// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_mqd_manager.h" #include "cik_regs.h" #include "kfd_kernel_queue.h" #include "amdgpu_amdkfd.h" #include "amdgpu_reset.h" #include "mes_v11_api_def.h" #include "kfd_debug.h" /* Size of the per-pipe EOP queue */ #define CIK_HPD_EOP_BYTES_LOG2 11 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, unsigned int vmid); static int execute_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param, uint32_t grace_period); static int unmap_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param, uint32_t grace_period, bool reset); static int map_queues_cpsch(struct device_queue_manager *dqm); static void deallocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q); static inline void deallocate_hqd(struct device_queue_manager *dqm, struct queue *q); static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); static int allocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q, const uint32_t *restore_sdma_id); static void kfd_process_hw_exception(struct work_struct *work); static inline enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) { if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) return KFD_MQD_TYPE_SDMA; return KFD_MQD_TYPE_CP; } static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) { int i; int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; /* queue is available for KFD usage if bit is 1 */ for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) if (test_bit(pipe_offset + i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) return true; return false; } unsigned int get_cp_queues_num(struct device_queue_manager *dqm) { return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, AMDGPU_MAX_QUEUES); } unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) { return dqm->dev->kfd->shared_resources.num_queue_per_pipe; } unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) { return dqm->dev->kfd->shared_resources.num_pipe_per_mec; } static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) { return kfd_get_num_sdma_engines(dqm->dev) + kfd_get_num_xgmi_sdma_engines(dqm->dev); } unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) { return kfd_get_num_sdma_engines(dqm->dev) * dqm->dev->kfd->device_info.num_sdma_queues_per_engine; } unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) { return kfd_get_num_xgmi_sdma_engines(dqm->dev) * dqm->dev->kfd->device_info.num_sdma_queues_per_engine; } static void init_sdma_bitmaps(struct device_queue_manager *dqm) { bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); /* Mask out the reserved queues */ bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap, dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES); } void program_sh_mem_settings(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { uint32_t xcc_mask = dqm->dev->xcc_mask; int xcc_id; for_each_inst(xcc_id, xcc_mask) dqm->dev->kfd2kgd->program_sh_mem_settings( dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, qpd->sh_mem_bases, xcc_id); } static void kfd_hws_hang(struct device_queue_manager *dqm) { struct device_process_node *cur; struct qcm_process_device *qpd; struct queue *q; /* Mark all device queues as reset. */ list_for_each_entry(cur, &dqm->queues, list) { qpd = cur->qpd; list_for_each_entry(q, &qpd->queues_list, list) { struct kfd_process_device *pdd = qpd_to_pdd(qpd); pdd->has_reset_queue = true; } } /* * Issue a GPU reset if HWS is unresponsive */ schedule_work(&dqm->hw_exception_work); } static int convert_to_mes_queue_type(int queue_type) { int mes_queue_type; switch (queue_type) { case KFD_QUEUE_TYPE_COMPUTE: mes_queue_type = MES_QUEUE_TYPE_COMPUTE; break; case KFD_QUEUE_TYPE_SDMA: mes_queue_type = MES_QUEUE_TYPE_SDMA; break; default: WARN(1, "Invalid queue type %d", queue_type); mes_queue_type = -EINVAL; break; } return mes_queue_type; } static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; struct kfd_process_device *pdd = qpd_to_pdd(qpd); struct mes_add_queue_input queue_input; int r, queue_type; uint64_t wptr_addr_off; if (!dqm->sched_running || dqm->sched_halt) return 0; if (!down_read_trylock(&adev->reset_domain->sem)) return -EIO; if (!pdd->proc_ctx_cpu_ptr) { r = amdgpu_amdkfd_alloc_gtt_mem(adev, AMDGPU_MES_PROC_CTX_SIZE, &pdd->proc_ctx_bo, &pdd->proc_ctx_gpu_addr, &pdd->proc_ctx_cpu_ptr, false); if (r) { dev_err(adev->dev, "failed to allocate process context bo\n"); return r; } memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE); } memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); queue_input.process_id = qpd->pqm->process->pasid; queue_input.page_table_base_addr = qpd->page_table_base; queue_input.process_va_start = 0; queue_input.process_va_end = adev->vm_manager.max_pfn - 1; /* MES unit for quantum is 100ns */ queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ queue_input.gang_context_addr = q->gang_ctx_gpu_addr; queue_input.inprocess_gang_priority = q->properties.priority; queue_input.gang_global_priority_level = AMDGPU_MES_PRIORITY_LEVEL_NORMAL; queue_input.doorbell_offset = q->properties.doorbell_off; queue_input.mqd_addr = q->gart_mqd_addr; queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off; queue_input.is_kfd_process = 1; queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); queue_input.queue_size = q->properties.queue_size >> 2; queue_input.paging = false; queue_input.tba_addr = qpd->tba_addr; queue_input.tma_addr = qpd->tma_addr; queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); queue_input.skip_process_ctx_clear = qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED && (qpd->pqm->process->debug_trap_enabled || kfd_dbg_has_ttmps_always_setup(q->device)); queue_type = convert_to_mes_queue_type(q->properties.type); if (queue_type < 0) { dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n", q->properties.type); up_read(&adev->reset_domain->sem); return -EINVAL; } queue_input.queue_type = (uint32_t)queue_type; queue_input.exclusively_scheduled = q->properties.is_gws; amdgpu_mes_lock(&adev->mes); r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); amdgpu_mes_unlock(&adev->mes); up_read(&adev->reset_domain->sem); if (r) { dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n", q->properties.doorbell_off); dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); kfd_hws_hang(dqm); } return r; } static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; int r; struct mes_remove_queue_input queue_input; if (!dqm->sched_running || dqm->sched_halt) return 0; if (!down_read_trylock(&adev->reset_domain->sem)) return -EIO; memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); queue_input.doorbell_offset = q->properties.doorbell_off; queue_input.gang_context_addr = q->gang_ctx_gpu_addr; amdgpu_mes_lock(&adev->mes); r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); amdgpu_mes_unlock(&adev->mes); up_read(&adev->reset_domain->sem); if (r) { dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n", q->properties.doorbell_off); dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); kfd_hws_hang(dqm); } return r; } static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm) { struct device_process_node *cur; struct device *dev = dqm->dev->adev->dev; struct qcm_process_device *qpd; struct queue *q; int retval = 0; list_for_each_entry(cur, &dqm->queues, list) { qpd = cur->qpd; list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.is_active) { retval = remove_queue_mes(dqm, q, qpd); if (retval) { dev_err(dev, "%s: Failed to remove queue %d for dev %d", __func__, q->properties.queue_id, dqm->dev->id); return retval; } } } } return retval; } static int add_all_kfd_queues_mes(struct device_queue_manager *dqm) { struct device_process_node *cur; struct device *dev = dqm->dev->adev->dev; struct qcm_process_device *qpd; struct queue *q; int retval = 0; list_for_each_entry(cur, &dqm->queues, list) { qpd = cur->qpd; list_for_each_entry(q, &qpd->queues_list, list) { if (!q->properties.is_active) continue; retval = add_queue_mes(dqm, q, qpd); if (retval) { dev_err(dev, "%s: Failed to add queue %d for dev %d", __func__, q->properties.queue_id, dqm->dev->id); return retval; } } } return retval; } static int suspend_all_queues_mes(struct device_queue_manager *dqm) { struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; int r = 0; if (!down_read_trylock(&adev->reset_domain->sem)) return -EIO; r = amdgpu_mes_suspend(adev); up_read(&adev->reset_domain->sem); if (r) { dev_err(adev->dev, "failed to suspend gangs from MES\n"); dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); kfd_hws_hang(dqm); } return r; } static int resume_all_queues_mes(struct device_queue_manager *dqm) { struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; int r = 0; if (!down_read_trylock(&adev->reset_domain->sem)) return -EIO; r = amdgpu_mes_resume(adev); up_read(&adev->reset_domain->sem); if (r) { dev_err(adev->dev, "failed to resume gangs from MES\n"); dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n"); kfd_hws_hang(dqm); } return r; } static void increment_queue_count(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { dqm->active_queue_count++; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_DIQ) dqm->active_cp_queue_count++; if (q->properties.is_gws) { dqm->gws_queue_count++; qpd->mapped_gws_queue = true; } } static void decrement_queue_count(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { dqm->active_queue_count--; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_DIQ) dqm->active_cp_queue_count--; if (q->properties.is_gws) { dqm->gws_queue_count--; qpd->mapped_gws_queue = false; } } /* * Allocate a doorbell ID to this queue. * If doorbell_id is passed in, make sure requested ID is valid then allocate it. */ static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q, uint32_t const *restore_id) { struct kfd_node *dev = qpd->dqm->dev; if (!KFD_IS_SOC15(dev)) { /* On pre-SOC15 chips we need to use the queue ID to * preserve the user mode ABI. */ if (restore_id && *restore_id != q->properties.queue_id) return -EINVAL; q->doorbell_id = q->properties.queue_id; } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { /* For SDMA queues on SOC15 with 8-byte doorbell, use static * doorbell assignments based on the engine and queue id. * The doobell index distance between RLC (2*i) and (2*i+1) * for a SDMA engine is 512. */ uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; /* * q->properties.sdma_engine_id corresponds to the virtual * sdma engine number. However, for doorbell allocation, * we need the physical sdma engine id in order to get the * correct doorbell offset. */ uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * get_num_all_sdma_engines(qpd->dqm) + q->properties.sdma_engine_id] + (q->properties.sdma_queue_id & 1) * KFD_QUEUE_DOORBELL_MIRROR_OFFSET + (q->properties.sdma_queue_id >> 1); if (restore_id && *restore_id != valid_id) return -EINVAL; q->doorbell_id = valid_id; } else { /* For CP queues on SOC15 */ if (restore_id) { /* make sure that ID is free */ if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) return -EINVAL; q->doorbell_id = *restore_id; } else { /* or reserve a free doorbell ID */ unsigned int found; found = find_first_zero_bit(qpd->doorbell_bitmap, KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { pr_debug("No doorbells available"); return -EBUSY; } set_bit(found, qpd->doorbell_bitmap); q->doorbell_id = found; } } q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, qpd->proc_doorbells, q->doorbell_id, dev->kfd->device_info.doorbell_size); return 0; } static void deallocate_doorbell(struct qcm_process_device *qpd, struct queue *q) { unsigned int old; struct kfd_node *dev = qpd->dqm->dev; if (!KFD_IS_SOC15(dev) || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) return; old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); WARN_ON(!old); } static void program_trap_handler_settings(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { uint32_t xcc_mask = dqm->dev->xcc_mask; int xcc_id; if (dqm->dev->kfd2kgd->program_trap_handler_settings) for_each_inst(xcc_id, xcc_mask) dqm->dev->kfd2kgd->program_trap_handler_settings( dqm->dev->adev, qpd->vmid, qpd->tba_addr, qpd->tma_addr, xcc_id); } static int allocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { struct device *dev = dqm->dev->adev->dev; int allocated_vmid = -1, i; for (i = dqm->dev->vm_info.first_vmid_kfd; i <= dqm->dev->vm_info.last_vmid_kfd; i++) { if (!dqm->vmid_pasid[i]) { allocated_vmid = i; break; } } if (allocated_vmid < 0) { dev_err(dev, "no more vmid to allocate\n"); return -ENOSPC; } pr_debug("vmid allocated: %d\n", allocated_vmid); dqm->vmid_pasid[allocated_vmid] = q->process->pasid; set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); qpd->vmid = allocated_vmid; q->properties.vmid = allocated_vmid; program_sh_mem_settings(dqm, qpd); if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) program_trap_handler_settings(dqm, qpd); /* qpd->page_table_base is set earlier when register_process() * is called, i.e. when the first queue is created. */ dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, qpd->vmid, qpd->page_table_base); /* invalidate the VM context after pasid and vmid mapping is set up */ kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); if (dqm->dev->kfd2kgd->set_scratch_backing_va) dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, qpd->sh_hidden_private_base, qpd->vmid); return 0; } static int flush_texture_cache_nocpsch(struct kfd_node *kdev, struct qcm_process_device *qpd) { const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; int ret; if (!qpd->ib_kaddr) return -ENOMEM; ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); if (ret) return ret; return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, qpd->ib_base, (uint32_t *)qpd->ib_kaddr, pmf->release_mem_size / sizeof(uint32_t)); } static void deallocate_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { struct device *dev = dqm->dev->adev->dev; /* On GFX v7, CP doesn't flush TC at dequeue */ if (q->device->adev->asic_type == CHIP_HAWAII) if (flush_texture_cache_nocpsch(q->device, qpd)) dev_err(dev, "Failed to flush TC\n"); kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); /* Release the vmid mapping */ set_pasid_vmid_mapping(dqm, 0, qpd->vmid); dqm->vmid_pasid[qpd->vmid] = 0; qpd->vmid = 0; q->properties.vmid = 0; } static int create_queue_nocpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd, const struct kfd_criu_queue_priv_data *qd, const void *restore_mqd, const void *restore_ctl_stack) { struct mqd_manager *mqd_mgr; int retval; dqm_lock(dqm); if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new usermode queue because %d queues were already created\n", dqm->total_queue_count); retval = -EPERM; goto out_unlock; } if (list_empty(&qpd->queues_list)) { retval = allocate_vmid(dqm, qpd, q); if (retval) goto out_unlock; } q->properties.vmid = qpd->vmid; /* * Eviction state logic: mark all queues as evicted, even ones * not currently active. Restoring inactive queues later only * updates the is_evicted flag but is a no-op otherwise. */ q->properties.is_evicted = !!qpd->evicted; q->properties.tba_addr = qpd->tba_addr; q->properties.tma_addr = qpd->tma_addr; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { retval = allocate_hqd(dqm, q); if (retval) goto deallocate_vmid; pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", q->pipe, q->queue); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); if (retval) goto deallocate_vmid; dqm->asic_ops.init_sdma_vm(dqm, q, qpd); } retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); if (retval) goto out_deallocate_hqd; /* Temporarily release dqm lock to avoid a circular lock dependency */ dqm_unlock(dqm); q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); dqm_lock(dqm); if (!q->mqd_mem_obj) { retval = -ENOMEM; goto out_deallocate_doorbell; } if (qd) mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties, restore_mqd, restore_ctl_stack, qd->ctl_stack_size); else mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); if (q->properties.is_active) { if (!dqm->sched_running) { WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); goto add_queue_to_list; } if (WARN(q->process->mm != current->mm, "should only run in user thread")) retval = -EFAULT; else retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, current->mm); if (retval) goto out_free_mqd; } add_queue_to_list: list_add(&q->list, &qpd->queues_list); qpd->queue_count++; if (q->properties.is_active) increment_queue_count(dqm, qpd, q); /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); goto out_unlock; out_free_mqd: mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); out_deallocate_doorbell: deallocate_doorbell(qpd, q); out_deallocate_hqd: if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) deallocate_hqd(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); deallocate_vmid: if (list_empty(&qpd->queues_list)) deallocate_vmid(dqm, qpd, q); out_unlock: dqm_unlock(dqm); return retval; } static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) { bool set; int pipe, bit, i; set = false; for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm); pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { if (!is_pipe_enabled(dqm, 0, pipe)) continue; if (dqm->allocated_queues[pipe] != 0) { bit = ffs(dqm->allocated_queues[pipe]) - 1; dqm->allocated_queues[pipe] &= ~(1 << bit); q->pipe = pipe; q->queue = bit; set = true; break; } } if (!set) return -EBUSY; pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); /* horizontal hqd allocation */ dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); return 0; } static inline void deallocate_hqd(struct device_queue_manager *dqm, struct queue *q) { dqm->allocated_queues[q->pipe] |= (1 << q->queue); } #define SQ_IND_CMD_CMD_KILL 0x00000003 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) { int status = 0; unsigned int vmid; uint16_t queried_pasid; union SQ_CMD_BITS reg_sq_cmd; union GRBM_GFX_INDEX_BITS reg_gfx_index; struct kfd_process_device *pdd; int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; uint32_t xcc_mask = dev->xcc_mask; int xcc_id; reg_sq_cmd.u32All = 0; reg_gfx_index.u32All = 0; pr_debug("Killing all process wavefronts\n"); if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { dev_err(dev->adev->dev, "no vmid pasid mapping supported\n"); return -EOPNOTSUPP; } /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. * ATC_VMID15_PASID_MAPPING * to check which VMID the current process is mapped to. */ for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info (dev->adev, vmid, &queried_pasid); if (status && queried_pasid == p->pasid) { pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n", vmid, p->pasid); break; } } if (vmid > last_vmid_to_scan) { dev_err(dev->adev->dev, "Didn't find vmid for pasid 0x%x\n", p->pasid); return -EFAULT; } /* taking the VMID for that process on the safe way using PDD */ pdd = kfd_get_process_device_data(dev, p); if (!pdd) return -EFAULT; reg_gfx_index.bits.sh_broadcast_writes = 1; reg_gfx_index.bits.se_broadcast_writes = 1; reg_gfx_index.bits.instance_broadcast_writes = 1; reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; reg_sq_cmd.bits.vm_id = vmid; for_each_inst(xcc_id, xcc_mask) dev->kfd2kgd->wave_control_execute( dev->adev, reg_gfx_index.u32All, reg_sq_cmd.u32All, xcc_id); return 0; } /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked * to avoid asynchronized access */ static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd_mgr; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) deallocate_hqd(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) deallocate_sdma_queue(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); else { pr_debug("q->properties.type %d is invalid\n", q->properties.type); return -EINVAL; } dqm->total_queue_count--; deallocate_doorbell(qpd, q); if (!dqm->sched_running) { WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); return 0; } retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, KFD_PREEMPT_TYPE_WAVEFRONT_RESET, KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval == -ETIME) qpd->reset_wavefronts = true; list_del(&q->list); if (list_empty(&qpd->queues_list)) { if (qpd->reset_wavefronts) { pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", dqm->dev); /* dbgdev_wave_reset_wavefronts has to be called before * deallocate_vmid(), i.e. when vmid is still in use. */ dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); qpd->reset_wavefronts = false; } deallocate_vmid(dqm, qpd, q); } qpd->queue_count--; if (q->properties.is_active) decrement_queue_count(dqm, qpd, q); return retval; } static int destroy_queue_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; uint64_t sdma_val = 0; struct device *dev = dqm->dev->adev->dev; struct kfd_process_device *pdd = qpd_to_pdd(qpd); struct mqd_manager *mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; /* Get the SDMA queue stats */ if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, &sdma_val); if (retval) dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", q->properties.queue_id); } dqm_lock(dqm); retval = destroy_queue_nocpsch_locked(dqm, qpd, q); if (!retval) pdd->sdma_past_activity_counter += sdma_val; dqm_unlock(dqm); mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); return retval; } static int update_queue(struct device_queue_manager *dqm, struct queue *q, struct mqd_update_info *minfo) { int retval = 0; struct device *dev = dqm->dev->adev->dev; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; bool prev_active = false; dqm_lock(dqm); pdd = kfd_get_process_device_data(q->device, q->process); if (!pdd) { retval = -ENODEV; goto out_unlock; } mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; /* Save previous activity state for counters */ prev_active = q->properties.is_active; /* Make sure the queue is unmapped before updating the MQD */ if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { if (!dqm->dev->kfd->shared_resources.enable_mes) retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); else if (prev_active) retval = remove_queue_mes(dqm, q, &pdd->qpd); /* queue is reset so inaccessable */ if (pdd->has_reset_queue) { retval = -EACCES; goto out_unlock; } if (retval) { dev_err(dev, "unmap queue failed\n"); goto out_unlock; } } else if (prev_active && (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { if (!dqm->sched_running) { WARN_ONCE(1, "Update non-HWS queue while stopped\n"); goto out_unlock; } retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, (dqm->dev->kfd->cwsr_enabled ? KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval) { dev_err(dev, "destroy mqd failed\n"); goto out_unlock; } } mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); /* * check active state vs. the previous state and modify * counter accordingly. map_queues_cpsch uses the * dqm->active_queue_count to determine whether a new runlist must be * uploaded. */ if (q->properties.is_active && !prev_active) { increment_queue_count(dqm, &pdd->qpd, q); } else if (!q->properties.is_active && prev_active) { decrement_queue_count(dqm, &pdd->qpd, q); } else if (q->gws && !q->properties.is_gws) { if (q->properties.is_active) { dqm->gws_queue_count++; pdd->qpd.mapped_gws_queue = true; } q->properties.is_gws = true; } else if (!q->gws && q->properties.is_gws) { if (q->properties.is_active) { dqm->gws_queue_count--; pdd->qpd.mapped_gws_queue = false; } q->properties.is_gws = false; } if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { if (!dqm->dev->kfd->shared_resources.enable_mes) retval = map_queues_cpsch(dqm); else if (q->properties.is_active) retval = add_queue_mes(dqm, q, &pdd->qpd); } else if (q->properties.is_active && (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { if (WARN(q->process->mm != current->mm, "should only run in user thread")) retval = -EFAULT; else retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, current->mm); } out_unlock: dqm_unlock(dqm); return retval; } /* suspend_single_queue does not lock the dqm like the * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should * lock the dqm before calling, and unlock after calling. * * The reason we don't lock the dqm is because this function may be * called on multiple queues in a loop, so rather than locking/unlocking * multiple times, we will just keep the dqm locked for all of the calls. */ static int suspend_single_queue(struct device_queue_manager *dqm, struct kfd_process_device *pdd, struct queue *q) { bool is_new; if (q->properties.is_suspended) return 0; pr_debug("Suspending PASID %u queue [%i]\n", pdd->process->pasid, q->properties.queue_id); is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); if (is_new || q->properties.is_being_destroyed) { pr_debug("Suspend: skip %s queue id %i\n", is_new ? "new" : "destroyed", q->properties.queue_id); return -EBUSY; } q->properties.is_suspended = true; if (q->properties.is_active) { if (dqm->dev->kfd->shared_resources.enable_mes) { int r = remove_queue_mes(dqm, q, &pdd->qpd); if (r) return r; } decrement_queue_count(dqm, &pdd->qpd, q); q->properties.is_active = false; } return 0; } /* resume_single_queue does not lock the dqm like the functions * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should * lock the dqm before calling, and unlock after calling. * * The reason we don't lock the dqm is because this function may be * called on multiple queues in a loop, so rather than locking/unlocking * multiple times, we will just keep the dqm locked for all of the calls. */ static int resume_single_queue(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { struct kfd_process_device *pdd; if (!q->properties.is_suspended) return 0; pdd = qpd_to_pdd(qpd); pr_debug("Restoring from suspend PASID %u queue [%i]\n", pdd->process->pasid, q->properties.queue_id); q->properties.is_suspended = false; if (QUEUE_IS_ACTIVE(q->properties)) { if (dqm->dev->kfd->shared_resources.enable_mes) { int r = add_queue_mes(dqm, q, &pdd->qpd); if (r) return r; } q->properties.is_active = true; increment_queue_count(dqm, qpd, q); } return 0; } static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; int retval, ret = 0; dqm_lock(dqm); if (qpd->evicted++ > 0) /* already evicted, do nothing */ goto out; pdd = qpd_to_pdd(qpd); pr_debug_ratelimited("Evicting PASID 0x%x queues\n", pdd->process->pasid); pdd->last_evict_timestamp = get_jiffies_64(); /* Mark all queues as evicted. Deactivate all active queues on * the qpd. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = true; if (!q->properties.is_active) continue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; q->properties.is_active = false; decrement_queue_count(dqm, qpd, q); if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) continue; retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, (dqm->dev->kfd->cwsr_enabled ? KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); if (retval && !ret) /* Return the first error, but keep going to * maintain a consistent eviction state */ ret = retval; } out: dqm_unlock(dqm); return ret; } static int evict_process_queues_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct device *dev = dqm->dev->adev->dev; struct kfd_process_device *pdd; int retval = 0; dqm_lock(dqm); if (qpd->evicted++ > 0) /* already evicted, do nothing */ goto out; pdd = qpd_to_pdd(qpd); /* The debugger creates processes that temporarily have not acquired * all VMs for all devices and has no VMs itself. * Skip queue eviction on process eviction. */ if (!pdd->drm_priv) goto out; pr_debug_ratelimited("Evicting PASID 0x%x queues\n", pdd->process->pasid); /* Mark all queues as evicted. Deactivate all active queues on * the qpd. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = true; if (!q->properties.is_active) continue; q->properties.is_active = false; decrement_queue_count(dqm, qpd, q); if (dqm->dev->kfd->shared_resources.enable_mes) { retval = remove_queue_mes(dqm, q, qpd); if (retval) { dev_err(dev, "Failed to evict queue %d\n", q->properties.queue_id); goto out; } } } pdd->last_evict_timestamp = get_jiffies_64(); if (!dqm->dev->kfd->shared_resources.enable_mes) retval = execute_queues_cpsch(dqm, qpd->is_debug ? KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); out: dqm_unlock(dqm); return retval; } static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct mm_struct *mm = NULL; struct queue *q; struct mqd_manager *mqd_mgr; struct kfd_process_device *pdd; uint64_t pd_base; uint64_t eviction_duration; int retval, ret = 0; pdd = qpd_to_pdd(qpd); /* Retrieve PD base */ pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); dqm_lock(dqm); if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ goto out; if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ qpd->evicted--; goto out; } pr_debug_ratelimited("Restoring PASID 0x%x queues\n", pdd->process->pasid); /* Update PD Base in QPD */ qpd->page_table_base = pd_base; pr_debug("Updated PD address to 0x%llx\n", pd_base); if (!list_empty(&qpd->queues_list)) { dqm->dev->kfd2kgd->set_vm_context_page_table_base( dqm->dev->adev, qpd->vmid, qpd->page_table_base); kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); } /* Take a safe reference to the mm_struct, which may otherwise * disappear even while the kfd_process is still referenced. */ mm = get_task_mm(pdd->process->lead_thread); if (!mm) { ret = -EFAULT; goto out; } /* Remove the eviction flags. Activate queues that are not * inactive for other reasons. */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = false; if (!QUEUE_IS_ACTIVE(q->properties)) continue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; q->properties.is_active = true; increment_queue_count(dqm, qpd, q); if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) continue; retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue, &q->properties, mm); if (retval && !ret) /* Return the first error, but keep going to * maintain a consistent eviction state */ ret = retval; } qpd->evicted = 0; eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; atomic64_add(eviction_duration, &pdd->evict_duration_counter); out: if (mm) mmput(mm); dqm_unlock(dqm); return ret; } static int restore_process_queues_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct device *dev = dqm->dev->adev->dev; struct kfd_process_device *pdd; uint64_t eviction_duration; int retval = 0; pdd = qpd_to_pdd(qpd); dqm_lock(dqm); if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ goto out; if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ qpd->evicted--; goto out; } /* The debugger creates processes that temporarily have not acquired * all VMs for all devices and has no VMs itself. * Skip queue restore on process restore. */ if (!pdd->drm_priv) goto vm_not_acquired; pr_debug_ratelimited("Restoring PASID 0x%x queues\n", pdd->process->pasid); /* Update PD Base in QPD */ qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); /* activate all active queues on the qpd */ list_for_each_entry(q, &qpd->queues_list, list) { q->properties.is_evicted = false; if (!QUEUE_IS_ACTIVE(q->properties)) continue; q->properties.is_active = true; increment_queue_count(dqm, &pdd->qpd, q); if (dqm->dev->kfd->shared_resources.enable_mes) { retval = add_queue_mes(dqm, q, qpd); if (retval) { dev_err(dev, "Failed to restore queue %d\n", q->properties.queue_id); goto out; } } } if (!dqm->dev->kfd->shared_resources.enable_mes) retval = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; atomic64_add(eviction_duration, &pdd->evict_duration_counter); vm_not_acquired: qpd->evicted = 0; out: dqm_unlock(dqm); return retval; } static int register_process(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct device_process_node *n; struct kfd_process_device *pdd; uint64_t pd_base; int retval; n = kzalloc(sizeof(*n), GFP_KERNEL); if (!n) return -ENOMEM; n->qpd = qpd; pdd = qpd_to_pdd(qpd); /* Retrieve PD base */ pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); dqm_lock(dqm); list_add(&n->list, &dqm->queues); /* Update PD Base in QPD */ qpd->page_table_base = pd_base; pr_debug("Updated PD address to 0x%llx\n", pd_base); retval = dqm->asic_ops.update_qpd(dqm, qpd); dqm->processes_count++; dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ kfd_inc_compute_active(dqm->dev); return retval; } static int unregister_process(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int retval; struct device_process_node *cur, *next; pr_debug("qpd->queues_list is %s\n", list_empty(&qpd->queues_list) ? "empty" : "not empty"); retval = 0; dqm_lock(dqm); list_for_each_entry_safe(cur, next, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; goto out; } } /* qpd not found in dqm list */ retval = 1; out: dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (!retval) kfd_dec_compute_active(dqm->dev); return retval; } static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, unsigned int vmid) { uint32_t xcc_mask = dqm->dev->xcc_mask; int xcc_id, ret; for_each_inst(xcc_id, xcc_mask) { ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( dqm->dev->adev, pasid, vmid, xcc_id); if (ret) break; } return ret; } static void init_interrupts(struct device_queue_manager *dqm) { uint32_t xcc_mask = dqm->dev->xcc_mask; unsigned int i, xcc_id; for_each_inst(xcc_id, xcc_mask) { for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { if (is_pipe_enabled(dqm, 0, i)) { dqm->dev->kfd2kgd->init_interrupts( dqm->dev->adev, i, xcc_id); } } } } static int initialize_nocpsch(struct device_queue_manager *dqm) { int pipe, queue; pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), sizeof(unsigned int), GFP_KERNEL); if (!dqm->allocated_queues) return -ENOMEM; mutex_init(&dqm->lock_hidden); INIT_LIST_HEAD(&dqm->queues); dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; dqm->active_cp_queue_count = 0; dqm->gws_queue_count = 0; for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { int pipe_offset = pipe * get_queues_per_pipe(dqm); for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) if (test_bit(pipe_offset + queue, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) dqm->allocated_queues[pipe] |= 1 << queue; } memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); init_sdma_bitmaps(dqm); return 0; } static void uninitialize(struct device_queue_manager *dqm) { int i; WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); kfree(dqm->allocated_queues); for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) kfree(dqm->mqd_mgrs[i]); mutex_destroy(&dqm->lock_hidden); } static int start_nocpsch(struct device_queue_manager *dqm) { int r = 0; pr_info("SW scheduler is used"); init_interrupts(dqm); if (dqm->dev->adev->asic_type == CHIP_HAWAII) r = pm_init(&dqm->packet_mgr, dqm); if (!r) dqm->sched_running = true; return r; } static int stop_nocpsch(struct device_queue_manager *dqm) { dqm_lock(dqm); if (!dqm->sched_running) { dqm_unlock(dqm); return 0; } if (dqm->dev->adev->asic_type == CHIP_HAWAII) pm_uninit(&dqm->packet_mgr); dqm->sched_running = false; dqm_unlock(dqm); return 0; } static int allocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q, const uint32_t *restore_sdma_id) { struct device *dev = dqm->dev->adev->dev; int bit; if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { dev_err(dev, "No more SDMA queue to allocate\n"); return -ENOMEM; } if (restore_sdma_id) { /* Re-use existing sdma_id */ if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { dev_err(dev, "SDMA queue already in use\n"); return -EBUSY; } clear_bit(*restore_sdma_id, dqm->sdma_bitmap); q->sdma_id = *restore_sdma_id; } else { /* Find first available sdma_id */ bit = find_first_bit(dqm->sdma_bitmap, get_num_sdma_queues(dqm)); clear_bit(bit, dqm->sdma_bitmap); q->sdma_id = bit; } q->properties.sdma_engine_id = q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); q->properties.sdma_queue_id = q->sdma_id / kfd_get_num_sdma_engines(dqm->dev); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { dev_err(dev, "No more XGMI SDMA queue to allocate\n"); return -ENOMEM; } if (restore_sdma_id) { /* Re-use existing sdma_id */ if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { dev_err(dev, "SDMA queue already in use\n"); return -EBUSY; } clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); q->sdma_id = *restore_sdma_id; } else { bit = find_first_bit(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm)); clear_bit(bit, dqm->xgmi_sdma_bitmap); q->sdma_id = bit; } /* sdma_engine_id is sdma id including * both PCIe-optimized SDMAs and XGMI- * optimized SDMAs. The calculation below * assumes the first N engines are always * PCIe-optimized ones */ q->properties.sdma_engine_id = kfd_get_num_sdma_engines(dqm->dev) + q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); q->properties.sdma_queue_id = q->sdma_id / kfd_get_num_xgmi_sdma_engines(dqm->dev); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { int i, num_queues, num_engines, eng_offset = 0, start_engine; bool free_bit_found = false, is_xgmi = false; if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) { num_queues = get_num_sdma_queues(dqm); num_engines = kfd_get_num_sdma_engines(dqm->dev); q->properties.type = KFD_QUEUE_TYPE_SDMA; } else { num_queues = get_num_xgmi_sdma_queues(dqm); num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev); eng_offset = kfd_get_num_sdma_engines(dqm->dev); q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI; is_xgmi = true; } /* Scan available bit based on target engine ID. */ start_engine = q->properties.sdma_engine_id - eng_offset; for (i = start_engine; i < num_queues; i += num_engines) { if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap)) continue; clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap); q->sdma_id = i; q->properties.sdma_queue_id = q->sdma_id / num_engines; free_bit_found = true; break; } if (!free_bit_found) { dev_err(dev, "No more SDMA queue to allocate for target ID %i\n", q->properties.sdma_engine_id); return -ENOMEM; } } pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); return 0; } static void deallocate_sdma_queue(struct device_queue_manager *dqm, struct queue *q) { if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { if (q->sdma_id >= get_num_sdma_queues(dqm)) return; set_bit(q->sdma_id, dqm->sdma_bitmap); } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) return; set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); } } /* * Device Queue Manager implementation for cp scheduler */ static int set_sched_resources(struct device_queue_manager *dqm) { int i, mec; struct scheduling_resources res; struct device *dev = dqm->dev->adev->dev; res.vmid_mask = dqm->dev->compute_vmid_bitmap; res.queue_mask = 0; for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) / dqm->dev->kfd->shared_resources.num_pipe_per_mec; if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) continue; /* only acquire queues from the first MEC */ if (mec > 0) continue; /* This situation may be hit in the future if a new HW * generation exposes more than 64 queues. If so, the * definition of res.queue_mask needs updating */ if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i); break; } res.queue_mask |= 1ull << amdgpu_queue_mask_bit_to_set_resource_bit( dqm->dev->adev, i); } res.gws_mask = ~0ull; res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; pr_debug("Scheduling resources:\n" "vmid mask: 0x%8X\n" "queue mask: 0x%8llX\n", res.vmid_mask, res.queue_mask); return pm_send_set_resources(&dqm->packet_mgr, &res); } static int initialize_cpsch(struct device_queue_manager *dqm) { pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); mutex_init(&dqm->lock_hidden); INIT_LIST_HEAD(&dqm->queues); dqm->active_queue_count = dqm->processes_count = 0; dqm->active_cp_queue_count = 0; dqm->gws_queue_count = 0; dqm->active_runlist = false; INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); dqm->trap_debug_vmid = 0; init_sdma_bitmaps(dqm); if (dqm->dev->kfd2kgd->get_iq_wait_times) dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev, &dqm->wait_times, ffs(dqm->dev->xcc_mask) - 1); return 0; } /* halt_cpsch: * Unmap queues so the schedule doesn't continue remaining jobs in the queue. * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch * is called. */ static int halt_cpsch(struct device_queue_manager *dqm) { int ret = 0; dqm_lock(dqm); if (!dqm->sched_running) { dqm_unlock(dqm); return 0; } WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n"); if (!dqm->is_hws_hang) { if (!dqm->dev->kfd->shared_resources.enable_mes) ret = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); else ret = remove_all_kfd_queues_mes(dqm); } dqm->sched_halt = true; dqm_unlock(dqm); return ret; } /* unhalt_cpsch * Unset dqm->sched_halt and map queues back to runlist */ static int unhalt_cpsch(struct device_queue_manager *dqm) { int ret = 0; dqm_lock(dqm); if (!dqm->sched_running || !dqm->sched_halt) { WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n"); dqm_unlock(dqm); return 0; } dqm->sched_halt = false; if (!dqm->dev->kfd->shared_resources.enable_mes) ret = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); else ret = add_all_kfd_queues_mes(dqm); dqm_unlock(dqm); return ret; } static int start_cpsch(struct device_queue_manager *dqm) { struct device *dev = dqm->dev->adev->dev; int retval, num_hw_queue_slots; retval = 0; dqm_lock(dqm); if (!dqm->dev->kfd->shared_resources.enable_mes) { retval = pm_init(&dqm->packet_mgr, dqm); if (retval) goto fail_packet_manager_init; retval = set_sched_resources(dqm); if (retval) goto fail_set_sched_resources; } pr_debug("Allocating fence memory\n"); /* allocate fence memory on the gart */ retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), &dqm->fence_mem); if (retval) goto fail_allocate_vidmem; dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; init_interrupts(dqm); /* clear hang status when driver try to start the hw scheduler */ dqm->sched_running = true; if (!dqm->dev->kfd->shared_resources.enable_mes) execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */ if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu && (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) { uint32_t reg_offset = 0; uint32_t grace_period = 1; retval = pm_update_grace_period(&dqm->packet_mgr, grace_period); if (retval) dev_err(dev, "Setting grace timeout failed\n"); else if (dqm->dev->kfd2kgd->build_grace_period_packet_info) /* Update dqm->wait_times maintained in software */ dqm->dev->kfd2kgd->build_grace_period_packet_info( dqm->dev->adev, dqm->wait_times, grace_period, ®_offset, &dqm->wait_times); } /* setup per-queue reset detection buffer */ num_hw_queue_slots = dqm->dev->kfd->shared_resources.num_queue_per_pipe * dqm->dev->kfd->shared_resources.num_pipe_per_mec * NUM_XCC(dqm->dev->xcc_mask); dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info); dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL); if (!dqm->detect_hang_info) { retval = -ENOMEM; goto fail_detect_hang_buffer; } dqm_unlock(dqm); return 0; fail_detect_hang_buffer: kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); fail_allocate_vidmem: fail_set_sched_resources: if (!dqm->dev->kfd->shared_resources.enable_mes) pm_uninit(&dqm->packet_mgr); fail_packet_manager_init: dqm_unlock(dqm); return retval; } static int stop_cpsch(struct device_queue_manager *dqm) { dqm_lock(dqm); if (!dqm->sched_running) { dqm_unlock(dqm); return 0; } if (!dqm->dev->kfd->shared_resources.enable_mes) unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); else remove_all_kfd_queues_mes(dqm); dqm->sched_running = false; if (!dqm->dev->kfd->shared_resources.enable_mes) pm_release_ib(&dqm->packet_mgr); kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); if (!dqm->dev->kfd->shared_resources.enable_mes) pm_uninit(&dqm->packet_mgr); kfree(dqm->detect_hang_info); dqm->detect_hang_info = NULL; dqm_unlock(dqm); return 0; } static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { dqm_lock(dqm); if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new kernel queue because %d queues were already created\n", dqm->total_queue_count); dqm_unlock(dqm); return -EPERM; } /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); list_add(&kq->list, &qpd->priv_queue_list); increment_queue_count(dqm, qpd, kq->queue); qpd->is_debug = true; execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); dqm_unlock(dqm); return 0; } static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, struct kernel_queue *kq, struct qcm_process_device *qpd) { dqm_lock(dqm); list_del(&kq->list); decrement_queue_count(dqm, qpd, kq->queue); qpd->is_debug = false; execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); /* * Unconditionally decrement this counter, regardless of the queue's * type. */ dqm->total_queue_count--; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); } static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd, const struct kfd_criu_queue_priv_data *qd, const void *restore_mqd, const void *restore_ctl_stack) { int retval; struct mqd_manager *mqd_mgr; if (dqm->total_queue_count >= max_num_of_queues_per_device) { pr_warn("Can't create new usermode queue because %d queues were already created\n", dqm->total_queue_count); retval = -EPERM; goto out; } if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI || q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) { dqm_lock(dqm); retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); dqm_unlock(dqm); if (retval) goto out; } retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); if (retval) goto out_deallocate_sdma_queue; mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) dqm->asic_ops.init_sdma_vm(dqm, q, qpd); q->properties.tba_addr = qpd->tba_addr; q->properties.tma_addr = qpd->tma_addr; q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); if (!q->mqd_mem_obj) { retval = -ENOMEM; goto out_deallocate_doorbell; } dqm_lock(dqm); /* * Eviction state logic: mark all queues as evicted, even ones * not currently active. Restoring inactive queues later only * updates the is_evicted flag but is a no-op otherwise. */ q->properties.is_evicted = !!qpd->evicted; q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && kfd_dbg_has_cwsr_workaround(q->device); if (qd) mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties, restore_mqd, restore_ctl_stack, qd->ctl_stack_size); else mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, &q->properties); list_add(&q->list, &qpd->queues_list); qpd->queue_count++; if (q->properties.is_active) { increment_queue_count(dqm, qpd, q); if (!dqm->dev->kfd->shared_resources.enable_mes) retval = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); else retval = add_queue_mes(dqm, q, qpd); if (retval) goto cleanup_queue; } /* * Unconditionally increment this counter, regardless of the queue's * type or whether the queue is active. */ dqm->total_queue_count++; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); return retval; cleanup_queue: qpd->queue_count--; list_del(&q->list); if (q->properties.is_active) decrement_queue_count(dqm, qpd, q); mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); dqm_unlock(dqm); out_deallocate_doorbell: deallocate_doorbell(qpd, q); out_deallocate_sdma_queue: if (q->properties.type == KFD_QUEUE_TYPE_SDMA || q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { dqm_lock(dqm); deallocate_sdma_queue(dqm, q); dqm_unlock(dqm); } out: return retval; } int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm, uint64_t fence_value, unsigned int timeout_ms) { unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; struct device *dev = dqm->dev->adev->dev; uint64_t *fence_addr = dqm->fence_addr; while (*fence_addr != fence_value) { /* Fatal err detected, this response won't come */ if (amdgpu_amdkfd_is_fed(dqm->dev->adev)) return -EIO; if (time_after(jiffies, end_jiffies)) { dev_err(dev, "qcm fence wait loop timeout expired\n"); /* In HWS case, this is used to halt the driver thread * in order not to mess up CP states before doing * scandumps for FW debugging. */ while (halt_if_hws_hang) schedule(); return -ETIME; } schedule(); } return 0; } /* dqm->lock mutex has to be locked before calling this function */ static int map_queues_cpsch(struct device_queue_manager *dqm) { struct device *dev = dqm->dev->adev->dev; int retval; if (!dqm->sched_running || dqm->sched_halt) return 0; if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) return 0; if (dqm->active_runlist) return 0; retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); pr_debug("%s sent runlist\n", __func__); if (retval) { dev_err(dev, "failed to execute runlist\n"); return retval; } dqm->active_runlist = true; return retval; } static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q, struct qcm_process_device *qpd) { struct kfd_process_device *pdd = qpd_to_pdd(qpd); dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid 0x%0x is reset\n", q->properties.queue_id, q->process->pasid); pdd->has_reset_queue = true; if (q->properties.is_active) { q->properties.is_active = false; decrement_queue_count(dqm, qpd, q); } } static int detect_queue_hang(struct device_queue_manager *dqm) { int i; /* detect should be used only in dqm locked queue reset */ if (WARN_ON(dqm->detect_hang_count > 0)) return 0; memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size); for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) { uint32_t mec, pipe, queue; int xcc_id; mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) / dqm->dev->kfd->shared_resources.num_pipe_per_mec; if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) continue; amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue); for_each_inst(xcc_id, dqm->dev->xcc_mask) { uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr( dqm->dev->adev, pipe, queue, xcc_id); struct dqm_detect_hang_info hang_info; if (!queue_addr) continue; hang_info.pipe_id = pipe; hang_info.queue_id = queue; hang_info.xcc_id = xcc_id; hang_info.queue_address = queue_addr; dqm->detect_hang_info[dqm->detect_hang_count] = hang_info; dqm->detect_hang_count++; } } return dqm->detect_hang_count; } static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address) { struct device_process_node *cur; struct qcm_process_device *qpd; struct queue *q; list_for_each_entry(cur, &dqm->queues, list) { qpd = cur->qpd; list_for_each_entry(q, &qpd->queues_list, list) { if (queue_address == q->properties.queue_address) return q; } } return NULL; } /* only for compute queue */ static int reset_queues_on_hws_hang(struct device_queue_manager *dqm) { int r = 0, reset_count = 0, i; if (!dqm->detect_hang_info || dqm->is_hws_hang) return -EIO; /* assume dqm locked. */ if (!detect_queue_hang(dqm)) return -ENOTRECOVERABLE; for (i = 0; i < dqm->detect_hang_count; i++) { struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i]; struct queue *q = find_queue_by_address(dqm, hang_info.queue_address); struct kfd_process_device *pdd; uint64_t queue_addr = 0; if (!q) { r = -ENOTRECOVERABLE; goto reset_fail; } pdd = kfd_get_process_device_data(dqm->dev, q->process); if (!pdd) { r = -ENOTRECOVERABLE; goto reset_fail; } queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev, hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id, KFD_UNMAP_LATENCY_MS); /* either reset failed or we reset an unexpected queue. */ if (queue_addr != q->properties.queue_address) { r = -ENOTRECOVERABLE; goto reset_fail; } set_queue_as_reset(dqm, q, &pdd->qpd); reset_count++; } if (reset_count == dqm->detect_hang_count) kfd_signal_reset_event(dqm->dev); else r = -ENOTRECOVERABLE; reset_fail: dqm->detect_hang_count = 0; return r; } /* dqm->lock mutex has to be locked before calling this function */ static int unmap_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param, uint32_t grace_period, bool reset) { struct device *dev = dqm->dev->adev->dev; struct mqd_manager *mqd_mgr; int retval; if (!dqm->sched_running) return 0; if (!dqm->active_runlist) return 0; if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) return -EIO; if (grace_period != USE_DEFAULT_GRACE_PERIOD) { retval = pm_update_grace_period(&dqm->packet_mgr, grace_period); if (retval) goto out; } retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); if (retval) goto out; *dqm->fence_addr = KFD_FENCE_INIT; mb(); pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, KFD_FENCE_COMPLETED); /* should be timed out */ retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED, queue_preemption_timeout_ms); if (retval) { dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); kfd_hws_hang(dqm); goto out; } /* In the current MEC firmware implementation, if compute queue * doesn't response to the preemption request in time, HIQ will * abandon the unmap request without returning any timeout error * to driver. Instead, MEC firmware will log the doorbell of the * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. * To make sure the queue unmap was successful, driver need to * check those fields */ mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd)) { if (reset_queues_on_hws_hang(dqm)) { while (halt_if_hws_hang) schedule(); dqm->is_hws_hang = true; kfd_hws_hang(dqm); retval = -ETIME; goto out; } } /* We need to reset the grace period value for this device */ if (grace_period != USE_DEFAULT_GRACE_PERIOD) { if (pm_update_grace_period(&dqm->packet_mgr, USE_DEFAULT_GRACE_PERIOD)) dev_err(dev, "Failed to reset grace period\n"); } pm_release_ib(&dqm->packet_mgr); dqm->active_runlist = false; out: up_read(&dqm->dev->adev->reset_domain->sem); return retval; } /* only for compute queue */ static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid) { int retval; dqm_lock(dqm); retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, pasid, USE_DEFAULT_GRACE_PERIOD, true); dqm_unlock(dqm); return retval; } /* dqm->lock mutex has to be locked before calling this function */ static int execute_queues_cpsch(struct device_queue_manager *dqm, enum kfd_unmap_queues_filter filter, uint32_t filter_param, uint32_t grace_period) { int retval; if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem)) return -EIO; retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); if (!retval) retval = map_queues_cpsch(dqm); up_read(&dqm->dev->adev->reset_domain->sem); return retval; } static int wait_on_destroy_queue(struct device_queue_manager *dqm, struct queue *q) { struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, q->process); int ret = 0; if (pdd->qpd.is_debug) return ret; q->properties.is_being_destroyed = true; if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { dqm_unlock(dqm); mutex_unlock(&q->process->mutex); ret = wait_event_interruptible(dqm->destroy_wait, !q->properties.is_suspended); mutex_lock(&q->process->mutex); dqm_lock(dqm); } return ret; } static int destroy_queue_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd, struct queue *q) { int retval; struct mqd_manager *mqd_mgr; uint64_t sdma_val = 0; struct kfd_process_device *pdd = qpd_to_pdd(qpd); struct device *dev = dqm->dev->adev->dev; /* Get the SDMA queue stats */ if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, &sdma_val); if (retval) dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n", q->properties.queue_id); } /* remove queue from list to prevent rescheduling after preemption */ dqm_lock(dqm); retval = wait_on_destroy_queue(dqm, q); if (retval) { dqm_unlock(dqm); return retval; } if (qpd->is_debug) { /* * error, currently we do not allow to destroy a queue * of a currently debugged process */ retval = -EBUSY; goto failed_try_destroy_debugged_queue; } mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; deallocate_doorbell(qpd, q); if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { deallocate_sdma_queue(dqm, q); pdd->sdma_past_activity_counter += sdma_val; } if (q->properties.is_active) { decrement_queue_count(dqm, qpd, q); q->properties.is_active = false; if (!dqm->dev->kfd->shared_resources.enable_mes) { retval = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); if (retval == -ETIME) qpd->reset_wavefronts = true; } else { retval = remove_queue_mes(dqm, q, qpd); } } list_del(&q->list); qpd->queue_count--; /* * Unconditionally decrement this counter, regardless of the queue's * type */ dqm->total_queue_count--; pr_debug("Total of %d queues are accountable so far\n", dqm->total_queue_count); dqm_unlock(dqm); /* * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid * circular locking */ kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), qpd->pqm->process, q->device, -1, false, NULL, 0); mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); return retval; failed_try_destroy_debugged_queue: dqm_unlock(dqm); return retval; } /* * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to * stay in user mode. */ #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL /* APE1 limit is inclusive and 64K aligned. */ #define APE1_LIMIT_ALIGNMENT 0xFFFF static bool set_cache_memory_policy(struct device_queue_manager *dqm, struct qcm_process_device *qpd, enum cache_policy default_policy, enum cache_policy alternate_policy, void __user *alternate_aperture_base, uint64_t alternate_aperture_size) { bool retval = true; if (!dqm->asic_ops.set_cache_memory_policy) return retval; dqm_lock(dqm); if (alternate_aperture_size == 0) { /* base > limit disables APE1 */ qpd->sh_mem_ape1_base = 1; qpd->sh_mem_ape1_limit = 0; } else { /* * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, * SH_MEM_APE1_BASE[31:0], 0x0000 } * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } * Verify that the base and size parameters can be * represented in this format and convert them. * Additionally restrict APE1 to user-mode addresses. */ uint64_t base = (uintptr_t)alternate_aperture_base; uint64_t limit = base + alternate_aperture_size - 1; if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { retval = false; goto out; } qpd->sh_mem_ape1_base = base >> 16; qpd->sh_mem_ape1_limit = limit >> 16; } retval = dqm->asic_ops.set_cache_memory_policy( dqm, qpd, default_policy, alternate_policy, alternate_aperture_base, alternate_aperture_size); if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) program_sh_mem_settings(dqm, qpd); pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", qpd->sh_mem_config, qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit); out: dqm_unlock(dqm); return retval; } static int process_termination_nocpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct queue *q; struct device_process_node *cur, *next_dpn; int retval = 0; bool found = false; dqm_lock(dqm); /* Clear all user mode queues */ while (!list_empty(&qpd->queues_list)) { struct mqd_manager *mqd_mgr; int ret; q = list_first_entry(&qpd->queues_list, struct queue, list); mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; ret = destroy_queue_nocpsch_locked(dqm, qpd, q); if (ret) retval = ret; dqm_unlock(dqm); mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); dqm_lock(dqm); } /* Unregister process */ list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; found = true; break; } } dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (found) kfd_dec_compute_active(dqm->dev); return retval; } static int get_wave_state(struct device_queue_manager *dqm, struct queue *q, void __user *ctl_stack, u32 *ctl_stack_used_size, u32 *save_area_used_size) { struct mqd_manager *mqd_mgr; dqm_lock(dqm); mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || q->properties.is_active || !q->device->kfd->cwsr_enabled || !mqd_mgr->get_wave_state) { dqm_unlock(dqm); return -EINVAL; } dqm_unlock(dqm); /* * get_wave_state is outside the dqm lock to prevent circular locking * and the queue should be protected against destruction by the process * lock. */ return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, ctl_stack, ctl_stack_used_size, save_area_used_size); } static void get_queue_checkpoint_info(struct device_queue_manager *dqm, const struct queue *q, u32 *mqd_size, u32 *ctl_stack_size) { struct mqd_manager *mqd_mgr; enum KFD_MQD_TYPE mqd_type = get_mqd_type_from_queue_type(q->properties.type); dqm_lock(dqm); mqd_mgr = dqm->mqd_mgrs[mqd_type]; *mqd_size = mqd_mgr->mqd_size; *ctl_stack_size = 0; if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); dqm_unlock(dqm); } static int checkpoint_mqd(struct device_queue_manager *dqm, const struct queue *q, void *mqd, void *ctl_stack) { struct mqd_manager *mqd_mgr; int r = 0; enum KFD_MQD_TYPE mqd_type = get_mqd_type_from_queue_type(q->properties.type); dqm_lock(dqm); if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { r = -EINVAL; goto dqm_unlock; } mqd_mgr = dqm->mqd_mgrs[mqd_type]; if (!mqd_mgr->checkpoint_mqd) { r = -EOPNOTSUPP; goto dqm_unlock; } mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); dqm_unlock: dqm_unlock(dqm); return r; } static int process_termination_cpsch(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int retval; struct queue *q; struct device *dev = dqm->dev->adev->dev; struct kernel_queue *kq, *kq_next; struct mqd_manager *mqd_mgr; struct device_process_node *cur, *next_dpn; enum kfd_unmap_queues_filter filter = KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; bool found = false; retval = 0; dqm_lock(dqm); /* Clean all kernel queues */ list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { list_del(&kq->list); decrement_queue_count(dqm, qpd, kq->queue); qpd->is_debug = false; dqm->total_queue_count--; filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; } /* Clear all user mode queues */ list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.type == KFD_QUEUE_TYPE_SDMA) deallocate_sdma_queue(dqm, q); else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) deallocate_sdma_queue(dqm, q); if (q->properties.is_active) { decrement_queue_count(dqm, qpd, q); if (dqm->dev->kfd->shared_resources.enable_mes) { retval = remove_queue_mes(dqm, q, qpd); if (retval) dev_err(dev, "Failed to remove queue %d\n", q->properties.queue_id); } } dqm->total_queue_count--; } /* Unregister process */ list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { if (qpd == cur->qpd) { list_del(&cur->list); kfree(cur); dqm->processes_count--; found = true; break; } } if (!dqm->dev->kfd->shared_resources.enable_mes) retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); if ((retval || qpd->reset_wavefronts) && down_read_trylock(&dqm->dev->adev->reset_domain->sem)) { pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); qpd->reset_wavefronts = false; up_read(&dqm->dev->adev->reset_domain->sem); } /* Lastly, free mqd resources. * Do free_mqd() after dqm_unlock to avoid circular locking. */ while (!list_empty(&qpd->queues_list)) { q = list_first_entry(&qpd->queues_list, struct queue, list); mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( q->properties.type)]; list_del(&q->list); qpd->queue_count--; dqm_unlock(dqm); mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); dqm_lock(dqm); } dqm_unlock(dqm); /* Outside the DQM lock because under the DQM lock we can't do * reclaim or take other locks that others hold while reclaiming. */ if (found) kfd_dec_compute_active(dqm->dev); return retval; } static int init_mqd_managers(struct device_queue_manager *dqm) { int i, j; struct device *dev = dqm->dev->adev->dev; struct mqd_manager *mqd_mgr; for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); if (!mqd_mgr) { dev_err(dev, "mqd manager [%d] initialization failed\n", i); goto out_free; } dqm->mqd_mgrs[i] = mqd_mgr; } return 0; out_free: for (j = 0; j < i; j++) { kfree(dqm->mqd_mgrs[j]); dqm->mqd_mgrs[j] = NULL; } return -ENOMEM; } /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) { int retval; struct kfd_node *dev = dqm->dev; struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * get_num_all_sdma_engines(dqm) * dev->kfd->device_info.num_sdma_queues_per_engine + (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * NUM_XCC(dqm->dev->xcc_mask)); retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), (void *)&(mem_obj->cpu_ptr), false); return retval; } struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) { struct device_queue_manager *dqm; pr_debug("Loading device queue manager\n"); dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); if (!dqm) return NULL; switch (dev->adev->asic_type) { /* HWS is not available on Hawaii. */ case CHIP_HAWAII: /* HWS depends on CWSR for timely dequeue. CWSR is not * available on Tonga. * * FIXME: This argument also applies to Kaveri. */ case CHIP_TONGA: dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; break; default: dqm->sched_policy = sched_policy; break; } dqm->dev = dev; switch (dqm->sched_policy) { case KFD_SCHED_POLICY_HWS: case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: /* initialize dqm for cp scheduling */ dqm->ops.create_queue = create_queue_cpsch; dqm->ops.initialize = initialize_cpsch; dqm->ops.start = start_cpsch; dqm->ops.stop = stop_cpsch; dqm->ops.halt = halt_cpsch; dqm->ops.unhalt = unhalt_cpsch; dqm->ops.destroy_queue = destroy_queue_cpsch; dqm->ops.update_queue = update_queue; dqm->ops.register_process = register_process; dqm->ops.unregister_process = unregister_process; dqm->ops.uninitialize = uninitialize; dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.process_termination = process_termination_cpsch; dqm->ops.evict_process_queues = evict_process_queues_cpsch; dqm->ops.restore_process_queues = restore_process_queues_cpsch; dqm->ops.get_wave_state = get_wave_state; dqm->ops.reset_queues = reset_queues_cpsch; dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; dqm->ops.checkpoint_mqd = checkpoint_mqd; break; case KFD_SCHED_POLICY_NO_HWS: /* initialize dqm for no cp scheduling */ dqm->ops.start = start_nocpsch; dqm->ops.stop = stop_nocpsch; dqm->ops.create_queue = create_queue_nocpsch; dqm->ops.destroy_queue = destroy_queue_nocpsch; dqm->ops.update_queue = update_queue; dqm->ops.register_process = register_process; dqm->ops.unregister_process = unregister_process; dqm->ops.initialize = initialize_nocpsch; dqm->ops.uninitialize = uninitialize; dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.process_termination = process_termination_nocpsch; dqm->ops.evict_process_queues = evict_process_queues_nocpsch; dqm->ops.restore_process_queues = restore_process_queues_nocpsch; dqm->ops.get_wave_state = get_wave_state; dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; dqm->ops.checkpoint_mqd = checkpoint_mqd; break; default: dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy); goto out_free; } switch (dev->adev->asic_type) { case CHIP_KAVERI: case CHIP_HAWAII: device_queue_manager_init_cik(&dqm->asic_ops); break; case CHIP_CARRIZO: case CHIP_TONGA: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: device_queue_manager_init_vi(&dqm->asic_ops); break; default: if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0)) device_queue_manager_init_v12(&dqm->asic_ops); else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) device_queue_manager_init_v11(&dqm->asic_ops); else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) device_queue_manager_init_v10(&dqm->asic_ops); else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) device_queue_manager_init_v9(&dqm->asic_ops); else { WARN(1, "Unexpected ASIC family %u", dev->adev->asic_type); goto out_free; } } if (init_mqd_managers(dqm)) goto out_free; if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n"); goto out_free; } if (!dqm->ops.initialize(dqm)) { init_waitqueue_head(&dqm->destroy_wait); return dqm; } out_free: kfree(dqm); return NULL; } static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, struct kfd_mem_obj *mqd) { WARN(!mqd, "No hiq sdma mqd trunk to free"); amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem); } void device_queue_manager_uninit(struct device_queue_manager *dqm) { dqm->ops.stop(dqm); dqm->ops.uninitialize(dqm); if (!dqm->dev->kfd->shared_resources.enable_mes) deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); kfree(dqm); } int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id) { struct kfd_process_device *pdd; struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct device_queue_manager *dqm = knode->dqm; struct device *dev = dqm->dev->adev->dev; struct qcm_process_device *qpd; struct queue *q = NULL; int ret = 0; if (!p) return -EINVAL; dqm_lock(dqm); pdd = kfd_get_process_device_data(dqm->dev, p); if (pdd) { qpd = &pdd->qpd; list_for_each_entry(q, &qpd->queues_list, list) { if (q->doorbell_id == doorbell_id && q->properties.is_active) { ret = suspend_all_queues_mes(dqm); if (ret) { dev_err(dev, "Suspending all queues failed"); goto out; } q->properties.is_evicted = true; q->properties.is_active = false; decrement_queue_count(dqm, qpd, q); ret = remove_queue_mes(dqm, q, qpd); if (ret) { dev_err(dev, "Removing bad queue failed"); goto out; } ret = resume_all_queues_mes(dqm); if (ret) dev_err(dev, "Resuming all queues failed"); break; } } } out: dqm_unlock(dqm); return ret; } static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct device *dev = dqm->dev->adev->dev; int ret = 0; /* Check if process is already evicted */ dqm_lock(dqm); if (qpd->evicted) { /* Increment the evicted count to make sure the * process stays evicted before its terminated. */ qpd->evicted++; dqm_unlock(dqm); goto out; } dqm_unlock(dqm); ret = suspend_all_queues_mes(dqm); if (ret) { dev_err(dev, "Suspending all queues failed"); goto out; } ret = dqm->ops.evict_process_queues(dqm, qpd); if (ret) { dev_err(dev, "Evicting process queues failed"); goto out; } ret = resume_all_queues_mes(dqm); if (ret) dev_err(dev, "Resuming all queues failed"); out: return ret; } int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid) { struct kfd_process_device *pdd; struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); int ret = 0; if (!p) return -EINVAL; WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); pdd = kfd_get_process_device_data(dqm->dev, p); if (pdd) { if (dqm->dev->kfd->shared_resources.enable_mes) ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd); else ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); } kfd_unref_process(p); return ret; } static void kfd_process_hw_exception(struct work_struct *work) { struct device_queue_manager *dqm = container_of(work, struct device_queue_manager, hw_exception_work); amdgpu_amdkfd_gpu_reset(dqm->dev->adev); } int reserve_debug_trap_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { int r; struct device *dev = dqm->dev->adev->dev; int updated_vmid_mask; if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); return -EINVAL; } dqm_lock(dqm); if (dqm->trap_debug_vmid != 0) { dev_err(dev, "Trap debug id already reserved\n"); r = -EBUSY; goto out_unlock; } r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); if (r) goto out_unlock; updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; r = set_sched_resources(dqm); if (r) goto out_unlock; r = map_queues_cpsch(dqm); if (r) goto out_unlock; pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); out_unlock: dqm_unlock(dqm); return r; } /* * Releases vmid for the trap debugger */ int release_debug_trap_vmid(struct device_queue_manager *dqm, struct qcm_process_device *qpd) { struct device *dev = dqm->dev->adev->dev; int r; int updated_vmid_mask; uint32_t trap_debug_vmid; if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); return -EINVAL; } dqm_lock(dqm); trap_debug_vmid = dqm->trap_debug_vmid; if (dqm->trap_debug_vmid == 0) { dev_err(dev, "Trap debug id is not reserved\n"); r = -EINVAL; goto out_unlock; } r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); if (r) goto out_unlock; updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; dqm->trap_debug_vmid = 0; r = set_sched_resources(dqm); if (r) goto out_unlock; r = map_queues_cpsch(dqm); if (r) goto out_unlock; pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); out_unlock: dqm_unlock(dqm); return r; } #define QUEUE_NOT_FOUND -1 /* invalidate queue operation in array */ static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) { int i; for (i = 0; i < num_queues; i++) queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; } /* find queue index in array */ static int q_array_get_index(unsigned int queue_id, uint32_t num_queues, uint32_t *queue_ids) { int i; for (i = 0; i < num_queues; i++) if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) return i; return QUEUE_NOT_FOUND; } struct copy_context_work_handler_workarea { struct work_struct copy_context_work; struct kfd_process *p; }; static void copy_context_work_handler(struct work_struct *work) { struct copy_context_work_handler_workarea *workarea; struct mqd_manager *mqd_mgr; struct queue *q; struct mm_struct *mm; struct kfd_process *p; uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; int i; workarea = container_of(work, struct copy_context_work_handler_workarea, copy_context_work); p = workarea->p; mm = get_task_mm(p->lead_thread); if (!mm) return; kthread_use_mm(mm); for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; struct device_queue_manager *dqm = pdd->dev->dqm; struct qcm_process_device *qpd = &pdd->qpd; list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE) continue; mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; /* We ignore the return value from get_wave_state * because * i) right now, it always returns 0, and * ii) if we hit an error, we would continue to the * next queue anyway. */ mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, (void __user *) q->properties.ctx_save_restore_area_address, &tmp_ctl_stack_used_size, &tmp_save_area_used_size); } } kthread_unuse_mm(mm); mmput(mm); } static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) { size_t array_size = num_queues * sizeof(uint32_t); if (!usr_queue_id_array) return NULL; return memdup_user(usr_queue_id_array, array_size); } int resume_queues(struct kfd_process *p, uint32_t num_queues, uint32_t *usr_queue_id_array) { uint32_t *queue_ids = NULL; int total_resumed = 0; int i; if (usr_queue_id_array) { queue_ids = get_queue_ids(num_queues, usr_queue_id_array); if (IS_ERR(queue_ids)) return PTR_ERR(queue_ids); /* mask all queues as invalid. unmask per successful request */ q_array_invalidate(num_queues, queue_ids); } for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; struct device_queue_manager *dqm = pdd->dev->dqm; struct device *dev = dqm->dev->adev->dev; struct qcm_process_device *qpd = &pdd->qpd; struct queue *q; int r, per_device_resumed = 0; dqm_lock(dqm); /* unmask queues that resume or already resumed as valid */ list_for_each_entry(q, &qpd->queues_list, list) { int q_idx = QUEUE_NOT_FOUND; if (queue_ids) q_idx = q_array_get_index( q->properties.queue_id, num_queues, queue_ids); if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { int err = resume_single_queue(dqm, &pdd->qpd, q); if (queue_ids) { if (!err) { queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; } else { queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; break; } } if (dqm->dev->kfd->shared_resources.enable_mes) { wake_up_all(&dqm->destroy_wait); if (!err) total_resumed++; } else { per_device_resumed++; } } } if (!per_device_resumed) { dqm_unlock(dqm); continue; } r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); if (r) { dev_err(dev, "Failed to resume process queues\n"); if (queue_ids) { list_for_each_entry(q, &qpd->queues_list, list) { int q_idx = q_array_get_index( q->properties.queue_id, num_queues, queue_ids); /* mask queue as error on resume fail */ if (q_idx != QUEUE_NOT_FOUND) queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; } } } else { wake_up_all(&dqm->destroy_wait); total_resumed += per_device_resumed; } dqm_unlock(dqm); } if (queue_ids) { if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, num_queues * sizeof(uint32_t))) pr_err("copy_to_user failed on queue resume\n"); kfree(queue_ids); } return total_resumed; } int suspend_queues(struct kfd_process *p, uint32_t num_queues, uint32_t grace_period, uint64_t exception_clear_mask, uint32_t *usr_queue_id_array) { uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); int total_suspended = 0; int i; if (IS_ERR(queue_ids)) return PTR_ERR(queue_ids); /* mask all queues as invalid. umask on successful request */ q_array_invalidate(num_queues, queue_ids); for (i = 0; i < p->n_pdds; i++) { struct kfd_process_device *pdd = p->pdds[i]; struct device_queue_manager *dqm = pdd->dev->dqm; struct device *dev = dqm->dev->adev->dev; struct qcm_process_device *qpd = &pdd->qpd; struct queue *q; int r, per_device_suspended = 0; mutex_lock(&p->event_mutex); dqm_lock(dqm); /* unmask queues that suspend or already suspended */ list_for_each_entry(q, &qpd->queues_list, list) { int q_idx = q_array_get_index(q->properties.queue_id, num_queues, queue_ids); if (q_idx != QUEUE_NOT_FOUND) { int err = suspend_single_queue(dqm, pdd, q); bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; if (!err) { queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; if (exception_clear_mask && is_mes) q->properties.exception_status &= ~exception_clear_mask; if (is_mes) total_suspended++; else per_device_suspended++; } else if (err != -EBUSY) { r = err; queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; break; } } } if (!per_device_suspended) { dqm_unlock(dqm); mutex_unlock(&p->event_mutex); if (total_suspended) amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); continue; } r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, grace_period); if (r) dev_err(dev, "Failed to suspend process queues.\n"); else total_suspended += per_device_suspended; list_for_each_entry(q, &qpd->queues_list, list) { int q_idx = q_array_get_index(q->properties.queue_id, num_queues, queue_ids); if (q_idx == QUEUE_NOT_FOUND) continue; /* mask queue as error on suspend fail */ if (r) queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; else if (exception_clear_mask) q->properties.exception_status &= ~exception_clear_mask; } dqm_unlock(dqm); mutex_unlock(&p->event_mutex); amdgpu_device_flush_hdp(dqm->dev->adev, NULL); } if (total_suspended) { struct copy_context_work_handler_workarea copy_context_worker; INIT_WORK_ONSTACK( ©_context_worker.copy_context_work, copy_context_work_handler); copy_context_worker.p = p; schedule_work(©_context_worker.copy_context_work); flush_work(©_context_worker.copy_context_work); destroy_work_on_stack(©_context_worker.copy_context_work); } if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, num_queues * sizeof(uint32_t))) pr_err("copy_to_user failed on queue suspend\n"); kfree(queue_ids); return total_suspended; } static uint32_t set_queue_type_for_user(struct queue_properties *q_props) { switch (q_props->type) { case KFD_QUEUE_TYPE_COMPUTE: return q_props->format == KFD_QUEUE_FORMAT_PM4 ? KFD_IOC_QUEUE_TYPE_COMPUTE : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; case KFD_QUEUE_TYPE_SDMA: return KFD_IOC_QUEUE_TYPE_SDMA; case KFD_QUEUE_TYPE_SDMA_XGMI: return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; default: WARN_ONCE(true, "queue type not recognized!"); return 0xffffffff; }; } void set_queue_snapshot_entry(struct queue *q, uint64_t exception_clear_mask, struct kfd_queue_snapshot_entry *qss_entry) { qss_entry->ring_base_address = q->properties.queue_address; qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; qss_entry->ctx_save_restore_address = q->properties.ctx_save_restore_area_address; qss_entry->ctx_save_restore_area_size = q->properties.ctx_save_restore_area_size; qss_entry->exception_status = q->properties.exception_status; qss_entry->queue_id = q->properties.queue_id; qss_entry->gpu_id = q->device->id; qss_entry->ring_size = (uint32_t)q->properties.queue_size; qss_entry->queue_type = set_queue_type_for_user(&q->properties); q->properties.exception_status &= ~exception_clear_mask; } int debug_lock_and_unmap(struct device_queue_manager *dqm) { struct device *dev = dqm->dev->adev->dev; int r; if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); return -EINVAL; } if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) return 0; dqm_lock(dqm); r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); if (r) dqm_unlock(dqm); return r; } int debug_map_and_unlock(struct device_queue_manager *dqm) { struct device *dev = dqm->dev->adev->dev; int r; if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy); return -EINVAL; } if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) return 0; r = map_queues_cpsch(dqm); dqm_unlock(dqm); return r; } int debug_refresh_runlist(struct device_queue_manager *dqm) { int r = debug_lock_and_unmap(dqm); if (r) return r; return debug_map_and_unlock(dqm); } bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm, struct qcm_process_device *qpd, int doorbell_off, u32 *queue_format) { struct queue *q; bool r = false; if (!queue_format) return r; dqm_lock(dqm); list_for_each_entry(q, &qpd->queues_list, list) { if (q->properties.doorbell_off == doorbell_off) { *queue_format = q->properties.format; r = true; goto out; } } out: dqm_unlock(dqm); return r; } #if defined(CONFIG_DEBUG_FS) static void seq_reg_dump(struct seq_file *m, uint32_t (*dump)[2], uint32_t n_regs) { uint32_t i, count; for (i = 0, count = 0; i < n_regs; i++) { if (count == 0 || dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { seq_printf(m, "%s %08x: %08x", i ? "\n" : "", dump[i][0], dump[i][1]); count = 7; } else { seq_printf(m, " %08x", dump[i][1]); count--; } } seq_puts(m, "\n"); } int dqm_debugfs_hqds(struct seq_file *m, void *data) { struct device_queue_manager *dqm = data; uint32_t xcc_mask = dqm->dev->xcc_mask; uint32_t (*dump)[2], n_regs; int pipe, queue; int r = 0, xcc_id; uint32_t sdma_engine_start; if (!dqm->sched_running) { seq_puts(m, " Device is stopped\n"); return 0; } for_each_inst(xcc_id, xcc_mask) { r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs, xcc_id); if (!r) { seq_printf( m, " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", xcc_id, KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), KFD_CIK_HIQ_QUEUE); seq_reg_dump(m, dump, n_regs); kfree(dump); } for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { int pipe_offset = pipe * get_queues_per_pipe(dqm); for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { if (!test_bit(pipe_offset + queue, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) continue; r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, pipe, queue, &dump, &n_regs, xcc_id); if (r) break; seq_printf(m, " Inst %d, CP Pipe %d, Queue %d\n", xcc_id, pipe, queue); seq_reg_dump(m, dump, n_regs); kfree(dump); } } } sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); for (pipe = sdma_engine_start; pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); pipe++) { for (queue = 0; queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; queue++) { r = dqm->dev->kfd2kgd->hqd_sdma_dump( dqm->dev->adev, pipe, queue, &dump, &n_regs); if (r) break; seq_printf(m, " SDMA Engine %d, RLC %d\n", pipe, queue); seq_reg_dump(m, dump, n_regs); kfree(dump); } } return r; } int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) { int r = 0; dqm_lock(dqm); r = pm_debugfs_hang_hws(&dqm->packet_mgr); if (r) { dqm_unlock(dqm); return r; } dqm->active_runlist = true; r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); dqm_unlock(dqm); return r; } #endif