu_ip_version(adev, MP1_HWIP, 0) == IP_VERSION(13, 0, 10) && !amdgpu_device_has_display_hardware(adev)) ret = smu_set_mp1_state(smu, PP_MP1_STATE_UNLOAD); return ret; } static int smu_hw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; int ret; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return 0; smu_dpm_set_vcn_enable(smu, false); smu_dpm_set_jpeg_enable(smu, false); smu_dpm_set_vpe_enable(smu, false); smu_dpm_set_umsch_mm_enable(smu, false); adev->vcn.cur_state = AMD_PG_STATE_GATE; adev->jpeg.cur_state = AMD_PG_STATE_GATE; if (!smu->pm_enabled) return 0; adev->pm.dpm_enabled = false; ret = smu_smc_hw_cleanup(smu); if (ret) return ret; ret = smu_reset_mp1_state(smu); if (ret) return ret; return 0; } static void smu_late_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; kfree(smu); } static int smu_reset(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_ip_block *ip_block; int ret; ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_SMC); if (!ip_block) return -EINVAL; ret = smu_hw_fini(ip_block); if (ret) return ret; ret = smu_hw_init(ip_block); if (ret) return ret; ret = smu_late_init(ip_block); if (ret) return ret; return 0; } static int smu_suspend(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; int ret; uint64_t count; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return 0; if (!smu->pm_enabled) return 0; adev->pm.dpm_enabled = false; ret = smu_smc_hw_cleanup(smu); if (ret) return ret; smu->watermarks_bitmap &= ~(WATERMARKS_LOADED); smu_set_gfx_cgpg(smu, false); /* * pwfw resets entrycount when device is suspended, so we save the * last value to be used when we resume to keep it consistent */ ret = smu_get_entrycount_gfxoff(smu, &count); if (!ret) adev->gfx.gfx_off_entrycount = count; /* clear this on suspend so it will get reprogrammed on resume */ smu->workload_mask = 0; return 0; } static int smu_resume(struct amdgpu_ip_block *ip_block) { int ret; struct amdgpu_device *adev = ip_block->adev; struct smu_context *smu = adev->powerplay.pp_handle; if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev)) return 0; if (!smu->pm_enabled) return 0; dev_info(adev->dev, "SMU is resuming...\n"); ret = smu_start_smc_engine(smu); if (ret) { dev_err(adev->dev, "SMC engine is not correctly up!\n"); return ret; } ret = smu_smc_hw_setup(smu); if (ret) { dev_err(adev->dev, "Failed to setup smc hw!\n"); return ret; } ret = smu_set_gfx_imu_enable(smu); if (ret) return ret; smu_set_gfx_cgpg(smu, true); smu->disable_uclk_switch = 0; adev->pm.dpm_enabled = true; dev_info(adev->dev, "SMU is resumed successfully!\n"); return 0; } static int smu_display_configuration_change(void *handle, const struct amd_pp_display_configuration *display_config) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!display_config) return -EINVAL; smu_set_min_dcef_deep_sleep(smu, display_config->min_dcef_deep_sleep_set_clk / 100); return 0; } static int smu_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int smu_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static int smu_enable_umd_pstate(void *handle, enum amd_dpm_forced_level *level) { uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; struct smu_context *smu = (struct smu_context*)(handle); struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) { /* enter umd pstate, save current level, disable gfx cg*/ if (*level & profile_mode_mask) { smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level; smu_gpo_control(smu, false); smu_gfx_ulv_control(smu, false); smu_deep_sleep_control(smu, false); amdgpu_asic_update_umd_stable_pstate(smu->adev, true); } } else { /* exit umd pstate, restore level, enable gfx cg*/ if (!(*level & profile_mode_mask)) { if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT) *level = smu_dpm_ctx->saved_dpm_level; amdgpu_asic_update_umd_stable_pstate(smu->adev, false); smu_deep_sleep_control(smu, true); smu_gfx_ulv_control(smu, true); smu_gpo_control(smu, true); } } return 0; } static int smu_bump_power_profile_mode(struct smu_context *smu, long *custom_params, u32 custom_params_max_idx) { u32 workload_mask = 0; int i, ret = 0; for (i = 0; i < PP_SMC_POWER_PROFILE_COUNT; i++) { if (smu->workload_refcount[i]) workload_mask |= 1 << i; } if (smu->workload_mask == workload_mask) return 0; if (smu->ppt_funcs->set_power_profile_mode) ret = smu->ppt_funcs->set_power_profile_mode(smu, workload_mask, custom_params, custom_params_max_idx); if (!ret) smu->workload_mask = workload_mask; return ret; } static void smu_power_profile_mode_get(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile_mode) { smu->workload_refcount[profile_mode]++; } static void smu_power_profile_mode_put(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile_mode) { if (smu->workload_refcount[profile_mode]) smu->workload_refcount[profile_mode]--; } static int smu_adjust_power_state_dynamic(struct smu_context *smu, enum amd_dpm_forced_level level, bool skip_display_settings) { int ret = 0; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!skip_display_settings) { ret = smu_display_config_changed(smu); if (ret) { dev_err(smu->adev->dev, "Failed to change display config!"); return ret; } } ret = smu_apply_clocks_adjust_rules(smu); if (ret) { dev_err(smu->adev->dev, "Failed to apply clocks adjust rules!"); return ret; } if (!skip_display_settings) { ret = smu_notify_smc_display_config(smu); if (ret) { dev_err(smu->adev->dev, "Failed to notify smc display config!"); return ret; } } if (smu_dpm_ctx->dpm_level != level) { ret = smu_asic_set_performance_level(smu, level); if (ret) { dev_err(smu->adev->dev, "Failed to set performance level!"); return ret; } /* update the saved copy */ smu_dpm_ctx->dpm_level = level; } if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) smu_bump_power_profile_mode(smu, NULL, 0); return ret; } static int smu_handle_task(struct smu_context *smu, enum amd_dpm_forced_level level, enum amd_pp_task task_id) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; switch (task_id) { case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE: ret = smu_pre_display_config_changed(smu); if (ret) return ret; ret = smu_adjust_power_state_dynamic(smu, level, false); break; case AMD_PP_TASK_COMPLETE_INIT: ret = smu_adjust_power_state_dynamic(smu, level, true); break; case AMD_PP_TASK_READJUST_POWER_STATE: ret = smu_adjust_power_state_dynamic(smu, level, true); break; default: break; } return ret; } static int smu_handle_dpm_task(void *handle, enum amd_pp_task task_id, enum amd_pm_state_type *user_state) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; return smu_handle_task(smu, smu_dpm->dpm_level, task_id); } static int smu_switch_power_profile(void *handle, enum PP_SMC_POWER_PROFILE type, bool enable) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!(type < PP_SMC_POWER_PROFILE_CUSTOM)) return -EINVAL; if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) { if (enable) smu_power_profile_mode_get(smu, type); else smu_power_profile_mode_put(smu, type); ret = smu_bump_power_profile_mode(smu, NULL, 0); if (ret) { if (enable) smu_power_profile_mode_put(smu, type); else smu_power_profile_mode_get(smu, type); return ret; } } return 0; } static enum amd_dpm_forced_level smu_get_performance_level(void *handle) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; return smu_dpm_ctx->dpm_level; } static int smu_force_performance_level(void *handle, enum amd_dpm_forced_level level) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; ret = smu_enable_umd_pstate(smu, &level); if (ret) return ret; ret = smu_handle_task(smu, level, AMD_PP_TASK_READJUST_POWER_STATE); /* reset user dpm clock state */ if (!ret && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { memset(smu->user_dpm_profile.clk_mask, 0, sizeof(smu->user_dpm_profile.clk_mask)); smu->user_dpm_profile.clk_dependency = 0; } return ret; } static int smu_set_display_count(void *handle, uint32_t count) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; return smu_init_display_count(smu, count); } static int smu_force_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { dev_dbg(smu->adev->dev, "force clock level is for dpm manual mode only.\n"); return -EINVAL; } if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels) { ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.clk_mask[clk_type] = mask; smu_set_user_clk_dependencies(smu, clk_type); } } return ret; } static int smu_force_ppclk_levels(void *handle, enum pp_clock_type type, uint32_t mask) { struct smu_context *smu = handle; enum smu_clk_type clk_type; switch (type) { case PP_SCLK: clk_type = SMU_SCLK; break; case PP_MCLK: clk_type = SMU_MCLK; break; case PP_PCIE: clk_type = SMU_PCIE; break; case PP_SOCCLK: clk_type = SMU_SOCCLK; break; case PP_FCLK: clk_type = SMU_FCLK; break; case PP_DCEFCLK: clk_type = SMU_DCEFCLK; break; case PP_VCLK: clk_type = SMU_VCLK; break; case PP_VCLK1: clk_type = SMU_VCLK1; break; case PP_DCLK: clk_type = SMU_DCLK; break; case PP_DCLK1: clk_type = SMU_DCLK1; break; case OD_SCLK: clk_type = SMU_OD_SCLK; break; case OD_MCLK: clk_type = SMU_OD_MCLK; break; case OD_VDDC_CURVE: clk_type = SMU_OD_VDDC_CURVE; break; case OD_RANGE: clk_type = SMU_OD_RANGE; break; default: return -EINVAL; } return smu_force_smuclk_levels(smu, clk_type, mask); } /* * On system suspending or resetting, the dpm_enabled * flag will be cleared. So that those SMU services which * are not supported will be gated. * However, the mp1 state setting should still be granted * even if the dpm_enabled cleared. */ static int smu_set_mp1_state(void *handle, enum pp_mp1_state mp1_state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs && smu->ppt_funcs->set_mp1_state) ret = smu->ppt_funcs->set_mp1_state(smu, mp1_state); return ret; } static int smu_set_df_cstate(void *handle, enum pp_df_cstate state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate) return 0; ret = smu->ppt_funcs->set_df_cstate(smu, state); if (ret) dev_err(smu->adev->dev, "[SetDfCstate] failed!\n"); return ret; } int smu_write_watermarks_table(struct smu_context *smu) { if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; return smu_set_watermarks_table(smu, NULL); } static int smu_set_watermarks_for_clock_ranges(void *handle, struct pp_smu_wm_range_sets *clock_ranges) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->disable_watermark) return 0; return smu_set_watermarks_table(smu, clock_ranges); } int smu_set_ac_dc(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; /* controlled by firmware */ if (smu->dc_controlled_by_gpio) return 0; ret = smu_set_power_source(smu, smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC : SMU_POWER_SOURCE_DC); if (ret) dev_err(smu->adev->dev, "Failed to switch to %s mode!\n", smu->adev->pm.ac_power ? "AC" : "DC"); return ret; } const struct amd_ip_funcs smu_ip_funcs = { .name = "smu", .early_init = smu_early_init, .late_init = smu_late_init, .sw_init = smu_sw_init, .sw_fini = smu_sw_fini, .hw_init = smu_hw_init, .hw_fini = smu_hw_fini, .late_fini = smu_late_fini, .suspend = smu_suspend, .resume = smu_resume, .is_idle = NULL, .check_soft_reset = NULL, .wait_for_idle = NULL, .soft_reset = NULL, .set_clockgating_state = smu_set_clockgating_state, .set_powergating_state = smu_set_powergating_state, }; const struct amdgpu_ip_block_version smu_v11_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 11, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v12_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 12, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v13_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 13, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v14_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 14, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; static int smu_load_microcode(void *handle) { struct smu_context *smu = handle; struct amdgpu_device *adev = smu->adev; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; /* This should be used for non PSP loading */ if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) return 0; if (smu->ppt_funcs->load_microcode) { ret = smu->ppt_funcs->load_microcode(smu); if (ret) { dev_err(adev->dev, "Load microcode failed\n"); return ret; } } if (smu->ppt_funcs->check_fw_status) { ret = smu->ppt_funcs->check_fw_status(smu); if (ret) { dev_err(adev->dev, "SMC is not ready\n"); return ret; } } return ret; } static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled) { int ret = 0; if (smu->ppt_funcs->set_gfx_cgpg) ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled); return ret; } static int smu_set_fan_speed_rpm(void *handle, uint32_t speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->set_fan_speed_rpm) return -EOPNOTSUPP; if (speed == U32_MAX) return -EINVAL; ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_RPM; smu->user_dpm_profile.fan_speed_rpm = speed; /* Override custom PWM setting as they cannot co-exist */ smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_PWM; smu->user_dpm_profile.fan_speed_pwm = 0; } return ret; } /** * smu_get_power_limit - Request one of the SMU Power Limits * * @handle: pointer to smu context * @limit: requested limit is written back to this variable * @pp_limit_level: &pp_power_limit_level which limit of the power to return * @pp_power_type: &pp_power_type type of power * Return: 0 on success, <0 on error * */ int smu_get_power_limit(void *handle, uint32_t *limit, enum pp_power_limit_level pp_limit_level, enum pp_power_type pp_power_type) { struct smu_context *smu = handle; struct amdgpu_device *adev = smu->adev; enum smu_ppt_limit_level limit_level; uint32_t limit_type; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; switch (pp_power_type) { case PP_PWR_TYPE_SUSTAINED: limit_type = SMU_DEFAULT_PPT_LIMIT; break; case PP_PWR_TYPE_FAST: limit_type = SMU_FAST_PPT_LIMIT; break; default: return -EOPNOTSUPP; } switch (pp_limit_level) { case PP_PWR_LIMIT_CURRENT: limit_level = SMU_PPT_LIMIT_CURRENT; break; case PP_PWR_LIMIT_DEFAULT: limit_level = SMU_PPT_LIMIT_DEFAULT; break; case PP_PWR_LIMIT_MAX: limit_level = SMU_PPT_LIMIT_MAX; break; case PP_PWR_LIMIT_MIN: limit_level = SMU_PPT_LIMIT_MIN; break; default: return -EOPNOTSUPP; } if (limit_type != SMU_DEFAULT_PPT_LIMIT) { if (smu->ppt_funcs->get_ppt_limit) ret = smu->ppt_funcs->get_ppt_limit(smu, limit, limit_type, limit_level); } else { switch (limit_level) { case SMU_PPT_LIMIT_CURRENT: switch (amdgpu_ip_version(adev, MP1_HWIP, 0)) { case IP_VERSION(13, 0, 2): case IP_VERSION(13, 0, 6): case IP_VERSION(13, 0, 14): case IP_VERSION(11, 0, 7): case IP_VERSION(11, 0, 11): case IP_VERSION(11, 0, 12): case IP_VERSION(11, 0, 13): ret = smu_get_asic_power_limits(smu, &smu->current_power_limit, NULL, NULL, NULL); break; default: break; } *limit = smu->current_power_limit; break; case SMU_PPT_LIMIT_DEFAULT: *limit = smu->default_power_limit; break; case SMU_PPT_LIMIT_MAX: *limit = smu->max_power_limit; break; case SMU_PPT_LIMIT_MIN: *limit = smu->min_power_limit; break; default: return -EINVAL; } } return ret; } static int smu_set_power_limit(void *handle, uint32_t limit) { struct smu_context *smu = handle; uint32_t limit_type = limit >> 24; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; limit &= (1<<24)-1; if (limit_type != SMU_DEFAULT_PPT_LIMIT) if (smu->ppt_funcs->set_power_limit) return smu->ppt_funcs->set_power_limit(smu, limit_type, limit); if ((limit > smu->max_power_limit) || (limit < smu->min_power_limit)) { dev_err(smu->adev->dev, "New power limit (%d) is out of range [%d,%d]\n", limit, smu->min_power_limit, smu->max_power_limit); return -EINVAL; } if (!limit) limit = smu->current_power_limit; if (smu->ppt_funcs->set_power_limit) { ret = smu->ppt_funcs->set_power_limit(smu, limit_type, limit); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) smu->user_dpm_profile.power_limit = limit; } return ret; } static int smu_print_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->print_clk_levels) ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf); return ret; } static enum smu_clk_type smu_convert_to_smuclk(enum pp_clock_type type) { enum smu_clk_type clk_type; switch (type) { case PP_SCLK: clk_type = SMU_SCLK; break; case PP_MCLK: clk_type = SMU_MCLK; break; case PP_PCIE: clk_type = SMU_PCIE; break; case PP_SOCCLK: clk_type = SMU_SOCCLK; break; case PP_FCLK: clk_type = SMU_FCLK; break; case PP_DCEFCLK: clk_type = SMU_DCEFCLK; break; case PP_VCLK: clk_type = SMU_VCLK; break; case PP_VCLK1: clk_type = SMU_VCLK1; break; case PP_DCLK: clk_type = SMU_DCLK; break; case PP_DCLK1: clk_type = SMU_DCLK1; break; case OD_SCLK: clk_type = SMU_OD_SCLK; break; case OD_MCLK: clk_type = SMU_OD_MCLK; break; case OD_VDDC_CURVE: clk_type = SMU_OD_VDDC_CURVE; break; case OD_RANGE: clk_type = SMU_OD_RANGE; break; case OD_VDDGFX_OFFSET: clk_type = SMU_OD_VDDGFX_OFFSET; break; case OD_CCLK: clk_type = SMU_OD_CCLK; break; case OD_FAN_CURVE: clk_type = SMU_OD_FAN_CURVE; break; case OD_ACOUSTIC_LIMIT: clk_type = SMU_OD_ACOUSTIC_LIMIT; break; case OD_ACOUSTIC_TARGET: clk_type = SMU_OD_ACOUSTIC_TARGET; break; case OD_FAN_TARGET_TEMPERATURE: clk_type = SMU_OD_FAN_TARGET_TEMPERATURE; break; case OD_FAN_MINIMUM_PWM: clk_type = SMU_OD_FAN_MINIMUM_PWM; break; case OD_FAN_ZERO_RPM_ENABLE: clk_type = SMU_OD_FAN_ZERO_RPM_ENABLE; break; case OD_FAN_ZERO_RPM_STOP_TEMP: clk_type = SMU_OD_FAN_ZERO_RPM_STOP_TEMP; break; default: clk_type = SMU_CLK_COUNT; break; } return clk_type; } static int smu_print_ppclk_levels(void *handle, enum pp_clock_type type, char *buf) { struct smu_context *smu = handle; enum smu_clk_type clk_type; clk_type = smu_convert_to_smuclk(type); if (clk_type == SMU_CLK_COUNT) return -EINVAL; return smu_print_smuclk_levels(smu, clk_type, buf); } static int smu_emit_ppclk_levels(void *handle, enum pp_clock_type type, char *buf, int *offset) { struct smu_context *smu = handle; enum smu_clk_type clk_type; clk_type = smu_convert_to_smuclk(type); if (clk_type == SMU_CLK_COUNT) return -EINVAL; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->emit_clk_levels) return -ENOENT; return smu->ppt_funcs->emit_clk_levels(smu, clk_type, buf, offset); } static int smu_od_edit_dpm_table(void *handle, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->od_edit_dpm_table) { ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size); } return ret; } static int smu_read_sensor(void *handle, int sensor, void *data, int *size_arg) { struct smu_context *smu = handle; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; int ret = 0; uint32_t *size, size_val; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!data || !size_arg) return -EINVAL; size_val = *size_arg; size = &size_val; if (smu->ppt_funcs->read_sensor) if (!smu->ppt_funcs->read_sensor(smu, sensor, data, size)) goto unlock; switch (sensor) { case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK: *((uint32_t *)data) = pstate_table->gfxclk_pstate.standard * 100; *size = 4; break; case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK: *((uint32_t *)data) = pstate_table->uclk_pstate.standard * 100; *size = 4; break; case AMDGPU_PP_SENSOR_PEAK_PSTATE_SCLK: *((uint32_t *)data) = pstate_table->gfxclk_pstate.peak * 100; *size = 4; break; case AMDGPU_PP_SENSOR_PEAK_PSTATE_MCLK: *((uint32_t *)data) = pstate_table->uclk_pstate.peak * 100; *size = 4; break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = smu_feature_get_enabled_mask(smu, (uint64_t *)data); *size = 8; break; case AMDGPU_PP_SENSOR_UVD_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCN_POWER_STATE: *(uint32_t *)data = atomic_read(&smu->smu_power.power_gate.vcn_gated) ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *(uint32_t *)data = 0; *size = 4; break; default: *size = 0; ret = -EOPNOTSUPP; break; } unlock: // assign uint32_t to int *size_arg = size_val; return ret; } static int smu_get_apu_thermal_limit(void *handle, uint32_t *limit) { int ret = -EOPNOTSUPP; struct smu_context *smu = handle; if (smu->ppt_funcs && smu->ppt_funcs->get_apu_thermal_limit) ret = smu->ppt_funcs->get_apu_thermal_limit(smu, limit); return ret; } static int smu_set_apu_thermal_limit(void *handle, uint32_t limit) { int ret = -EOPNOTSUPP; struct smu_context *smu = handle; if (smu->ppt_funcs && smu->ppt_funcs->set_apu_thermal_limit) ret = smu->ppt_funcs->set_apu_thermal_limit(smu, limit); return ret; } static int smu_get_power_profile_mode(void *handle, char *buf) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !smu->ppt_funcs->get_power_profile_mode) return -EOPNOTSUPP; if (!buf) return -EINVAL; return smu->ppt_funcs->get_power_profile_mode(smu, buf); } static int smu_set_power_profile_mode(void *handle, long *param, uint32_t param_size) { struct smu_context *smu = handle; bool custom = false; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !smu->ppt_funcs->set_power_profile_mode) return -EOPNOTSUPP; if (param[param_size] == PP_SMC_POWER_PROFILE_CUSTOM) { custom = true; /* clear frontend mask so custom changes propogate */ smu->workload_mask = 0; } if ((param[param_size] != smu->power_profile_mode) || custom) { /* clear the old user preference */ smu_power_profile_mode_put(smu, smu->power_profile_mode); /* set the new user preference */ smu_power_profile_mode_get(smu, param[param_size]); ret = smu_bump_power_profile_mode(smu, custom ? param : NULL, custom ? param_size : 0); if (ret) smu_power_profile_mode_put(smu, param[param_size]); else /* store the user's preference */ smu->power_profile_mode = param[param_size]; } return ret; } static int smu_get_fan_control_mode(void *handle, u32 *fan_mode) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_fan_control_mode) return -EOPNOTSUPP; if (!fan_mode) return -EINVAL; *fan_mode = smu->ppt_funcs->get_fan_control_mode(smu); return 0; } static int smu_set_fan_control_mode(void *handle, u32 value) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->set_fan_control_mode) return -EOPNOTSUPP; if (value == U32_MAX) return -EINVAL; ret = smu->ppt_funcs->set_fan_control_mode(smu, value); if (ret) goto out; if (!(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.fan_mode = value; /* reset user dpm fan speed */ if (value != AMD_FAN_CTRL_MANUAL) { smu->user_dpm_profile.fan_speed_pwm = 0; smu->user_dpm_profile.fan_speed_rpm = 0; smu->user_dpm_profile.flags &= ~(SMU_CUSTOM_FAN_SPEED_RPM | SMU_CUSTOM_FAN_SPEED_PWM); } } out: return ret; } static int smu_get_fan_speed_pwm(void *handle, u32 *speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_fan_speed_pwm) return -EOPNOTSUPP; if (!speed) return -EINVAL; ret = smu->ppt_funcs->get_fan_speed_pwm(smu, speed); return ret; } static int smu_set_fan_speed_pwm(void *handle, u32 speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->set_fan_speed_pwm) return -EOPNOTSUPP; if (speed == U32_MAX) return -EINVAL; ret = smu->ppt_funcs->set_fan_speed_pwm(smu, speed); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_PWM; smu->user_dpm_profile.fan_speed_pwm = speed; /* Override custom RPM setting as they cannot co-exist */ smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_RPM; smu->user_dpm_profile.fan_speed_rpm = 0; } return ret; } static int smu_get_fan_speed_rpm(void *handle, uint32_t *speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_fan_speed_rpm) return -EOPNOTSUPP; if (!speed) return -EINVAL; ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed); return ret; } static int smu_set_deep_sleep_dcefclk(void *handle, uint32_t clk) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; return smu_set_min_dcef_deep_sleep(smu, clk); } static int smu_get_clock_by_type_with_latency(void *handle, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { struct smu_context *smu = handle; enum smu_clk_type clk_type; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->get_clock_by_type_with_latency) { switch (type) { case amd_pp_sys_clock: clk_type = SMU_GFXCLK; break; case amd_pp_mem_clock: clk_type = SMU_MCLK; break; case amd_pp_dcef_clock: clk_type = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_type = SMU_DISPCLK; break; default: dev_err(smu->adev->dev, "Invalid clock type!\n"); return -EINVAL; } ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks); } return ret; } static int smu_display_clock_voltage_request(void *handle, struct pp_display_clock_request *clock_req) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->display_clock_voltage_request) ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req); return ret; } static int smu_display_disable_memory_clock_switch(void *handle, bool disable_memory_clock_switch) { struct smu_context *smu = handle; int ret = -EINVAL; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->display_disable_memory_clock_switch) ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch); return ret; } static int smu_set_xgmi_pstate(void *handle, uint32_t pstate) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->set_xgmi_pstate) ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate); if (ret) dev_err(smu->adev->dev, "Failed to set XGMI pstate!\n"); return ret; } static int smu_get_baco_capability(void *handle) { struct smu_context *smu = handle; if (!smu->pm_enabled) return false; if (!smu->ppt_funcs || !smu->ppt_funcs->get_bamaco_support) return false; return smu->ppt_funcs->get_bamaco_support(smu); } static int smu_baco_set_state(void *handle, int state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (state == 0) { if (smu->ppt_funcs->baco_exit) ret = smu->ppt_funcs->baco_exit(smu); } else if (state == 1) { if (smu->ppt_funcs->baco_enter) ret = smu->ppt_funcs->baco_enter(smu); } else { return -EINVAL; } if (ret) dev_err(smu->adev->dev, "Failed to %s BACO state!\n", (state)?"enter":"exit"); return ret; } bool smu_mode1_reset_is_support(struct smu_context *smu) { bool ret = false; if (!smu->pm_enabled) return false; if (smu->ppt_funcs && smu->ppt_funcs->mode1_reset_is_support) ret = smu->ppt_funcs->mode1_reset_is_support(smu); return ret; } bool smu_mode2_reset_is_support(struct smu_context *smu) { bool ret = false; if (!smu->pm_enabled) return false; if (smu->ppt_funcs && smu->ppt_funcs->mode2_reset_is_support) ret = smu->ppt_funcs->mode2_reset_is_support(smu); return ret; } int smu_mode1_reset(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->mode1_reset) ret = smu->ppt_funcs->mode1_reset(smu); return ret; } static int smu_mode2_reset(void *handle) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->mode2_reset) ret = smu->ppt_funcs->mode2_reset(smu); if (ret) dev_err(smu->adev->dev, "Mode2 reset failed!\n"); return ret; } static int smu_enable_gfx_features(void *handle) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->enable_gfx_features) ret = smu->ppt_funcs->enable_gfx_features(smu); if (ret) dev_err(smu->adev->dev, "enable gfx features failed!\n"); return ret; } static int smu_get_max_sustainable_clocks_by_dc(void *handle, struct pp_smu_nv_clock_table *max_clocks) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc) ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks); return ret; } static int smu_get_uclk_dpm_states(void *handle, unsigned int *clock_values_in_khz, unsigned int *num_states) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->get_uclk_dpm_states) ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states); return ret; } static enum amd_pm_state_type smu_get_current_power_state(void *handle) { struct smu_context *smu = handle; enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->get_current_power_state) pm_state = smu->ppt_funcs->get_current_power_state(smu); return pm_state; } static int smu_get_dpm_clock_table(void *handle, struct dpm_clocks *clock_table) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->get_dpm_clock_table) ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table); return ret; } static ssize_t smu_sys_get_gpu_metrics(void *handle, void **table) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_gpu_metrics) return -EOPNOTSUPP; return smu->ppt_funcs->get_gpu_metrics(smu, table); } static ssize_t smu_sys_get_pm_metrics(void *handle, void *pm_metrics, size_t size) { struct smu_context *smu = handle; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_pm_metrics) return -EOPNOTSUPP; return smu->ppt_funcs->get_pm_metrics(smu, pm_metrics, size); } static int smu_enable_mgpu_fan_boost(void *handle) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->ppt_funcs->enable_mgpu_fan_boost) ret = smu->ppt_funcs->enable_mgpu_fan_boost(smu); return ret; } static int smu_gfx_state_change_set(void *handle, uint32_t state) { struct smu_context *smu = handle; int ret = 0; if (smu->ppt_funcs->gfx_state_change_set) ret = smu->ppt_funcs->gfx_state_change_set(smu, state); return ret; } int smu_handle_passthrough_sbr(struct smu_context *smu, bool enable) { int ret = 0; if (smu->ppt_funcs->smu_handle_passthrough_sbr) ret = smu->ppt_funcs->smu_handle_passthrough_sbr(smu, enable); return ret; } int smu_get_ecc_info(struct smu_context *smu, void *umc_ecc) { int ret = -EOPNOTSUPP; if (smu->ppt_funcs && smu->ppt_funcs->get_ecc_info) ret = smu->ppt_funcs->get_ecc_info(smu, umc_ecc); return ret; } static int smu_get_prv_buffer_details(void *handle, void **addr, size_t *size) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; if (!addr || !size) return -EINVAL; *addr = NULL; *size = 0; if (memory_pool->bo) { *addr = memory_pool->cpu_addr; *size = memory_pool->size; } return 0; } static void smu_print_dpm_policy(struct smu_dpm_policy *policy, char *sysbuf, size_t *size) { size_t offset = *size; int level; for_each_set_bit(level, &policy->level_mask, PP_POLICY_MAX_LEVELS) { if (level == policy->current_level) offset += sysfs_emit_at(sysbuf, offset, "%d : %s*\n", level, policy->desc->get_desc(policy, level)); else offset += sysfs_emit_at(sysbuf, offset, "%d : %s\n", level, policy->desc->get_desc(policy, level)); } *size = offset; } ssize_t smu_get_pm_policy_info(struct smu_context *smu, enum pp_pm_policy p_type, char *sysbuf) { struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm; struct smu_dpm_policy_ctxt *policy_ctxt; struct smu_dpm_policy *dpm_policy; size_t offset = 0; policy_ctxt = dpm_ctxt->dpm_policies; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !policy_ctxt || !policy_ctxt->policy_mask) return -EOPNOTSUPP; if (p_type == PP_PM_POLICY_NONE) return -EINVAL; dpm_policy = smu_get_pm_policy(smu, p_type); if (!dpm_policy || !dpm_policy->level_mask || !dpm_policy->desc) return -ENOENT; if (!sysbuf) return -EINVAL; smu_print_dpm_policy(dpm_policy, sysbuf, &offset); return offset; } struct smu_dpm_policy *smu_get_pm_policy(struct smu_context *smu, enum pp_pm_policy p_type) { struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm; struct smu_dpm_policy_ctxt *policy_ctxt; int i; policy_ctxt = dpm_ctxt->dpm_policies; if (!policy_ctxt) return NULL; for (i = 0; i < hweight32(policy_ctxt->policy_mask); ++i) { if (policy_ctxt->policies[i].policy_type == p_type) return &policy_ctxt->policies[i]; } return NULL; } int smu_set_pm_policy(struct smu_context *smu, enum pp_pm_policy p_type, int level) { struct smu_dpm_context *dpm_ctxt = &smu->smu_dpm; struct smu_dpm_policy *dpm_policy = NULL; struct smu_dpm_policy_ctxt *policy_ctxt; int ret = -EOPNOTSUPP; policy_ctxt = dpm_ctxt->dpm_policies; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled || !policy_ctxt || !policy_ctxt->policy_mask) return ret; if (level < 0 || level >= PP_POLICY_MAX_LEVELS) return -EINVAL; dpm_policy = smu_get_pm_policy(smu, p_type); if (!dpm_policy || !dpm_policy->level_mask || !dpm_policy->set_policy) return ret; if (dpm_policy->current_level == level) return 0; ret = dpm_policy->set_policy(smu, level); if (!ret) dpm_policy->current_level = level; return ret; } static const struct amd_pm_funcs swsmu_pm_funcs = { /* export for sysfs */ .set_fan_control_mode = smu_set_fan_control_mode, .get_fan_control_mode = smu_get_fan_control_mode, .set_fan_speed_pwm = smu_set_fan_speed_pwm, .get_fan_speed_pwm = smu_get_fan_speed_pwm, .force_clock_level = smu_force_ppclk_levels, .print_clock_levels = smu_print_ppclk_levels, .emit_clock_levels = smu_emit_ppclk_levels, .force_performance_level = smu_force_performance_level, .read_sensor = smu_read_sensor, .get_apu_thermal_limit = smu_get_apu_thermal_limit, .set_apu_thermal_limit = smu_set_apu_thermal_limit, .get_performance_level = smu_get_performance_level, .get_current_power_state = smu_get_current_power_state, .get_fan_speed_rpm = smu_get_fan_speed_rpm, .set_fan_speed_rpm = smu_set_fan_speed_rpm, .get_pp_num_states = smu_get_power_num_states, .get_pp_table = smu_sys_get_pp_table, .set_pp_table = smu_sys_set_pp_table, .switch_power_profile = smu_switch_power_profile, /* export to amdgpu */ .dispatch_tasks = smu_handle_dpm_task, .load_firmware = smu_load_microcode, .set_powergating_by_smu = smu_dpm_set_power_gate, .set_power_limit = smu_set_power_limit, .get_power_limit = smu_get_power_limit, .get_power_profile_mode = smu_get_power_profile_mode, .set_power_profile_mode = smu_set_power_profile_mode, .odn_edit_dpm_table = smu_od_edit_dpm_table, .set_mp1_state = smu_set_mp1_state, .gfx_state_change_set = smu_gfx_state_change_set, /* export to DC */ .get_sclk = smu_get_sclk, .get_mclk = smu_get_mclk, .display_configuration_change = smu_display_configuration_change, .get_clock_by_type_with_latency = smu_get_clock_by_type_with_latency, .display_clock_voltage_request = smu_display_clock_voltage_request, .enable_mgpu_fan_boost = smu_enable_mgpu_fan_boost, .set_active_display_count = smu_set_display_count, .set_min_deep_sleep_dcefclk = smu_set_deep_sleep_dcefclk, .get_asic_baco_capability = smu_get_baco_capability, .set_asic_baco_state = smu_baco_set_state, .get_ppfeature_status = smu_sys_get_pp_feature_mask, .set_ppfeature_status = smu_sys_set_pp_feature_mask, .asic_reset_mode_2 = smu_mode2_reset, .asic_reset_enable_gfx_features = smu_enable_gfx_features, .set_df_cstate = smu_set_df_cstate, .set_xgmi_pstate = smu_set_xgmi_pstate, .get_gpu_metrics = smu_sys_get_gpu_metrics, .get_pm_metrics = smu_sys_get_pm_metrics, .set_watermarks_for_clock_ranges = smu_set_watermarks_for_clock_ranges, .display_disable_memory_clock_switch = smu_display_disable_memory_clock_switch, .get_max_sustainable_clocks_by_dc = smu_get_max_sustainable_clocks_by_dc, .get_uclk_dpm_states = smu_get_uclk_dpm_states, .get_dpm_clock_table = smu_get_dpm_clock_table, .get_smu_prv_buf_details = smu_get_prv_buffer_details, }; int smu_wait_for_event(struct smu_context *smu, enum smu_event_type event, uint64_t event_arg) { int ret = -EINVAL; if (smu->ppt_funcs->wait_for_event) ret = smu->ppt_funcs->wait_for_event(smu, event, event_arg); return ret; } int smu_stb_collect_info(struct smu_context *smu, void *buf, uint32_t size) { if (!smu->ppt_funcs->stb_collect_info || !smu->stb_context.enabled) return -EOPNOTSUPP; /* Confirm the buffer allocated is of correct size */ if (size != smu->stb_context.stb_buf_size) return -EINVAL; /* * No need to lock smu mutex as we access STB directly through MMIO * and not going through SMU messaging route (for now at least). * For registers access rely on implementation internal locking. */ return smu->ppt_funcs->stb_collect_info(smu, buf, size); } #if defined(CONFIG_DEBUG_FS) static int smu_stb_debugfs_open(struct inode *inode, struct file *filp) { struct amdgpu_device *adev = filp->f_inode->i_private; struct smu_context *smu = adev->powerplay.pp_handle; unsigned char *buf; int r; buf = kvmalloc_array(smu->stb_context.stb_buf_size, sizeof(*buf), GFP_KERNEL); if (!buf) return -ENOMEM; r = smu_stb_collect_info(smu, buf, smu->stb_context.stb_buf_size); if (r) goto out; filp->private_data = buf; return 0; out: kvfree(buf); return r; } static ssize_t smu_stb_debugfs_read(struct file *filp, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = filp->f_inode->i_private; struct smu_context *smu = adev->powerplay.pp_handle; if (!filp->private_data) return -EINVAL; return simple_read_from_buffer(buf, size, pos, filp->private_data, smu->stb_context.stb_buf_size); } static int smu_stb_debugfs_release(struct inode *inode, struct file *filp) { kvfree(filp->private_data); filp->private_data = NULL; return 0; } /* * We have to define not only read method but also * open and release because .read takes up to PAGE_SIZE * data each time so and so is invoked multiple times. * We allocate the STB buffer in .open and release it * in .release */ static const struct file_operations smu_stb_debugfs_fops = { .owner = THIS_MODULE, .open = smu_stb_debugfs_open, .read = smu_stb_debugfs_read, .release = smu_stb_debugfs_release, .llseek = default_llseek, }; #endif void amdgpu_smu_stb_debug_fs_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) struct smu_context *smu = adev->powerplay.pp_handle; if (!smu || (!smu->stb_context.stb_buf_size)) return; debugfs_create_file_size("amdgpu_smu_stb_dump", S_IRUSR, adev_to_drm(adev)->primary->debugfs_root, adev, &smu_stb_debugfs_fops, smu->stb_context.stb_buf_size); #endif } int smu_send_hbm_bad_pages_num(struct smu_context *smu, uint32_t size) { int ret = 0; if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_pages_num) ret = smu->ppt_funcs->send_hbm_bad_pages_num(smu, size); return ret; } int smu_send_hbm_bad_channel_flag(struct smu_context *smu, uint32_t size) { int ret = 0; if (smu->ppt_funcs && smu->ppt_funcs->send_hbm_bad_channel_flag) ret = smu->ppt_funcs->send_hbm_bad_channel_flag(smu, size); return ret; } int smu_send_rma_reason(struct smu_context *smu) { int ret = 0; if (smu->ppt_funcs && smu->ppt_funcs->send_rma_reason) ret = smu->ppt_funcs->send_rma_reason(smu); return ret; }