/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "pp_debug.h" #include #include #include #include #include #include "processpptables.h" #include #include #include "pptable.h" #include "power_state.h" #include "hwmgr.h" #include "hardwaremanager.h" #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8 24 #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V9 26 #define NUM_BITS_CLOCK_INFO_ARRAY_INDEX 6 static uint16_t get_vce_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t vce_table_offset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(extended_header->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) vce_table_offset = le16_to_cpu(extended_header->usVCETableOffset); } } return vce_table_offset; } static uint16_t get_vce_clock_info_array_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_table_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + 1; return 0; } static uint16_t get_vce_clock_info_array_size(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table); uint16_t table_size = 0; if (table_offset > 0) { const VCEClockInfoArray *p = (const VCEClockInfoArray *) (((unsigned long) powerplay_table) + table_offset); table_size = sizeof(uint8_t) + p->ucNumEntries * sizeof(VCEClockInfo); } return table_size; } static uint16_t get_vce_clock_voltage_limit_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + get_vce_clock_info_array_size(hwmgr, powerplay_table); return 0; } static uint16_t get_vce_clock_voltage_limit_table_size(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); uint16_t table_size = 0; if (table_offset > 0) { const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *ptable = (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *)(((unsigned long) powerplay_table) + table_offset); table_size = sizeof(uint8_t) + ptable->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record); } return table_size; } static uint16_t get_vce_state_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + get_vce_clock_voltage_limit_table_size(hwmgr, powerplay_table); return 0; } static const ATOM_PPLIB_VCE_State_Table *get_vce_state_table( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_vce_state_table_offset(hwmgr, powerplay_table); if (table_offset > 0) return (const ATOM_PPLIB_VCE_State_Table *)(((unsigned long) powerplay_table) + table_offset); return NULL; } static uint16_t get_uvd_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t uvd_table_offset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(extended_header->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) uvd_table_offset = le16_to_cpu(extended_header->usUVDTableOffset); } } return uvd_table_offset; } static uint16_t get_uvd_clock_info_array_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_uvd_table_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + 1; return 0; } static uint16_t get_uvd_clock_info_array_size(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table); uint16_t table_size = 0; if (table_offset > 0) { const UVDClockInfoArray *p = (const UVDClockInfoArray *) (((unsigned long) powerplay_table) + table_offset); table_size = sizeof(UCHAR) + p->ucNumEntries * sizeof(UVDClockInfo); } return table_size; } static uint16_t get_uvd_clock_voltage_limit_table_offset( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + get_uvd_clock_info_array_size(hwmgr, powerplay_table); return 0; } static uint16_t get_samu_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t samu_table_offset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(extended_header->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) samu_table_offset = le16_to_cpu(extended_header->usSAMUTableOffset); } } return samu_table_offset; } static uint16_t get_samu_clock_voltage_limit_table_offset( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t table_offset = get_samu_table_offset(hwmgr, powerplay_table); if (table_offset > 0) return table_offset + 1; return 0; } static uint16_t get_acp_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t acp_table_offset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(pExtendedHeader->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) acp_table_offset = le16_to_cpu(pExtendedHeader->usACPTableOffset); } } return acp_table_offset; } static uint16_t get_acp_clock_voltage_limit_table_offset( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t tableOffset = get_acp_table_offset(hwmgr, powerplay_table); if (tableOffset > 0) return tableOffset + 1; return 0; } static uint16_t get_cacp_tdp_table_offset( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t cacTdpTableOffset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(pExtendedHeader->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) cacTdpTableOffset = le16_to_cpu(pExtendedHeader->usPowerTuneTableOffset); } } return cacTdpTableOffset; } static int get_cac_tdp_table(struct pp_hwmgr *hwmgr, struct phm_cac_tdp_table **ptable, const ATOM_PowerTune_Table *table, uint16_t us_maximum_power_delivery_limit) { unsigned long table_size; struct phm_cac_tdp_table *tdp_table; table_size = sizeof(unsigned long) + sizeof(struct phm_cac_tdp_table); tdp_table = kzalloc(table_size, GFP_KERNEL); if (NULL == tdp_table) return -ENOMEM; tdp_table->usTDP = le16_to_cpu(table->usTDP); tdp_table->usConfigurableTDP = le16_to_cpu(table->usConfigurableTDP); tdp_table->usTDC = le16_to_cpu(table->usTDC); tdp_table->usBatteryPowerLimit = le16_to_cpu(table->usBatteryPowerLimit); tdp_table->usSmallPowerLimit = le16_to_cpu(table->usSmallPowerLimit); tdp_table->usLowCACLeakage = le16_to_cpu(table->usLowCACLeakage); tdp_table->usHighCACLeakage = le16_to_cpu(table->usHighCACLeakage); tdp_table->usMaximumPowerDeliveryLimit = us_maximum_power_delivery_limit; *ptable = tdp_table; return 0; } static uint16_t get_sclk_vdd_gfx_table_offset(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t sclk_vdd_gfx_table_offset = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (powerplay_table3->usExtendendedHeaderOffset > 0) { const ATOM_PPLIB_EXTENDEDHEADER *pExtendedHeader = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table3) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); if (le16_to_cpu(pExtendedHeader->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V8) sclk_vdd_gfx_table_offset = le16_to_cpu(pExtendedHeader->usSclkVddgfxTableOffset); } } return sclk_vdd_gfx_table_offset; } static uint16_t get_sclk_vdd_gfx_clock_voltage_dependency_table_offset( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { uint16_t tableOffset = get_sclk_vdd_gfx_table_offset(hwmgr, powerplay_table); if (tableOffset > 0) return tableOffset; return 0; } static int get_clock_voltage_dependency_table(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table **ptable, const ATOM_PPLIB_Clock_Voltage_Dependency_Table *table) { unsigned long i; struct phm_clock_voltage_dependency_table *dep_table; dep_table = kzalloc(struct_size(dep_table, entries, table->ucNumEntries), GFP_KERNEL); if (NULL == dep_table) return -ENOMEM; dep_table->count = (unsigned long)table->ucNumEntries; for (i = 0; i < dep_table->count; i++) { dep_table->entries[i].clk = ((unsigned long)table->entries[i].ucClockHigh << 16) | le16_to_cpu(table->entries[i].usClockLow); dep_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); } *ptable = dep_table; return 0; } static int get_valid_clk(struct pp_hwmgr *hwmgr, struct phm_clock_array **ptable, const struct phm_clock_voltage_dependency_table *table) { unsigned long i; struct phm_clock_array *clock_table; clock_table = kzalloc(struct_size(clock_table, values, table->count), GFP_KERNEL); if (!clock_table) return -ENOMEM; clock_table->count = (unsigned long)table->count; for (i = 0; i < clock_table->count; i++) clock_table->values[i] = (unsigned long)table->entries[i].clk; *ptable = clock_table; return 0; } static int get_clock_voltage_limit(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *limits, const ATOM_PPLIB_Clock_Voltage_Limit_Table *table) { limits->sclk = ((unsigned long)table->entries[0].ucSclkHigh << 16) | le16_to_cpu(table->entries[0].usSclkLow); limits->mclk = ((unsigned long)table->entries[0].ucMclkHigh << 16) | le16_to_cpu(table->entries[0].usMclkLow); limits->vddc = (unsigned long)le16_to_cpu(table->entries[0].usVddc); limits->vddci = (unsigned long)le16_to_cpu(table->entries[0].usVddci); return 0; } static void set_hw_cap(struct pp_hwmgr *hwmgr, bool enable, enum phm_platform_caps cap) { if (enable) phm_cap_set(hwmgr->platform_descriptor.platformCaps, cap); else phm_cap_unset(hwmgr->platform_descriptor.platformCaps, cap); } static int set_platform_caps(struct pp_hwmgr *hwmgr, unsigned long powerplay_caps) { set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_POWERPLAY), PHM_PlatformCaps_PowerPlaySupport ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SBIOSPOWERSOURCE), PHM_PlatformCaps_BiosPowerSourceControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L0s), PHM_PlatformCaps_EnableASPML0s ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_ASPM_L1), PHM_PlatformCaps_EnableASPML1 ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACKBIAS), PHM_PlatformCaps_EnableBackbias ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HARDWAREDC), PHM_PlatformCaps_AutomaticDCTransition ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GEMINIPRIMARY), PHM_PlatformCaps_GeminiPrimary ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_STEPVDDC), PHM_PlatformCaps_StepVddc ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VOLTAGECONTROL), PHM_PlatformCaps_EnableVoltageControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_SIDEPORTCONTROL), PHM_PlatformCaps_EnableSideportControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TURNOFFPLL_ASPML1), PHM_PlatformCaps_TurnOffPll_ASPML1 ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_HTLINKCONTROL), PHM_PlatformCaps_EnableHTLinkControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_MVDDCONTROL), PHM_PlatformCaps_EnableMVDDControl ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VDDCI_CONTROL), PHM_PlatformCaps_ControlVDDCI ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REGULATOR_HOT), PHM_PlatformCaps_RegulatorHot ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_GOTO_BOOT_ON_ALERT), PHM_PlatformCaps_BootStateOnAlert ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DONT_WAIT_FOR_VBLANK_ON_ALERT), PHM_PlatformCaps_DontWaitForVBlankOnAlert ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_BACO), PHM_PlatformCaps_BACO ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_NEW_CAC_VOLTAGE), PHM_PlatformCaps_NewCACVoltage ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_REVERT_GPIO5_POLARITY), PHM_PlatformCaps_RevertGPIO5Polarity ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_OUTPUT_THERMAL2GPIO17), PHM_PlatformCaps_Thermal2GPIO17 ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_VRHOT_GPIO_CONFIGURABLE), PHM_PlatformCaps_VRHotGPIOConfigurable ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_TEMP_INVERSION), PHM_PlatformCaps_TempInversion ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_EVV), PHM_PlatformCaps_EVV ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_COMBINE_PCC_WITH_THERMAL_SIGNAL), PHM_PlatformCaps_CombinePCCWithThermalSignal ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_LOAD_POST_PRODUCTION_FIRMWARE), PHM_PlatformCaps_LoadPostProductionFirmware ); set_hw_cap( hwmgr, 0 != (powerplay_caps & ATOM_PP_PLATFORM_CAP_DISABLE_USING_ACTUAL_TEMPERATURE_FOR_POWER_CALC), PHM_PlatformCaps_DisableUsingActualTemperatureForPowerCalc ); return 0; } static PP_StateClassificationFlags make_classification_flags( struct pp_hwmgr *hwmgr, USHORT classification, USHORT classification2) { PP_StateClassificationFlags result = 0; if (classification & ATOM_PPLIB_CLASSIFICATION_BOOT) result |= PP_StateClassificationFlag_Boot; if (classification & ATOM_PPLIB_CLASSIFICATION_THERMAL) result |= PP_StateClassificationFlag_Thermal; if (classification & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) result |= PP_StateClassificationFlag_LimitedPowerSource; if (classification & ATOM_PPLIB_CLASSIFICATION_REST) result |= PP_StateClassificationFlag_Rest; if (classification & ATOM_PPLIB_CLASSIFICATION_FORCED) result |= PP_StateClassificationFlag_Forced; if (classification & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) result |= PP_StateClassificationFlag_3DPerformance; if (classification & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) result |= PP_StateClassificationFlag_ACOverdriveTemplate; if (classification & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) result |= PP_StateClassificationFlag_Uvd; if (classification & ATOM_PPLIB_CLASSIFICATION_HDSTATE) result |= PP_StateClassificationFlag_UvdHD; if (classification & ATOM_PPLIB_CLASSIFICATION_SDSTATE) result |= PP_StateClassificationFlag_UvdSD; if (classification & ATOM_PPLIB_CLASSIFICATION_HD2STATE) result |= PP_StateClassificationFlag_HD2; if (classification & ATOM_PPLIB_CLASSIFICATION_ACPI) result |= PP_StateClassificationFlag_ACPI; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) result |= PP_StateClassificationFlag_LimitedPowerSource_2; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_ULV) result |= PP_StateClassificationFlag_ULV; if (classification2 & ATOM_PPLIB_CLASSIFICATION2_MVC) result |= PP_StateClassificationFlag_UvdMVC; return result; } static int init_non_clock_fields(struct pp_hwmgr *hwmgr, struct pp_power_state *ps, uint8_t version, const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info) { unsigned long rrr_index; unsigned long tmp; ps->classification.ui_label = (le16_to_cpu(pnon_clock_info->usClassification) & ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; ps->classification.flags = make_classification_flags(hwmgr, le16_to_cpu(pnon_clock_info->usClassification), le16_to_cpu(pnon_clock_info->usClassification2)); ps->classification.temporary_state = false; ps->classification.to_be_deleted = false; tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_SINGLE_DISPLAY_ONLY; ps->validation.singleDisplayOnly = (0 != tmp); tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_DISALLOW_ON_DC; ps->validation.disallowOnDC = (0 != tmp); ps->pcie.lanes = ((le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_PCIE_LINK_WIDTH_MASK) >> ATOM_PPLIB_PCIE_LINK_WIDTH_SHIFT) + 1; ps->display.disableFrameModulation = false; rrr_index = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK) >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT; if (rrr_index != ATOM_PPLIB_LIMITED_REFRESHRATE_UNLIMITED) { static const uint8_t look_up[(ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_MASK >> ATOM_PPLIB_LIMITED_REFRESHRATE_VALUE_SHIFT) + 1] = \ { 0, 50, 0 }; ps->display.refreshrateSource = PP_RefreshrateSource_Explicit; ps->display.explicitRefreshrate = look_up[rrr_index]; ps->display.limitRefreshrate = true; if (ps->display.explicitRefreshrate == 0) ps->display.limitRefreshrate = false; } else ps->display.limitRefreshrate = false; tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_ENABLE_VARIBRIGHT; ps->display.enableVariBright = (0 != tmp); tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_SWSTATE_MEMORY_DLL_OFF; ps->memory.dllOff = (0 != tmp); ps->memory.m3arb = (le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_M3ARB_MASK) >> ATOM_PPLIB_M3ARB_SHIFT; ps->temperatures.min = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * pnon_clock_info->ucMinTemperature; ps->temperatures.max = PP_TEMPERATURE_UNITS_PER_CENTIGRADES * pnon_clock_info->ucMaxTemperature; tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_SOFTWARE_DISABLE_LOADBALANCING; ps->software.disableLoadBalancing = tmp; tmp = le32_to_cpu(pnon_clock_info->ulCapsAndSettings) & ATOM_PPLIB_SOFTWARE_ENABLE_SLEEP_FOR_TIMESTAMPS; ps->software.enableSleepForTimestamps = (0 != tmp); ps->validation.supportedPowerLevels = pnon_clock_info->ucRequiredPower; if (ATOM_PPLIB_NONCLOCKINFO_VER1 < version) { ps->uvd_clocks.VCLK = le32_to_cpu(pnon_clock_info->ulVCLK); ps->uvd_clocks.DCLK = le32_to_cpu(pnon_clock_info->ulDCLK); } else { ps->uvd_clocks.VCLK = 0; ps->uvd_clocks.DCLK = 0; } return 0; } static ULONG size_of_entry_v2(ULONG num_dpm_levels) { return (sizeof(UCHAR) + sizeof(UCHAR) + (num_dpm_levels * sizeof(UCHAR))); } static const ATOM_PPLIB_STATE_V2 *get_state_entry_v2( const StateArray * pstate_arrays, ULONG entry_index) { ULONG i; const ATOM_PPLIB_STATE_V2 *pstate; pstate = pstate_arrays->states; if (entry_index <= pstate_arrays->ucNumEntries) { for (i = 0; i < entry_index; i++) pstate = (ATOM_PPLIB_STATE_V2 *)( (unsigned long)pstate + size_of_entry_v2(pstate->ucNumDPMLevels)); } return pstate; } static const unsigned char soft_dummy_pp_table[] = { 0xe1, 0x01, 0x06, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x00, 0x4a, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x42, 0x00, 0x02, 0x00, 0x00, 0x00, 0x13, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x00, 0x88, 0x00, 0x00, 0x9e, 0x00, 0x17, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x01, 0x00, 0x08, 0x04, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x18, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xe1, 0x00, 0x43, 0x01, 0x00, 0x00, 0x00, 0x00, 0x8e, 0x01, 0x00, 0x00, 0xb8, 0x01, 0x00, 0x00, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c, 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x70, 0x00, 0x91, 0xf4, 0x00, 0x64, 0x00, 0x40, 0x19, 0x01, 0x5a, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a, 0x00, 0x00, 0x09, 0x30, 0x75, 0x00, 0x30, 0x75, 0x00, 0x40, 0x9c, 0x00, 0x40, 0x9c, 0x00, 0x59, 0xd8, 0x00, 0x59, 0xd8, 0x00, 0x91, 0xf4, 0x00, 0x91, 0xf4, 0x00, 0x0e, 0x28, 0x01, 0x0e, 0x28, 0x01, 0x90, 0x5f, 0x01, 0x90, 0x5f, 0x01, 0x00, 0x77, 0x01, 0x00, 0x77, 0x01, 0xca, 0x91, 0x01, 0xca, 0x91, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, 0x7c, 0x00, 0x02, 0x70, 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, 0x00, 0x07, 0x08, 0x08, 0x00, 0x08, 0x00, 0x01, 0x02, 0x02, 0x02, 0x01, 0x02, 0x02, 0x02, 0x03, 0x02, 0x04, 0x02, 0x00, 0x08, 0x40, 0x9c, 0x00, 0x30, 0x75, 0x00, 0x74, 0xb5, 0x00, 0xa0, 0x8c, 0x00, 0x60, 0xea, 0x00, 0x74, 0xb5, 0x00, 0x0e, 0x28, 0x01, 0x60, 0xea, 0x00, 0x90, 0x5f, 0x01, 0x40, 0x19, 0x01, 0xb2, 0xb0, 0x01, 0x90, 0x5f, 0x01, 0xc0, 0xd4, 0x01, 0x00, 0x77, 0x01, 0x5e, 0xff, 0x01, 0xca, 0x91, 0x01, 0x08, 0x80, 0x00, 0x00, 0x7e, 0x00, 0x01, 0x7c, 0x00, 0x02, 0x70, 0x00, 0x03, 0x64, 0x00, 0x04, 0x5a, 0x00, 0x05, 0x52, 0x00, 0x06, 0x4a, 0x00, 0x07, 0x00, 0x08, 0x80, 0x00, 0x30, 0x75, 0x00, 0x7e, 0x00, 0x40, 0x9c, 0x00, 0x7c, 0x00, 0x59, 0xd8, 0x00, 0x70, 0x00, 0xdc, 0x0b, 0x01, 0x64, 0x00, 0x80, 0x38, 0x01, 0x5a, 0x00, 0x80, 0x38, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a, 0x00, 0x80, 0x38, 0x01, 0x08, 0x30, 0x75, 0x00, 0x80, 0x00, 0xa0, 0x8c, 0x00, 0x7e, 0x00, 0x71, 0xa5, 0x00, 0x7c, 0x00, 0xe5, 0xc8, 0x00, 0x74, 0x00, 0x91, 0xf4, 0x00, 0x66, 0x00, 0x40, 0x19, 0x01, 0x58, 0x00, 0x0e, 0x28, 0x01, 0x52, 0x00, 0x80, 0x38, 0x01, 0x4a, 0x00 }; static const ATOM_PPLIB_POWERPLAYTABLE *get_powerplay_table( struct pp_hwmgr *hwmgr) { const void *table_addr = hwmgr->soft_pp_table; uint8_t frev, crev; uint16_t size; if (!table_addr) { if (hwmgr->chip_id == CHIP_RAVEN) { table_addr = &soft_dummy_pp_table[0]; hwmgr->soft_pp_table = &soft_dummy_pp_table[0]; hwmgr->soft_pp_table_size = sizeof(soft_dummy_pp_table); } else { table_addr = smu_atom_get_data_table(hwmgr->adev, GetIndexIntoMasterTable(DATA, PowerPlayInfo), &size, &frev, &crev); hwmgr->soft_pp_table = table_addr; hwmgr->soft_pp_table_size = size; } } return (const ATOM_PPLIB_POWERPLAYTABLE *)table_addr; } int pp_tables_get_response_times(struct pp_hwmgr *hwmgr, uint32_t *vol_rep_time, uint32_t *bb_rep_time) { const ATOM_PPLIB_POWERPLAYTABLE *powerplay_tab = get_powerplay_table(hwmgr); PP_ASSERT_WITH_CODE(NULL != powerplay_tab, "Missing PowerPlay Table!", return -EINVAL); *vol_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usVoltageTime); *bb_rep_time = (uint32_t)le16_to_cpu(powerplay_tab->usBackbiasTime); return 0; } int pp_tables_get_num_of_entries(struct pp_hwmgr *hwmgr, unsigned long *num_of_entries) { const StateArray *pstate_arrays; const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); if (powerplay_table == NULL) return -1; if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usStateArrayOffset)); *num_of_entries = (unsigned long)(pstate_arrays->ucNumEntries); } else *num_of_entries = (unsigned long)(powerplay_table->ucNumStates); return 0; } int pp_tables_get_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *ps, pp_tables_hw_clock_info_callback func) { int i; const StateArray *pstate_arrays; const ATOM_PPLIB_STATE_V2 *pstate_entry_v2; const ATOM_PPLIB_NONCLOCK_INFO *pnon_clock_info; const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); int result = 0; int res = 0; const ClockInfoArray *pclock_arrays; const NonClockInfoArray *pnon_clock_arrays; const ATOM_PPLIB_STATE *pstate_entry; if (powerplay_table == NULL) return -1; ps->classification.bios_index = entry_index; if (powerplay_table->sHeader.ucTableFormatRevision >= 6) { pstate_arrays = (StateArray *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usStateArrayOffset)); if (entry_index > pstate_arrays->ucNumEntries) return -1; pstate_entry_v2 = get_state_entry_v2(pstate_arrays, entry_index); pclock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usClockInfoArrayOffset)); pnon_clock_arrays = (NonClockInfoArray *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset)); pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)(pnon_clock_arrays->nonClockInfo) + (pstate_entry_v2->nonClockInfoIndex * pnon_clock_arrays->ucEntrySize)); result = init_non_clock_fields(hwmgr, ps, pnon_clock_arrays->ucEntrySize, pnon_clock_info); for (i = 0; i < pstate_entry_v2->ucNumDPMLevels; i++) { const void *pclock_info = (const void *)( (unsigned long)(pclock_arrays->clockInfo) + (pstate_entry_v2->clockInfoIndex[i] * pclock_arrays->ucEntrySize)); res = func(hwmgr, &ps->hardware, i, pclock_info); if ((0 == result) && (0 != res)) result = res; } } else { if (entry_index > powerplay_table->ucNumStates) return -1; pstate_entry = (ATOM_PPLIB_STATE *)((unsigned long)powerplay_table + le16_to_cpu(powerplay_table->usStateArrayOffset) + entry_index * powerplay_table->ucStateEntrySize); pnon_clock_info = (ATOM_PPLIB_NONCLOCK_INFO *)((unsigned long)powerplay_table + le16_to_cpu(powerplay_table->usNonClockInfoArrayOffset) + pstate_entry->ucNonClockStateIndex * powerplay_table->ucNonClockSize); result = init_non_clock_fields(hwmgr, ps, powerplay_table->ucNonClockSize, pnon_clock_info); for (i = 0; i < powerplay_table->ucStateEntrySize-1; i++) { const void *pclock_info = (const void *)((unsigned long)powerplay_table + le16_to_cpu(powerplay_table->usClockInfoArrayOffset) + pstate_entry->ucClockStateIndices[i] * powerplay_table->ucClockInfoSize); int res = func(hwmgr, &ps->hardware, i, pclock_info); if ((0 == result) && (0 != res)) result = res; } } if ((0 == result) && (0 != (ps->classification.flags & PP_StateClassificationFlag_Boot))) { if (hwmgr->chip_family < AMDGPU_FAMILY_RV) result = hwmgr->hwmgr_func->patch_boot_state(hwmgr, &(ps->hardware)); } return result; } static int init_powerplay_tables( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table ) { return 0; } static int init_thermal_controller( struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { struct amdgpu_device *adev = hwmgr->adev; hwmgr->thermal_controller.ucType = powerplay_table->sThermalController.ucType; hwmgr->thermal_controller.ucI2cLine = powerplay_table->sThermalController.ucI2cLine; hwmgr->thermal_controller.ucI2cAddress = powerplay_table->sThermalController.ucI2cAddress; hwmgr->thermal_controller.fanInfo.bNoFan = (0 != (powerplay_table->sThermalController.ucFanParameters & ATOM_PP_FANPARAMETERS_NOFAN)); hwmgr->thermal_controller.fanInfo.ucTachometerPulsesPerRevolution = powerplay_table->sThermalController.ucFanParameters & ATOM_PP_FANPARAMETERS_TACHOMETER_PULSES_PER_REVOLUTION_MASK; hwmgr->thermal_controller.fanInfo.ulMinRPM = powerplay_table->sThermalController.ucFanMinRPM * 100UL; hwmgr->thermal_controller.fanInfo.ulMaxRPM = powerplay_table->sThermalController.ucFanMaxRPM * 100UL; set_hw_cap(hwmgr, ATOM_PP_THERMALCONTROLLER_NONE != hwmgr->thermal_controller.ucType, PHM_PlatformCaps_ThermalController); if (powerplay_table->usTableSize >= sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (0 == le16_to_cpu(powerplay_table3->usFanTableOffset)) { hwmgr->thermal_controller.use_hw_fan_control = 1; return 0; } else { const ATOM_PPLIB_FANTABLE *fan_table = (const ATOM_PPLIB_FANTABLE *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table3->usFanTableOffset)); if (1 <= fan_table->ucFanTableFormat) { hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst = fan_table->ucTHyst; hwmgr->thermal_controller.advanceFanControlParameters.usTMin = le16_to_cpu(fan_table->usTMin); hwmgr->thermal_controller.advanceFanControlParameters.usTMed = le16_to_cpu(fan_table->usTMed); hwmgr->thermal_controller.advanceFanControlParameters.usTHigh = le16_to_cpu(fan_table->usTHigh); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin = le16_to_cpu(fan_table->usPWMMin); hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed = le16_to_cpu(fan_table->usPWMMed); hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh = le16_to_cpu(fan_table->usPWMHigh); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = 10900; hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay = 100000; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); } if (2 <= fan_table->ucFanTableFormat) { const ATOM_PPLIB_FANTABLE2 *fan_table2 = (const ATOM_PPLIB_FANTABLE2 *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table3->usFanTableOffset)); hwmgr->thermal_controller.advanceFanControlParameters.usTMax = le16_to_cpu(fan_table2->usTMax); } if (3 <= fan_table->ucFanTableFormat) { const ATOM_PPLIB_FANTABLE3 *fan_table3 = (const ATOM_PPLIB_FANTABLE3 *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table3->usFanTableOffset)); hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode = fan_table3->ucFanControlMode; if ((3 == fan_table->ucFanTableFormat) && (0x67B1 == adev->pdev->device)) hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = 47; else hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM = le16_to_cpu(fan_table3->usFanPWMMax); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity = 4836; hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = le16_to_cpu(fan_table3->usFanOutputSensitivity); } if (6 <= fan_table->ucFanTableFormat) { const ATOM_PPLIB_FANTABLE4 *fan_table4 = (const ATOM_PPLIB_FANTABLE4 *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table3->usFanTableOffset)); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM = le16_to_cpu(fan_table4->usFanRPMMax); } if (7 <= fan_table->ucFanTableFormat) { const ATOM_PPLIB_FANTABLE5 *fan_table5 = (const ATOM_PPLIB_FANTABLE5 *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table3->usFanTableOffset)); if (0x67A2 == adev->pdev->device || 0x67A9 == adev->pdev->device || 0x67B9 == adev->pdev->device) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GeminiRegulatorFanControlSupport); hwmgr->thermal_controller.advanceFanControlParameters.usFanCurrentLow = le16_to_cpu(fan_table5->usFanCurrentLow); hwmgr->thermal_controller.advanceFanControlParameters.usFanCurrentHigh = le16_to_cpu(fan_table5->usFanCurrentHigh); hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMLow = le16_to_cpu(fan_table5->usFanRPMLow); hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMHigh = le16_to_cpu(fan_table5->usFanRPMHigh); } } } } return 0; } static int init_overdrive_limits_V1_4(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, const ATOM_FIRMWARE_INFO_V1_4 *fw_info) { hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(fw_info->ulASICMaxEngineClock); hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(fw_info->ulASICMaxMemoryClock); hwmgr->platform_descriptor.maxOverdriveVDDC = le32_to_cpu(fw_info->ul3DAccelerationEngineClock) & 0x7FF; hwmgr->platform_descriptor.minOverdriveVDDC = le16_to_cpu(fw_info->usBootUpVDDCVoltage); hwmgr->platform_descriptor.maxOverdriveVDDC = le16_to_cpu(fw_info->usBootUpVDDCVoltage); hwmgr->platform_descriptor.overdriveVDDCStep = 0; return 0; } static int init_overdrive_limits_V2_1(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table, const ATOM_FIRMWARE_INFO_V2_1 *fw_info) { const ATOM_PPLIB_POWERPLAYTABLE3 *powerplay_table3; const ATOM_PPLIB_EXTENDEDHEADER *header; if (le16_to_cpu(powerplay_table->usTableSize) < sizeof(ATOM_PPLIB_POWERPLAYTABLE3)) return 0; powerplay_table3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *)powerplay_table; if (0 == powerplay_table3->usExtendendedHeaderOffset) return 0; header = (ATOM_PPLIB_EXTENDEDHEADER *)(((unsigned long) powerplay_table) + le16_to_cpu(powerplay_table3->usExtendendedHeaderOffset)); hwmgr->platform_descriptor.overdriveLimit.engineClock = le32_to_cpu(header->ulMaxEngineClock); hwmgr->platform_descriptor.overdriveLimit.memoryClock = le32_to_cpu(header->ulMaxMemoryClock); hwmgr->platform_descriptor.minOverdriveVDDC = 0; hwmgr->platform_descriptor.maxOverdriveVDDC = 0; hwmgr->platform_descriptor.overdriveVDDCStep = 0; return 0; } static int init_overdrive_limits(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { int result = 0; uint8_t frev, crev; uint16_t size; const ATOM_COMMON_TABLE_HEADER *fw_info = NULL; hwmgr->platform_descriptor.overdriveLimit.engineClock = 0; hwmgr->platform_descriptor.overdriveLimit.memoryClock = 0; hwmgr->platform_descriptor.minOverdriveVDDC = 0; hwmgr->platform_descriptor.maxOverdriveVDDC = 0; hwmgr->platform_descriptor.overdriveVDDCStep = 0; if (hwmgr->chip_id == CHIP_RAVEN) return 0; /* We assume here that fw_info is unchanged if this call fails.*/ fw_info = smu_atom_get_data_table(hwmgr->adev, GetIndexIntoMasterTable(DATA, FirmwareInfo), &size, &frev, &crev); if ((fw_info->ucTableFormatRevision == 1) && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V1_4))) result = init_overdrive_limits_V1_4(hwmgr, powerplay_table, (const ATOM_FIRMWARE_INFO_V1_4 *)fw_info); else if ((fw_info->ucTableFormatRevision == 2) && (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) result = init_overdrive_limits_V2_1(hwmgr, powerplay_table, (const ATOM_FIRMWARE_INFO_V2_1 *)fw_info); return result; } static int get_uvd_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, struct phm_uvd_clock_voltage_dependency_table **ptable, const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *table, const UVDClockInfoArray *array) { unsigned long i; struct phm_uvd_clock_voltage_dependency_table *uvd_table; uvd_table = kzalloc(struct_size(uvd_table, entries, table->numEntries), GFP_KERNEL); if (!uvd_table) return -ENOMEM; uvd_table->count = table->numEntries; for (i = 0; i < table->numEntries; i++) { const UVDClockInfo *entry = &array->entries[table->entries[i].ucUVDClockInfoIndex]; uvd_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); uvd_table->entries[i].vclk = ((unsigned long)entry->ucVClkHigh << 16) | le16_to_cpu(entry->usVClkLow); uvd_table->entries[i].dclk = ((unsigned long)entry->ucDClkHigh << 16) | le16_to_cpu(entry->usDClkLow); } *ptable = uvd_table; return 0; } static int get_vce_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, struct phm_vce_clock_voltage_dependency_table **ptable, const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table, const VCEClockInfoArray *array) { unsigned long i; struct phm_vce_clock_voltage_dependency_table *vce_table; vce_table = kzalloc(struct_size(vce_table, entries, table->numEntries), GFP_KERNEL); if (!vce_table) return -ENOMEM; vce_table->count = table->numEntries; for (i = 0; i < table->numEntries; i++) { const VCEClockInfo *entry = &array->entries[table->entries[i].ucVCEClockInfoIndex]; vce_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); vce_table->entries[i].evclk = ((unsigned long)entry->ucEVClkHigh << 16) | le16_to_cpu(entry->usEVClkLow); vce_table->entries[i].ecclk = ((unsigned long)entry->ucECClkHigh << 16) | le16_to_cpu(entry->usECClkLow); } *ptable = vce_table; return 0; } static int get_samu_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, struct phm_samu_clock_voltage_dependency_table **ptable, const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *table) { unsigned long i; struct phm_samu_clock_voltage_dependency_table *samu_table; samu_table = kzalloc(struct_size(samu_table, entries, table->numEntries), GFP_KERNEL); if (!samu_table) return -ENOMEM; samu_table->count = table->numEntries; for (i = 0; i < table->numEntries; i++) { samu_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); samu_table->entries[i].samclk = ((unsigned long)table->entries[i].ucSAMClockHigh << 16) | le16_to_cpu(table->entries[i].usSAMClockLow); } *ptable = samu_table; return 0; } static int get_acp_clock_voltage_limit_table(struct pp_hwmgr *hwmgr, struct phm_acp_clock_voltage_dependency_table **ptable, const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *table) { unsigned long i; struct phm_acp_clock_voltage_dependency_table *acp_table; acp_table = kzalloc(struct_size(acp_table, entries, table->numEntries), GFP_KERNEL); if (!acp_table) return -ENOMEM; acp_table->count = (unsigned long)table->numEntries; for (i = 0; i < table->numEntries; i++) { acp_table->entries[i].v = (unsigned long)le16_to_cpu(table->entries[i].usVoltage); acp_table->entries[i].acpclk = ((unsigned long)table->entries[i].ucACPClockHigh << 16) | le16_to_cpu(table->entries[i].usACPClockLow); } *ptable = acp_table; return 0; } static int init_clock_voltage_dependency(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { ATOM_PPLIB_Clock_Voltage_Dependency_Table *table; ATOM_PPLIB_Clock_Voltage_Limit_Table *limit_table; int result = 0; uint16_t vce_clock_info_array_offset; uint16_t uvd_clock_info_array_offset; uint16_t table_offset; hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; hwmgr->dyn_state.ppm_parameter_table = NULL; hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; vce_clock_info_array_offset = get_vce_clock_info_array_offset( hwmgr, powerplay_table); table_offset = get_vce_clock_voltage_limit_table_offset(hwmgr, powerplay_table); if (vce_clock_info_array_offset > 0 && table_offset > 0) { const VCEClockInfoArray *array = (const VCEClockInfoArray *) (((unsigned long) powerplay_table) + vce_clock_info_array_offset); const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *table = (const ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_vce_clock_voltage_limit_table(hwmgr, &hwmgr->dyn_state.vce_clock_voltage_dependency_table, table, array); } uvd_clock_info_array_offset = get_uvd_clock_info_array_offset(hwmgr, powerplay_table); table_offset = get_uvd_clock_voltage_limit_table_offset(hwmgr, powerplay_table); if (uvd_clock_info_array_offset > 0 && table_offset > 0) { const UVDClockInfoArray *array = (const UVDClockInfoArray *) (((unsigned long) powerplay_table) + uvd_clock_info_array_offset); const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *ptable = (const ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_uvd_clock_voltage_limit_table(hwmgr, &hwmgr->dyn_state.uvd_clock_voltage_dependency_table, ptable, array); } table_offset = get_samu_clock_voltage_limit_table_offset(hwmgr, powerplay_table); if (table_offset > 0) { const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *ptable = (const ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_samu_clock_voltage_limit_table(hwmgr, &hwmgr->dyn_state.samu_clock_voltage_dependency_table, ptable); } table_offset = get_acp_clock_voltage_limit_table_offset(hwmgr, powerplay_table); if (table_offset > 0) { const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *ptable = (const ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_acp_clock_voltage_limit_table(hwmgr, &hwmgr->dyn_state.acp_clock_voltage_dependency_table, ptable); } table_offset = get_cacp_tdp_table_offset(hwmgr, powerplay_table); if (table_offset > 0) { UCHAR rev_id = *(UCHAR *)(((unsigned long)powerplay_table) + table_offset); if (rev_id > 0) { const ATOM_PPLIB_POWERTUNE_Table_V1 *tune_table = (const ATOM_PPLIB_POWERTUNE_Table_V1 *) (((unsigned long) powerplay_table) + table_offset); result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table, &tune_table->power_tune_table, le16_to_cpu(tune_table->usMaximumPowerDeliveryLimit)); hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = le16_to_cpu(tune_table->usTjMax); } else { const ATOM_PPLIB_POWERTUNE_Table *tune_table = (const ATOM_PPLIB_POWERTUNE_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_cac_tdp_table(hwmgr, &hwmgr->dyn_state.cac_dtp_table, &tune_table->power_tune_table, 255); } } if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; if (0 != powerplay_table4->usVddcDependencyOnSCLKOffset) { table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (((unsigned long) powerplay_table4) + le16_to_cpu(powerplay_table4->usVddcDependencyOnSCLKOffset)); result = get_clock_voltage_dependency_table(hwmgr, &hwmgr->dyn_state.vddc_dependency_on_sclk, table); } if (result == 0 && (0 != powerplay_table4->usVddciDependencyOnMCLKOffset)) { table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (((unsigned long) powerplay_table4) + le16_to_cpu(powerplay_table4->usVddciDependencyOnMCLKOffset)); result = get_clock_voltage_dependency_table(hwmgr, &hwmgr->dyn_state.vddci_dependency_on_mclk, table); } if (result == 0 && (0 != powerplay_table4->usVddcDependencyOnMCLKOffset)) { table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (((unsigned long) powerplay_table4) + le16_to_cpu(powerplay_table4->usVddcDependencyOnMCLKOffset)); result = get_clock_voltage_dependency_table(hwmgr, &hwmgr->dyn_state.vddc_dependency_on_mclk, table); } if (result == 0 && (0 != powerplay_table4->usMaxClockVoltageOnDCOffset)) { limit_table = (ATOM_PPLIB_Clock_Voltage_Limit_Table *) (((unsigned long) powerplay_table4) + le16_to_cpu(powerplay_table4->usMaxClockVoltageOnDCOffset)); result = get_clock_voltage_limit(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc, limit_table); } if (result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) && (0 != hwmgr->dyn_state.vddc_dependency_on_mclk->count)) result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_mclk_values, hwmgr->dyn_state.vddc_dependency_on_mclk); if(result == 0 && (NULL != hwmgr->dyn_state.vddc_dependency_on_sclk) && (0 != hwmgr->dyn_state.vddc_dependency_on_sclk->count)) result = get_valid_clk(hwmgr, &hwmgr->dyn_state.valid_sclk_values, hwmgr->dyn_state.vddc_dependency_on_sclk); if (result == 0 && (0 != powerplay_table4->usMvddDependencyOnMCLKOffset)) { table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (((unsigned long) powerplay_table4) + le16_to_cpu(powerplay_table4->usMvddDependencyOnMCLKOffset)); result = get_clock_voltage_dependency_table(hwmgr, &hwmgr->dyn_state.mvdd_dependency_on_mclk, table); } } table_offset = get_sclk_vdd_gfx_clock_voltage_dependency_table_offset(hwmgr, powerplay_table); if (table_offset > 0) { table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) (((unsigned long) powerplay_table) + table_offset); result = get_clock_voltage_dependency_table(hwmgr, &hwmgr->dyn_state.vdd_gfx_dependency_on_sclk, table); } return result; } static int get_cac_leakage_table(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table **ptable, const ATOM_PPLIB_CAC_Leakage_Table *table) { struct phm_cac_leakage_table *cac_leakage_table; unsigned long i; if (!hwmgr || !table || !ptable) return -EINVAL; cac_leakage_table = kzalloc(struct_size(cac_leakage_table, entries, table->ucNumEntries), GFP_KERNEL); if (!cac_leakage_table) return -ENOMEM; cac_leakage_table->count = (ULONG)table->ucNumEntries; for (i = 0; i < cac_leakage_table->count; i++) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { cac_leakage_table->entries[i].Vddc1 = le16_to_cpu(table->entries[i].usVddc1); cac_leakage_table->entries[i].Vddc2 = le16_to_cpu(table->entries[i].usVddc2); cac_leakage_table->entries[i].Vddc3 = le16_to_cpu(table->entries[i].usVddc3); } else { cac_leakage_table->entries[i].Vddc = le16_to_cpu(table->entries[i].usVddc); cac_leakage_table->entries[i].Leakage = le32_to_cpu(table->entries[i].ulLeakageValue); } } *ptable = cac_leakage_table; return 0; } static int get_platform_power_management_table(struct pp_hwmgr *hwmgr, ATOM_PPLIB_PPM_Table *atom_ppm_table) { struct phm_ppm_table *ptr = kzalloc(sizeof(struct phm_ppm_table), GFP_KERNEL); if (NULL == ptr) return -ENOMEM; ptr->ppm_design = atom_ppm_table->ucPpmDesign; ptr->cpu_core_number = le16_to_cpu(atom_ppm_table->usCpuCoreNumber); ptr->platform_tdp = le32_to_cpu(atom_ppm_table->ulPlatformTDP); ptr->small_ac_platform_tdp = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDP); ptr->platform_tdc = le32_to_cpu(atom_ppm_table->ulPlatformTDC); ptr->small_ac_platform_tdc = le32_to_cpu(atom_ppm_table->ulSmallACPlatformTDC); ptr->apu_tdp = le32_to_cpu(atom_ppm_table->ulApuTDP); ptr->dgpu_tdp = le32_to_cpu(atom_ppm_table->ulDGpuTDP); ptr->dgpu_ulv_power = le32_to_cpu(atom_ppm_table->ulDGpuUlvPower); ptr->tj_max = le32_to_cpu(atom_ppm_table->ulTjmax); hwmgr->dyn_state.ppm_parameter_table = ptr; return 0; } static int init_dpm2_parameters(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { int result = 0; if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE5)) { const ATOM_PPLIB_POWERPLAYTABLE5 *ptable5 = (const ATOM_PPLIB_POWERPLAYTABLE5 *)powerplay_table; const ATOM_PPLIB_POWERPLAYTABLE4 *ptable4 = (const ATOM_PPLIB_POWERPLAYTABLE4 *) (&ptable5->basicTable4); const ATOM_PPLIB_POWERPLAYTABLE3 *ptable3 = (const ATOM_PPLIB_POWERPLAYTABLE3 *) (&ptable4->basicTable3); const ATOM_PPLIB_EXTENDEDHEADER *extended_header; uint16_t table_offset; ATOM_PPLIB_PPM_Table *atom_ppm_table; hwmgr->platform_descriptor.TDPLimit = le32_to_cpu(ptable5->ulTDPLimit); hwmgr->platform_descriptor.nearTDPLimit = le32_to_cpu(ptable5->ulNearTDPLimit); hwmgr->platform_descriptor.TDPODLimit = le16_to_cpu(ptable5->usTDPODLimit); hwmgr->platform_descriptor.TDPAdjustment = 0; hwmgr->platform_descriptor.VidAdjustment = 0; hwmgr->platform_descriptor.VidAdjustmentPolarity = 0; hwmgr->platform_descriptor.VidMinLimit = 0; hwmgr->platform_descriptor.VidMaxLimit = 1500000; hwmgr->platform_descriptor.VidStep = 6250; hwmgr->platform_descriptor.nearTDPLimitAdjusted = le32_to_cpu(ptable5->ulNearTDPLimit); if (hwmgr->platform_descriptor.TDPODLimit != 0) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerControl); hwmgr->platform_descriptor.SQRampingThreshold = le32_to_cpu(ptable5->ulSQRampingThreshold); hwmgr->platform_descriptor.CACLeakage = le32_to_cpu(ptable5->ulCACLeakage); hwmgr->dyn_state.cac_leakage_table = NULL; if (0 != ptable5->usCACLeakageTableOffset) { const ATOM_PPLIB_CAC_Leakage_Table *pCAC_leakage_table = (ATOM_PPLIB_CAC_Leakage_Table *)(((unsigned long)ptable5) + le16_to_cpu(ptable5->usCACLeakageTableOffset)); result = get_cac_leakage_table(hwmgr, &hwmgr->dyn_state.cac_leakage_table, pCAC_leakage_table); } hwmgr->platform_descriptor.LoadLineSlope = le16_to_cpu(ptable5->usLoadLineSlope); hwmgr->dyn_state.ppm_parameter_table = NULL; if (0 != ptable3->usExtendendedHeaderOffset) { extended_header = (const ATOM_PPLIB_EXTENDEDHEADER *) (((unsigned long)powerplay_table) + le16_to_cpu(ptable3->usExtendendedHeaderOffset)); if ((extended_header->usPPMTableOffset > 0) && le16_to_cpu(extended_header->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) { table_offset = le16_to_cpu(extended_header->usPPMTableOffset); atom_ppm_table = (ATOM_PPLIB_PPM_Table *) (((unsigned long)powerplay_table) + table_offset); if (0 == get_platform_power_management_table(hwmgr, atom_ppm_table)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnablePlatformPowerManagement); } } } return result; } static int init_phase_shedding_table(struct pp_hwmgr *hwmgr, const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table) { if (le16_to_cpu(powerplay_table->usTableSize) >= sizeof(ATOM_PPLIB_POWERPLAYTABLE4)) { const ATOM_PPLIB_POWERPLAYTABLE4 *powerplay_table4 = (const ATOM_PPLIB_POWERPLAYTABLE4 *)powerplay_table; if (0 != powerplay_table4->usVddcPhaseShedLimitsTableOffset) { const ATOM_PPLIB_PhaseSheddingLimits_Table *ptable = (ATOM_PPLIB_PhaseSheddingLimits_Table *) (((unsigned long)powerplay_table4) + le16_to_cpu(powerplay_table4->usVddcPhaseShedLimitsTableOffset)); struct phm_phase_shedding_limits_table *table; unsigned long i; table = kzalloc(struct_size(table, entries, ptable->ucNumEntries), GFP_KERNEL); if (!table) return -ENOMEM; table->count = (unsigned long)ptable->ucNumEntries; for (i = 0; i < table->count; i++) { table->entries[i].Voltage = (unsigned long)le16_to_cpu(ptable->entries[i].usVoltage); table->entries[i].Sclk = ((unsigned long)ptable->entries[i].ucSclkHigh << 16) | le16_to_cpu(ptable->entries[i].usSclkLow); table->entries[i].Mclk = ((unsigned long)ptable->entries[i].ucMclkHigh << 16) | le16_to_cpu(ptable->entries[i].usMclkLow); } hwmgr->dyn_state.vddc_phase_shed_limits_table = table; } } return 0; } static int get_number_of_vce_state_table_entries( struct pp_hwmgr *hwmgr) { const ATOM_PPLIB_POWERPLAYTABLE *table = get_powerplay_table(hwmgr); const ATOM_PPLIB_VCE_State_Table *vce_table = get_vce_state_table(hwmgr, table); if (vce_table) return vce_table->numEntries; return 0; } static int get_vce_state_table_entry(struct pp_hwmgr *hwmgr, unsigned long i, struct amd_vce_state *vce_state, void **clock_info, unsigned long *flag) { const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table = get_powerplay_table(hwmgr); const ATOM_PPLIB_VCE_State_Table *vce_state_table = get_vce_state_table(hwmgr, powerplay_table); unsigned short vce_clock_info_array_offset = get_vce_clock_info_array_offset(hwmgr, powerplay_table); const VCEClockInfoArray *vce_clock_info_array = (const VCEClockInfoArray *)(((unsigned long) powerplay_table) + vce_clock_info_array_offset); const ClockInfoArray *clock_arrays = (ClockInfoArray *)(((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usClockInfoArrayOffset)); const ATOM_PPLIB_VCE_State_Record *record = &vce_state_table->entries[i]; const VCEClockInfo *vce_clock_info = &vce_clock_info_array->entries[record->ucVCEClockInfoIndex]; unsigned long clockInfoIndex = record->ucClockInfoIndex & 0x3F; *flag = (record->ucClockInfoIndex >> NUM_BITS_CLOCK_INFO_ARRAY_INDEX); vce_state->evclk = ((uint32_t)vce_clock_info->ucEVClkHigh << 16) | le16_to_cpu(vce_clock_info->usEVClkLow); vce_state->ecclk = ((uint32_t)vce_clock_info->ucECClkHigh << 16) | le16_to_cpu(vce_clock_info->usECClkLow); *clock_info = (void *)((unsigned long)(clock_arrays->clockInfo) + (clockInfoIndex * clock_arrays->ucEntrySize)); return 0; } static int pp_tables_initialize(struct pp_hwmgr *hwmgr) { int result; const ATOM_PPLIB_POWERPLAYTABLE *powerplay_table; if (hwmgr->chip_id == CHIP_RAVEN) return 0; hwmgr->need_pp_table_upload = true; powerplay_table = get_powerplay_table(hwmgr); result = init_powerplay_tables(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_powerplay_tables failed", return result); result = set_platform_caps(hwmgr, le32_to_cpu(powerplay_table->ulPlatformCaps)); PP_ASSERT_WITH_CODE((result == 0), "set_platform_caps failed", return result); result = init_thermal_controller(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_thermal_controller failed", return result); result = init_overdrive_limits(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_overdrive_limits failed", return result); result = init_clock_voltage_dependency(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_clock_voltage_dependency failed", return result); result = init_dpm2_parameters(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_dpm2_parameters failed", return result); result = init_phase_shedding_table(hwmgr, powerplay_table); PP_ASSERT_WITH_CODE((result == 0), "init_phase_shedding_table failed", return result); return result; } static int pp_tables_uninitialize(struct pp_hwmgr *hwmgr) { if (hwmgr->chip_id == CHIP_RAVEN) return 0; kfree(hwmgr->dyn_state.vddc_dependency_on_sclk); hwmgr->dyn_state.vddc_dependency_on_sclk = NULL; kfree(hwmgr->dyn_state.vddci_dependency_on_mclk); hwmgr->dyn_state.vddci_dependency_on_mclk = NULL; kfree(hwmgr->dyn_state.vddc_dependency_on_mclk); hwmgr->dyn_state.vddc_dependency_on_mclk = NULL; kfree(hwmgr->dyn_state.mvdd_dependency_on_mclk); hwmgr->dyn_state.mvdd_dependency_on_mclk = NULL; kfree(hwmgr->dyn_state.valid_mclk_values); hwmgr->dyn_state.valid_mclk_values = NULL; kfree(hwmgr->dyn_state.valid_sclk_values); hwmgr->dyn_state.valid_sclk_values = NULL; kfree(hwmgr->dyn_state.cac_leakage_table); hwmgr->dyn_state.cac_leakage_table = NULL; kfree(hwmgr->dyn_state.vddc_phase_shed_limits_table); hwmgr->dyn_state.vddc_phase_shed_limits_table = NULL; kfree(hwmgr->dyn_state.vce_clock_voltage_dependency_table); hwmgr->dyn_state.vce_clock_voltage_dependency_table = NULL; kfree(hwmgr->dyn_state.uvd_clock_voltage_dependency_table); hwmgr->dyn_state.uvd_clock_voltage_dependency_table = NULL; kfree(hwmgr->dyn_state.samu_clock_voltage_dependency_table); hwmgr->dyn_state.samu_clock_voltage_dependency_table = NULL; kfree(hwmgr->dyn_state.acp_clock_voltage_dependency_table); hwmgr->dyn_state.acp_clock_voltage_dependency_table = NULL; kfree(hwmgr->dyn_state.cac_dtp_table); hwmgr->dyn_state.cac_dtp_table = NULL; kfree(hwmgr->dyn_state.ppm_parameter_table); hwmgr->dyn_state.ppm_parameter_table = NULL; kfree(hwmgr->dyn_state.vdd_gfx_dependency_on_sclk); hwmgr->dyn_state.vdd_gfx_dependency_on_sclk = NULL; return 0; } const struct pp_table_func pptable_funcs = { .pptable_init = pp_tables_initialize, .pptable_fini = pp_tables_uninitialize, .pptable_get_number_of_vce_state_table_entries = get_number_of_vce_state_table_entries, .pptable_get_vce_state_table_entry = get_vce_state_table_entry, };