/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include "amdgpu.h" #include "amdgpu_ucode.h" #include "amdgpu_trace.h" #include "gc/gc_10_3_0_offset.h" #include "gc/gc_10_3_0_sh_mask.h" #include "ivsrcid/sdma0/irqsrcs_sdma0_5_0.h" #include "ivsrcid/sdma1/irqsrcs_sdma1_5_0.h" #include "ivsrcid/sdma2/irqsrcs_sdma2_5_0.h" #include "ivsrcid/sdma3/irqsrcs_sdma3_5_0.h" #include "soc15_common.h" #include "soc15.h" #include "navi10_sdma_pkt_open.h" #include "nbio_v2_3.h" #include "sdma_common.h" #include "sdma_v5_2.h" MODULE_FIRMWARE("amdgpu/sienna_cichlid_sdma.bin"); MODULE_FIRMWARE("amdgpu/navy_flounder_sdma.bin"); MODULE_FIRMWARE("amdgpu/dimgrey_cavefish_sdma.bin"); MODULE_FIRMWARE("amdgpu/beige_goby_sdma.bin"); MODULE_FIRMWARE("amdgpu/vangogh_sdma.bin"); MODULE_FIRMWARE("amdgpu/yellow_carp_sdma.bin"); MODULE_FIRMWARE("amdgpu/sdma_5_2_6.bin"); MODULE_FIRMWARE("amdgpu/sdma_5_2_7.bin"); #define SDMA1_REG_OFFSET 0x600 #define SDMA3_REG_OFFSET 0x400 #define SDMA0_HYP_DEC_REG_START 0x5880 #define SDMA0_HYP_DEC_REG_END 0x5893 #define SDMA1_HYP_DEC_REG_OFFSET 0x20 static const struct amdgpu_hwip_reg_entry sdma_reg_list_5_2[] = { SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS1_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS2_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_STATUS3_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UCODE_CHECKSUM), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RB_RPTR_FETCH), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_STATUS), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_STATUS), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK0), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_RD_XNACK1), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK0), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_UTCL1_WR_XNACK1), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_IB_SUB_REMAIN), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_GFX_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_PAGE_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_RLC0_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_INT_STATUS), SOC15_REG_ENTRY_STR(GC, 0, mmSDMA0_VM_CNTL), SOC15_REG_ENTRY_STR(GC, 0, mmGRBM_STATUS2) }; static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev); static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev); static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev); static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev); static u32 sdma_v5_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 internal_offset) { u32 base; if (internal_offset >= SDMA0_HYP_DEC_REG_START && internal_offset <= SDMA0_HYP_DEC_REG_END) { base = adev->reg_offset[GC_HWIP][0][1]; if (instance != 0) internal_offset += SDMA1_HYP_DEC_REG_OFFSET * instance; } else { if (instance < 2) { base = adev->reg_offset[GC_HWIP][0][0]; if (instance == 1) internal_offset += SDMA1_REG_OFFSET; } else { base = adev->reg_offset[GC_HWIP][0][2]; if (instance == 3) internal_offset += SDMA3_REG_OFFSET; } } return base + internal_offset; } static unsigned sdma_v5_2_ring_init_cond_exec(struct amdgpu_ring *ring, uint64_t addr) { unsigned ret; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, 1); /* this is the offset we need patch later */ ret = ring->wptr & ring->buf_mask; /* insert dummy here and patch it later */ amdgpu_ring_write(ring, 0); return ret; } /** * sdma_v5_2_ring_get_rptr - get the current read pointer * * @ring: amdgpu ring pointer * * Get the current rptr from the hardware (NAVI10+). */ static uint64_t sdma_v5_2_ring_get_rptr(struct amdgpu_ring *ring) { u64 *rptr; /* XXX check if swapping is necessary on BE */ rptr = (u64 *)ring->rptr_cpu_addr; DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr); return ((*rptr) >> 2); } /** * sdma_v5_2_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware (NAVI10+). */ static uint64_t sdma_v5_2_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr)); DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); } else { wptr = RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI)); wptr = wptr << 32; wptr |= RREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR)); DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr); } return wptr >> 2; } /** * sdma_v5_2_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware (NAVI10+). */ static void sdma_v5_2_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; DRM_DEBUG("Setting write pointer\n"); if (ring->use_doorbell) { DRM_DEBUG("Using doorbell -- " "wptr_offs == 0x%08x " "lower_32_bits(ring->wptr << 2) == 0x%08x " "upper_32_bits(ring->wptr << 2) == 0x%08x\n", ring->wptr_offs, lower_32_bits(ring->wptr << 2), upper_32_bits(ring->wptr << 2)); /* XXX check if swapping is necessary on BE */ atomic64_set((atomic64_t *)ring->wptr_cpu_addr, ring->wptr << 2); DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", ring->doorbell_index, ring->wptr << 2); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(5, 2, 1)) { /* SDMA seems to miss doorbells sometimes when powergating kicks in. * Updating the wptr directly will wake it. This is only safe because * we disallow gfxoff in begin_use() and then allow it again in end_use(). */ WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2)); WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2)); } } else { DRM_DEBUG("Not using doorbell -- " "mmSDMA%i_GFX_RB_WPTR == 0x%08x " "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", ring->me, lower_32_bits(ring->wptr << 2), ring->me, upper_32_bits(ring->wptr << 2)); WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2)); WREG32(sdma_v5_2_get_reg_offset(adev, ring->me, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2)); } } static void sdma_v5_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); int i; for (i = 0; i < count; i++) if (sdma && sdma->burst_nop && (i == 0)) amdgpu_ring_write(ring, ring->funcs->nop | SDMA_PKT_NOP_HEADER_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } /** * sdma_v5_2_ring_emit_ib - Schedule an IB on the DMA engine * * @ring: amdgpu ring pointer * @job: job to retrieve vmid from * @ib: IB object to schedule * @flags: unused * * Schedule an IB in the DMA ring. */ static void sdma_v5_2_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); uint64_t csa_mc_addr = amdgpu_sdma_get_csa_mc_addr(ring, vmid); /* An IB packet must end on a 8 DW boundary--the next dword * must be on a 8-dword boundary. Our IB packet below is 6 * dwords long, thus add x number of NOPs, such that, in * modular arithmetic, * wptr + 6 + x = 8k, k >= 0, which in C is, * (wptr + 6 + x) % 8 = 0. * The expression below, is a solution of x. */ sdma_v5_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); amdgpu_ring_write(ring, lower_32_bits(csa_mc_addr)); amdgpu_ring_write(ring, upper_32_bits(csa_mc_addr)); } /** * sdma_v5_2_ring_emit_mem_sync - flush the IB by graphics cache rinse * * @ring: amdgpu ring pointer * * flush the IB by graphics cache rinse. */ static void sdma_v5_2_ring_emit_mem_sync(struct amdgpu_ring *ring) { uint32_t gcr_cntl = SDMA_GCR_GL2_INV | SDMA_GCR_GL2_WB | SDMA_GCR_GLM_INV | SDMA_GCR_GL1_INV | SDMA_GCR_GLV_INV | SDMA_GCR_GLK_INV | SDMA_GCR_GLI_INV(1); /* flush entire cache L0/L1/L2, this can be optimized by performance requirement */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_GCR_REQ)); amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD1_BASE_VA_31_7(0)); amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD2_GCR_CONTROL_15_0(gcr_cntl) | SDMA_PKT_GCR_REQ_PAYLOAD2_BASE_VA_47_32(0)); amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD3_LIMIT_VA_31_7(0) | SDMA_PKT_GCR_REQ_PAYLOAD3_GCR_CONTROL_18_16(gcr_cntl >> 16)); amdgpu_ring_write(ring, SDMA_PKT_GCR_REQ_PAYLOAD4_LIMIT_VA_47_32(0) | SDMA_PKT_GCR_REQ_PAYLOAD4_VMID(0)); } /** * sdma_v5_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring * * @ring: amdgpu ring pointer * * Emit an hdp flush packet on the requested DMA ring. */ static void sdma_v5_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask = 0; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; if (ring->me > 1) { amdgpu_asic_flush_hdp(adev, ring); } else { ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_done_offset(adev)) << 2); amdgpu_ring_write(ring, (adev->nbio.funcs->get_hdp_flush_req_offset(adev)) << 2); amdgpu_ring_write(ring, ref_and_mask); /* reference */ amdgpu_ring_write(ring, ref_and_mask); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ } } /** * sdma_v5_2_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @addr: address * @seq: sequence number * @flags: fence related flags * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed. */ static void sdma_v5_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* Ucached(UC) */ /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE) | SDMA_PKT_FENCE_HEADER_MTYPE(0x3)); /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(seq)); } if ((flags & AMDGPU_FENCE_FLAG_INT)) { uint32_t ctx = ring->is_mes_queue ? (ring->hw_queue_id | AMDGPU_FENCE_MES_QUEUE_FLAG) : 0; /* generate an interrupt */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(ctx)); } } /** * sdma_v5_2_gfx_stop - stop the gfx async dma engines * * @adev: amdgpu_device pointer * * Stop the gfx async dma ring buffers. */ static void sdma_v5_2_gfx_stop(struct amdgpu_device *adev) { u32 rb_cntl, ib_cntl; int i; for (i = 0; i < adev->sdma.num_instances; i++) { rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); } } /** * sdma_v5_2_rlc_stop - stop the compute async dma engines * * @adev: amdgpu_device pointer * * Stop the compute async dma queues. */ static void sdma_v5_2_rlc_stop(struct amdgpu_device *adev) { /* XXX todo */ } /** * sdma_v5_2_ctx_switch_enable - stop the async dma engines context switch * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs context switch. * * Halt or unhalt the async dma engines context switch. */ static void sdma_v5_2_ctx_switch_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl, phase_quantum = 0; int i; if (amdgpu_sdma_phase_quantum) { unsigned value = amdgpu_sdma_phase_quantum; unsigned unit = 0; while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) { value = (value + 1) >> 1; unit++; } if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) { value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >> SDMA0_PHASE0_QUANTUM__VALUE__SHIFT); unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >> SDMA0_PHASE0_QUANTUM__UNIT__SHIFT); WARN_ONCE(1, "clamping sdma_phase_quantum to %uK clock cycles\n", value << unit); } phase_quantum = value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT | unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT; } for (i = 0; i < adev->sdma.num_instances; i++) { if (enable && amdgpu_sdma_phase_quantum) { WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE0_QUANTUM), phase_quantum); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE1_QUANTUM), phase_quantum); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_PHASE2_QUANTUM), phase_quantum); } if (!amdgpu_sriov_vf(adev)) { f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL)); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, AUTO_CTXSW_ENABLE, enable ? 1 : 0); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), f32_cntl); } } } /** * sdma_v5_2_enable - stop the async dma engines * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs. * * Halt or unhalt the async dma engines. */ static void sdma_v5_2_enable(struct amdgpu_device *adev, bool enable) { u32 f32_cntl; int i; if (!enable) { sdma_v5_2_gfx_stop(adev); sdma_v5_2_rlc_stop(adev); } if (!amdgpu_sriov_vf(adev)) { for (i = 0; i < adev->sdma.num_instances; i++) { f32_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), f32_cntl); } } } /** * sdma_v5_2_gfx_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the gfx DMA ring buffers and enable them. * Returns 0 for success, error for failure. */ static int sdma_v5_2_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 rb_cntl, ib_cntl; u32 rb_bufsz; u32 doorbell; u32 doorbell_offset; u32 temp; u32 wptr_poll_cntl; u64 wptr_gpu_addr; int i, r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; if (!amdgpu_sriov_vf(adev)) WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL), 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL)); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); #ifdef __BIG_ENDIAN rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_SWAP_ENABLE, 1); #endif WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR), 0); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_HI), 0); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), 0); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), 0); /* setup the wptr shadow polling */ wptr_gpu_addr = ring->wptr_gpu_addr; WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO), lower_32_bits(wptr_gpu_addr)); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI), upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA0_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, 1); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL), wptr_poll_cntl); /* set the wb address whether it's enabled or not */ WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_HI), upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_RPTR_ADDR_LO), lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE), ring->gpu_addr >> 8); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_BASE_HI), ring->gpu_addr >> 40); ring->wptr = 0; /* before programing wptr to a less value, need set minor_ptr_update first */ WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 1); if (!amdgpu_sriov_vf(adev)) { /* only bare-metal use register write for wptr */ WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR), lower_32_bits(ring->wptr << 2)); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_WPTR_HI), upper_32_bits(ring->wptr << 2)); } doorbell = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL)); doorbell_offset = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET)); if (ring->use_doorbell) { doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA0_GFX_DOORBELL_OFFSET, OFFSET, ring->doorbell_index); } else { doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); } WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL), doorbell); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_DOORBELL_OFFSET), doorbell_offset); adev->nbio.funcs->sdma_doorbell_range(adev, i, ring->use_doorbell, ring->doorbell_index, adev->doorbell_index.sdma_doorbell_range); if (amdgpu_sriov_vf(adev)) sdma_v5_2_ring_set_wptr(ring); /* set minor_ptr_update to 0 after wptr programed */ WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_MINOR_PTR_UPDATE), 0); /* SRIOV VF has no control of any of registers below */ if (!amdgpu_sriov_vf(adev)) { /* set utc l1 enable flag always to 1 */ temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL)); temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1); /* enable MCBP */ temp = REG_SET_FIELD(temp, SDMA0_CNTL, MIDCMD_PREEMPT_ENABLE, 1); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CNTL), temp); /* Set up RESP_MODE to non-copy addresses */ temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL)); temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, RESP_MODE, 3); temp = REG_SET_FIELD(temp, SDMA0_UTCL1_CNTL, REDO_DELAY, 9); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_CNTL), temp); /* program default cache read and write policy */ temp = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE)); /* clean read policy and write policy bits */ temp &= 0xFF0FFF; temp |= ((CACHE_READ_POLICY_L2__DEFAULT << 12) | (CACHE_WRITE_POLICY_L2__DEFAULT << 14) | SDMA0_UTCL1_PAGE__LLC_NOALLOC_MASK); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UTCL1_PAGE), temp); /* unhalt engine */ temp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL)); temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_F32_CNTL), temp); } /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_RB_CNTL), rb_cntl); ib_cntl = RREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL)); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32_SOC15_IP(GC, sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_GFX_IB_CNTL), ib_cntl); if (amdgpu_sriov_vf(adev)) { /* bare-metal sequence doesn't need below to lines */ sdma_v5_2_ctx_switch_enable(adev, true); sdma_v5_2_enable(adev, true); } r = amdgpu_ring_test_helper(ring); if (r) return r; } return 0; } /** * sdma_v5_2_rlc_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the compute DMA queues and enable them. * Returns 0 for success, error for failure. */ static int sdma_v5_2_rlc_resume(struct amdgpu_device *adev) { return 0; } /** * sdma_v5_2_load_microcode - load the sDMA ME ucode * * @adev: amdgpu_device pointer * * Loads the sDMA0/1/2/3 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int sdma_v5_2_load_microcode(struct amdgpu_device *adev) { const struct sdma_firmware_header_v1_0 *hdr; const __le32 *fw_data; u32 fw_size; int i, j; /* halt the MEs */ sdma_v5_2_enable(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { if (!adev->sdma.instance[i].fw) return -EINVAL; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; amdgpu_ucode_print_sdma_hdr(&hdr->header); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), 0); for (j = 0; j < fw_size; j++) { if (amdgpu_emu_mode == 1 && j % 500 == 0) msleep(1); WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_DATA), le32_to_cpup(fw_data++)); } WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_UCODE_ADDR), adev->sdma.instance[i].fw_version); } return 0; } static int sdma_v5_2_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 grbm_soft_reset; u32 tmp; int i; for (i = 0; i < adev->sdma.num_instances; i++) { grbm_soft_reset = REG_SET_FIELD(0, GRBM_SOFT_RESET, SOFT_RESET_SDMA0, 1); grbm_soft_reset <<= i; tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); tmp |= grbm_soft_reset; DRM_DEBUG("GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET, tmp); tmp = RREG32_SOC15(GC, 0, mmGRBM_SOFT_RESET); udelay(50); } return 0; } /** * sdma_v5_2_start - setup and start the async dma engines * * @adev: amdgpu_device pointer * * Set up the DMA engines and enable them. * Returns 0 for success, error for failure. */ static int sdma_v5_2_start(struct amdgpu_device *adev) { int r = 0; if (amdgpu_sriov_vf(adev)) { sdma_v5_2_ctx_switch_enable(adev, false); sdma_v5_2_enable(adev, false); /* set RB registers */ r = sdma_v5_2_gfx_resume(adev); return r; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) { r = sdma_v5_2_load_microcode(adev); if (r) return r; /* The value of mmSDMA_F32_CNTL is invalid the moment after loading fw */ if (amdgpu_emu_mode == 1) msleep(1000); } sdma_v5_2_soft_reset(adev); /* unhalt the MEs */ sdma_v5_2_enable(adev, true); /* enable sdma ring preemption */ sdma_v5_2_ctx_switch_enable(adev, true); /* start the gfx rings and rlc compute queues */ r = sdma_v5_2_gfx_resume(adev); if (r) return r; r = sdma_v5_2_rlc_resume(adev); return r; } static int sdma_v5_2_mqd_init(struct amdgpu_device *adev, void *mqd, struct amdgpu_mqd_prop *prop) { struct v10_sdma_mqd *m = mqd; uint64_t wb_gpu_addr; m->sdmax_rlcx_rb_cntl = order_base_2(prop->queue_size / 4) << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RB_PRIV__SHIFT; m->sdmax_rlcx_rb_base = lower_32_bits(prop->hqd_base_gpu_addr >> 8); m->sdmax_rlcx_rb_base_hi = upper_32_bits(prop->hqd_base_gpu_addr >> 8); m->sdmax_rlcx_rb_wptr_poll_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL)); wb_gpu_addr = prop->wptr_gpu_addr; m->sdmax_rlcx_rb_wptr_poll_addr_lo = lower_32_bits(wb_gpu_addr); m->sdmax_rlcx_rb_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr); wb_gpu_addr = prop->rptr_gpu_addr; m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits(wb_gpu_addr); m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits(wb_gpu_addr); m->sdmax_rlcx_ib_cntl = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_GFX_IB_CNTL)); m->sdmax_rlcx_doorbell_offset = prop->doorbell_index << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT; m->sdmax_rlcx_doorbell = REG_SET_FIELD(0, SDMA0_RLC0_DOORBELL, ENABLE, 1); return 0; } static void sdma_v5_2_set_mqd_funcs(struct amdgpu_device *adev) { adev->mqds[AMDGPU_HW_IP_DMA].mqd_size = sizeof(struct v10_sdma_mqd); adev->mqds[AMDGPU_HW_IP_DMA].init_mqd = sdma_v5_2_mqd_init; } /** * sdma_v5_2_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. * Returns 0 for success, error for failure. */ static int sdma_v5_2_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; volatile uint32_t *cpu_ptr = NULL; tmp = 0xCAFEDEAD; if (ring->is_mes_queue) { uint32_t offset = 0; offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_PADDING_OFFS); gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); *cpu_ptr = tmp; } else { r = amdgpu_device_wb_get(adev, &index); if (r) { dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); return r; } gpu_addr = adev->wb.gpu_addr + (index * 4); adev->wb.wb[index] = cpu_to_le32(tmp); } r = amdgpu_ring_alloc(ring, 20); if (r) { DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); if (!ring->is_mes_queue) amdgpu_device_wb_free(adev, index); return r; } amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { if (ring->is_mes_queue) tmp = le32_to_cpu(*cpu_ptr); else tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; if (amdgpu_emu_mode == 1) msleep(1); else udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; if (!ring->is_mes_queue) amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v5_2_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT * * Test a simple IB in the DMA ring. * Returns 0 on success, error on failure. */ static int sdma_v5_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; long r; u32 tmp = 0; u64 gpu_addr; volatile uint32_t *cpu_ptr = NULL; tmp = 0xCAFEDEAD; memset(&ib, 0, sizeof(ib)); if (ring->is_mes_queue) { uint32_t offset = 0; offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_IB_OFFS); ib.gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); ib.ptr = (void *)amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); offset = amdgpu_mes_ctx_get_offs(ring, AMDGPU_MES_CTX_PADDING_OFFS); gpu_addr = amdgpu_mes_ctx_get_offs_gpu_addr(ring, offset); cpu_ptr = amdgpu_mes_ctx_get_offs_cpu_addr(ring, offset); *cpu_ptr = tmp; } else { r = amdgpu_device_wb_get(adev, &index); if (r) { dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r); return r; } gpu_addr = adev->wb.gpu_addr + (index * 4); adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r); goto err0; } } ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); ib.ptr[4] = 0xDEADBEEF; ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.length_dw = 8; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { DRM_ERROR("amdgpu: IB test timed out\n"); r = -ETIMEDOUT; goto err1; } else if (r < 0) { DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r); goto err1; } if (ring->is_mes_queue) tmp = le32_to_cpu(*cpu_ptr); else tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: if (!ring->is_mes_queue) amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v5_2_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA. */ static void sdma_v5_2_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = bytes - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); } /** * sdma_v5_2_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @value: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * * Update PTEs by writing them manually using sDMA. */ static void sdma_v5_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw - 1; for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * sdma_v5_2_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA. */ static void sdma_v5_2_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ } /** * sdma_v5_2_ring_pad_ib - pad the IB * * @ib: indirect buffer to fill with padding * @ring: amdgpu_ring structure holding ring information * * Pad the IB with NOPs to a boundary multiple of 8. */ static void sdma_v5_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); u32 pad_count; int i; pad_count = (-ib->length_dw) & 0x7; for (i = 0; i < pad_count; i++) if (sdma && sdma->burst_nop && (i == 0)) ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); else ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); } /** * sdma_v5_2_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void sdma_v5_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); amdgpu_ring_write(ring, seq); /* reference */ amdgpu_ring_write(ring, 0xffffffff); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ } /** * sdma_v5_2_ring_emit_vm_flush - vm flush using sDMA * * @ring: amdgpu_ring pointer * @vmid: vmid number to use * @pd_addr: address * * Update the page table base and flush the VM TLB * using sDMA. */ static void sdma_v5_2_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); } static void sdma_v5_2_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, val); } static void sdma_v5_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* equal */ amdgpu_ring_write(ring, reg << 2); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); /* reference */ amdgpu_ring_write(ring, mask); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); } static void sdma_v5_2_ring_emit_reg_write_reg_wait(struct amdgpu_ring *ring, uint32_t reg0, uint32_t reg1, uint32_t ref, uint32_t mask) { amdgpu_ring_emit_wreg(ring, reg0, ref); /* wait for a cycle to reset vm_inv_eng*_ack */ amdgpu_ring_emit_reg_wait(ring, reg0, 0, 0); amdgpu_ring_emit_reg_wait(ring, reg1, mask, mask); } static int sdma_v5_2_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = amdgpu_sdma_init_microcode(adev, 0, true); if (r) return r; sdma_v5_2_set_ring_funcs(adev); sdma_v5_2_set_buffer_funcs(adev); sdma_v5_2_set_vm_pte_funcs(adev); sdma_v5_2_set_irq_funcs(adev); sdma_v5_2_set_mqd_funcs(adev); return 0; } static unsigned sdma_v5_2_seq_to_irq_id(int seq_num) { switch (seq_num) { case 0: return SOC15_IH_CLIENTID_SDMA0; case 1: return SOC15_IH_CLIENTID_SDMA1; case 2: return SOC15_IH_CLIENTID_SDMA2; case 3: return SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid; default: break; } return -EINVAL; } static unsigned sdma_v5_2_seq_to_trap_id(int seq_num) { switch (seq_num) { case 0: return SDMA0_5_0__SRCID__SDMA_TRAP; case 1: return SDMA1_5_0__SRCID__SDMA_TRAP; case 2: return SDMA2_5_0__SRCID__SDMA_TRAP; case 3: return SDMA3_5_0__SRCID__SDMA_TRAP; default: break; } return -EINVAL; } static int sdma_v5_2_sw_init(void *handle) { struct amdgpu_ring *ring; int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2); uint32_t *ptr; /* SDMA trap event */ for (i = 0; i < adev->sdma.num_instances; i++) { r = amdgpu_irq_add_id(adev, sdma_v5_2_seq_to_irq_id(i), sdma_v5_2_seq_to_trap_id(i), &adev->sdma.trap_irq); if (r) return r; } for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; ring->use_doorbell = true; ring->me = i; DRM_INFO("use_doorbell being set to: [%s]\n", ring->use_doorbell?"true":"false"); ring->doorbell_index = (adev->doorbell_index.sdma_engine[i] << 1); //get DWORD offset ring->vm_hub = AMDGPU_GFXHUB(0); sprintf(ring->name, "sdma%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, AMDGPU_SDMA_IRQ_INSTANCE0 + i, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; } /* Allocate memory for SDMA IP Dump buffer */ ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL); if (ptr) adev->sdma.ip_dump = ptr; else DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n"); return r; } static int sdma_v5_2_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ring_fini(&adev->sdma.instance[i].ring); amdgpu_sdma_destroy_inst_ctx(adev, true); kfree(adev->sdma.ip_dump); return 0; } static int sdma_v5_2_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v5_2_start(adev); } static int sdma_v5_2_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; sdma_v5_2_ctx_switch_enable(adev, false); sdma_v5_2_enable(adev, false); return 0; } static int sdma_v5_2_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v5_2_hw_fini(adev); } static int sdma_v5_2_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v5_2_hw_init(adev); } static bool sdma_v5_2_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 i; for (i = 0; i < adev->sdma.num_instances; i++) { u32 tmp = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_STATUS_REG)); if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK)) return false; } return true; } static int sdma_v5_2_wait_for_idle(void *handle) { unsigned i; u32 sdma0, sdma1, sdma2, sdma3; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { sdma0 = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_STATUS_REG)); sdma1 = RREG32(sdma_v5_2_get_reg_offset(adev, 1, mmSDMA0_STATUS_REG)); sdma2 = RREG32(sdma_v5_2_get_reg_offset(adev, 2, mmSDMA0_STATUS_REG)); sdma3 = RREG32(sdma_v5_2_get_reg_offset(adev, 3, mmSDMA0_STATUS_REG)); if (sdma0 & sdma1 & sdma2 & sdma3 & SDMA0_STATUS_REG__IDLE_MASK) return 0; udelay(1); } return -ETIMEDOUT; } static int sdma_v5_2_ring_preempt_ib(struct amdgpu_ring *ring) { int i, r = 0; struct amdgpu_device *adev = ring->adev; u32 index = 0; u64 sdma_gfx_preempt; amdgpu_sdma_get_index_from_ring(ring, &index); sdma_gfx_preempt = sdma_v5_2_get_reg_offset(adev, index, mmSDMA0_GFX_PREEMPT); /* assert preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, false); /* emit the trailing fence */ ring->trail_seq += 1; amdgpu_ring_alloc(ring, 10); sdma_v5_2_ring_emit_fence(ring, ring->trail_fence_gpu_addr, ring->trail_seq, 0); amdgpu_ring_commit(ring); /* assert IB preemption */ WREG32(sdma_gfx_preempt, 1); /* poll the trailing fence */ for (i = 0; i < adev->usec_timeout; i++) { if (ring->trail_seq == le32_to_cpu(*(ring->trail_fence_cpu_addr))) break; udelay(1); } if (i >= adev->usec_timeout) { r = -EINVAL; DRM_ERROR("ring %d failed to be preempted\n", ring->idx); } /* deassert IB preemption */ WREG32(sdma_gfx_preempt, 0); /* deassert the preemption condition */ amdgpu_ring_set_preempt_cond_exec(ring, true); return r; } static int sdma_v5_2_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; u32 reg_offset = sdma_v5_2_get_reg_offset(adev, type, mmSDMA0_CNTL); if (!amdgpu_sriov_vf(adev)) { sdma_cntl = RREG32(reg_offset); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); WREG32(reg_offset, sdma_cntl); } return 0; } static int sdma_v5_2_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t mes_queue_id = entry->src_data[0]; DRM_DEBUG("IH: SDMA trap\n"); if (adev->enable_mes && (mes_queue_id & AMDGPU_FENCE_MES_QUEUE_FLAG)) { struct amdgpu_mes_queue *queue; mes_queue_id &= AMDGPU_FENCE_MES_QUEUE_ID_MASK; spin_lock(&adev->mes.queue_id_lock); queue = idr_find(&adev->mes.queue_id_idr, mes_queue_id); if (queue) { DRM_DEBUG("process smda queue id = %d\n", mes_queue_id); amdgpu_fence_process(queue->ring); } spin_unlock(&adev->mes.queue_id_lock); return 0; } switch (entry->client_id) { case SOC15_IH_CLIENTID_SDMA0: switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[0].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; case 3: /* XXX page queue*/ break; } break; case SOC15_IH_CLIENTID_SDMA1: switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[1].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; case 3: /* XXX page queue*/ break; } break; case SOC15_IH_CLIENTID_SDMA2: switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[2].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; case 3: /* XXX page queue*/ break; } break; case SOC15_IH_CLIENTID_SDMA3_Sienna_Cichlid: switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[3].ring); break; case 1: /* XXX compute */ break; case 2: /* XXX compute */ break; case 3: /* XXX page queue*/ break; } break; } return 0; } static int sdma_v5_2_process_illegal_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { return 0; } static bool sdma_v5_2_firmware_mgcg_support(struct amdgpu_device *adev, int i) { switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { case IP_VERSION(5, 2, 1): if (adev->sdma.instance[i].fw_version < 70) return false; break; case IP_VERSION(5, 2, 3): if (adev->sdma.instance[i].fw_version < 47) return false; break; case IP_VERSION(5, 2, 7): if (adev->sdma.instance[i].fw_version < 9) return false; break; default: return true; } return true; } static void sdma_v5_2_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t data, def; int i; for (i = 0; i < adev->sdma.num_instances; i++) { if (!sdma_v5_2_firmware_mgcg_support(adev, i)) adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_MGCG; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { /* Enable sdma clock gating */ def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK); if (def != data) WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); } else { /* Disable sdma clock gating */ def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL)); data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK | SDMA0_CLK_CTRL__SOFT_OVERRIDER_REG_MASK); if (def != data) WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_CLK_CTRL), data); } } } static void sdma_v5_2_update_medium_grain_light_sleep(struct amdgpu_device *adev, bool enable) { uint32_t data, def; int i; for (i = 0; i < adev->sdma.num_instances; i++) { if (adev->sdma.instance[i].fw_version < 70 && amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(5, 2, 1)) adev->cg_flags &= ~AMD_CG_SUPPORT_SDMA_LS; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { /* Enable sdma mem light sleep */ def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); } else { /* Disable sdma mem light sleep */ def = data = RREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL)); data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32(sdma_v5_2_get_reg_offset(adev, i, mmSDMA0_POWER_CNTL), data); } } } static int sdma_v5_2_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_sriov_vf(adev)) return 0; switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { case IP_VERSION(5, 2, 0): case IP_VERSION(5, 2, 2): case IP_VERSION(5, 2, 1): case IP_VERSION(5, 2, 4): case IP_VERSION(5, 2, 5): case IP_VERSION(5, 2, 6): case IP_VERSION(5, 2, 3): case IP_VERSION(5, 2, 7): sdma_v5_2_update_medium_grain_clock_gating(adev, state == AMD_CG_STATE_GATE); sdma_v5_2_update_medium_grain_light_sleep(adev, state == AMD_CG_STATE_GATE); break; default: break; } return 0; } static int sdma_v5_2_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static void sdma_v5_2_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_SDMA_MGCG */ data = RREG32(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_CLK_CTRL)); if (!(data & SDMA0_CLK_CTRL__CGCG_EN_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_SDMA_MGCG; /* AMD_CG_SUPPORT_SDMA_LS */ data = RREG32_KIQ(sdma_v5_2_get_reg_offset(adev, 0, mmSDMA0_POWER_CNTL)); if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) *flags |= AMD_CG_SUPPORT_SDMA_LS; } static void sdma_v5_2_ring_begin_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* SDMA 5.2.3 (RMB) FW doesn't seem to properly * disallow GFXOFF in some cases leading to * hangs in SDMA. Disallow GFXOFF while SDMA is active. * We can probably just limit this to 5.2.3, * but it shouldn't hurt for other parts since * this GFXOFF will be disallowed anyway when SDMA is * active, this just makes it explicit. * sdma_v5_2_ring_set_wptr() takes advantage of this * to update the wptr because sometimes SDMA seems to miss * doorbells when entering PG. If you remove this, update * sdma_v5_2_ring_set_wptr() as well! */ amdgpu_gfx_off_ctrl(adev, false); } static void sdma_v5_2_ring_end_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* SDMA 5.2.3 (RMB) FW doesn't seem to properly * disallow GFXOFF in some cases leading to * hangs in SDMA. Allow GFXOFF when SDMA is complete. */ amdgpu_gfx_off_ctrl(adev, true); } static void sdma_v5_2_print_ip_state(void *handle, struct drm_printer *p) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i, j; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2); uint32_t instance_offset; if (!adev->sdma.ip_dump) return; drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances); for (i = 0; i < adev->sdma.num_instances; i++) { instance_offset = i * reg_count; drm_printf(p, "\nInstance:%d\n", i); for (j = 0; j < reg_count; j++) drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_5_2[j].reg_name, adev->sdma.ip_dump[instance_offset + j]); } } static void sdma_v5_2_dump_ip_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i, j; uint32_t instance_offset; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_5_2); if (!adev->sdma.ip_dump) return; amdgpu_gfx_off_ctrl(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { instance_offset = i * reg_count; for (j = 0; j < reg_count; j++) adev->sdma.ip_dump[instance_offset + j] = RREG32(sdma_v5_2_get_reg_offset(adev, i, sdma_reg_list_5_2[j].reg_offset)); } amdgpu_gfx_off_ctrl(adev, true); } static const struct amd_ip_funcs sdma_v5_2_ip_funcs = { .name = "sdma_v5_2", .early_init = sdma_v5_2_early_init, .late_init = NULL, .sw_init = sdma_v5_2_sw_init, .sw_fini = sdma_v5_2_sw_fini, .hw_init = sdma_v5_2_hw_init, .hw_fini = sdma_v5_2_hw_fini, .suspend = sdma_v5_2_suspend, .resume = sdma_v5_2_resume, .is_idle = sdma_v5_2_is_idle, .wait_for_idle = sdma_v5_2_wait_for_idle, .soft_reset = sdma_v5_2_soft_reset, .set_clockgating_state = sdma_v5_2_set_clockgating_state, .set_powergating_state = sdma_v5_2_set_powergating_state, .get_clockgating_state = sdma_v5_2_get_clockgating_state, .dump_ip_state = sdma_v5_2_dump_ip_state, .print_ip_state = sdma_v5_2_print_ip_state, }; static const struct amdgpu_ring_funcs sdma_v5_2_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = true, .secure_submission_supported = true, .get_rptr = sdma_v5_2_ring_get_rptr, .get_wptr = sdma_v5_2_ring_get_wptr, .set_wptr = sdma_v5_2_ring_set_wptr, .emit_frame_size = 5 + /* sdma_v5_2_ring_init_cond_exec */ 6 + /* sdma_v5_2_ring_emit_hdp_flush */ 3 + /* hdp_invalidate */ 6 + /* sdma_v5_2_ring_emit_pipeline_sync */ /* sdma_v5_2_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 10 + 10 + 10, /* sdma_v5_2_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v5_2_ring_emit_ib */ .emit_ib = sdma_v5_2_ring_emit_ib, .emit_mem_sync = sdma_v5_2_ring_emit_mem_sync, .emit_fence = sdma_v5_2_ring_emit_fence, .emit_pipeline_sync = sdma_v5_2_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v5_2_ring_emit_vm_flush, .emit_hdp_flush = sdma_v5_2_ring_emit_hdp_flush, .test_ring = sdma_v5_2_ring_test_ring, .test_ib = sdma_v5_2_ring_test_ib, .insert_nop = sdma_v5_2_ring_insert_nop, .pad_ib = sdma_v5_2_ring_pad_ib, .begin_use = sdma_v5_2_ring_begin_use, .end_use = sdma_v5_2_ring_end_use, .emit_wreg = sdma_v5_2_ring_emit_wreg, .emit_reg_wait = sdma_v5_2_ring_emit_reg_wait, .emit_reg_write_reg_wait = sdma_v5_2_ring_emit_reg_write_reg_wait, .init_cond_exec = sdma_v5_2_ring_init_cond_exec, .preempt_ib = sdma_v5_2_ring_preempt_ib, }; static void sdma_v5_2_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) { adev->sdma.instance[i].ring.funcs = &sdma_v5_2_ring_funcs; adev->sdma.instance[i].ring.me = i; } } static const struct amdgpu_irq_src_funcs sdma_v5_2_trap_irq_funcs = { .set = sdma_v5_2_set_trap_irq_state, .process = sdma_v5_2_process_trap_irq, }; static const struct amdgpu_irq_src_funcs sdma_v5_2_illegal_inst_irq_funcs = { .process = sdma_v5_2_process_illegal_inst_irq, }; static void sdma_v5_2_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_INSTANCE0 + adev->sdma.num_instances; adev->sdma.trap_irq.funcs = &sdma_v5_2_trap_irq_funcs; adev->sdma.illegal_inst_irq.funcs = &sdma_v5_2_illegal_inst_irq_funcs; } /** * sdma_v5_2_emit_copy_buffer - copy buffer using the sDMA engine * * @ib: indirect buffer to copy to * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * @copy_flags: copy flags for the buffers * * Copy GPU buffers using the DMA engine. * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void sdma_v5_2_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, uint32_t copy_flags) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); ib->ptr[ib->length_dw++] = byte_count - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); } /** * sdma_v5_2_emit_fill_buffer - fill buffer using the sDMA engine * * @ib: indirect buffer to fill * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine. */ static void sdma_v5_2_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = byte_count - 1; } static const struct amdgpu_buffer_funcs sdma_v5_2_buffer_funcs = { .copy_max_bytes = 0x400000, .copy_num_dw = 7, .emit_copy_buffer = sdma_v5_2_emit_copy_buffer, .fill_max_bytes = 0x400000, .fill_num_dw = 5, .emit_fill_buffer = sdma_v5_2_emit_fill_buffer, }; static void sdma_v5_2_set_buffer_funcs(struct amdgpu_device *adev) { if (adev->mman.buffer_funcs == NULL) { adev->mman.buffer_funcs = &sdma_v5_2_buffer_funcs; adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } } static const struct amdgpu_vm_pte_funcs sdma_v5_2_vm_pte_funcs = { .copy_pte_num_dw = 7, .copy_pte = sdma_v5_2_vm_copy_pte, .write_pte = sdma_v5_2_vm_write_pte, .set_pte_pde = sdma_v5_2_vm_set_pte_pde, }; static void sdma_v5_2_set_vm_pte_funcs(struct amdgpu_device *adev) { unsigned i; if (adev->vm_manager.vm_pte_funcs == NULL) { adev->vm_manager.vm_pte_funcs = &sdma_v5_2_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { adev->vm_manager.vm_pte_scheds[i] = &adev->sdma.instance[i].ring.sched; } adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; } } const struct amdgpu_ip_block_version sdma_v5_2_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 5, .minor = 2, .rev = 0, .funcs = &sdma_v5_2_ip_funcs, };