/* * Copyright 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/delay.h> #include <linux/firmware.h> #include <linux/module.h> #include <linux/pci.h> #include "amdgpu.h" #include "amdgpu_xcp.h" #include "amdgpu_ucode.h" #include "amdgpu_trace.h" #include "sdma/sdma_4_4_2_offset.h" #include "sdma/sdma_4_4_2_sh_mask.h" #include "soc15_common.h" #include "soc15.h" #include "vega10_sdma_pkt_open.h" #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h" #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h" #include "amdgpu_ras.h" MODULE_FIRMWARE("amdgpu/sdma_4_4_2.bin"); MODULE_FIRMWARE("amdgpu/sdma_4_4_5.bin"); static const struct amdgpu_hwip_reg_entry sdma_reg_list_4_4_2[] = { SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS1_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS2_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_STATUS3_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UCODE_CHECKSUM), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RB_RPTR_FETCH), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_STATUS), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_STATUS), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK0), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_RD_XNACK1), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK0), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_UTCL1_WR_XNACK1), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_IB_SUB_REMAIN), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_GFX_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_PAGE_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_CNTL), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_RPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_RB_WPTR_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_OFFSET), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_LO), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_IB_BASE_HI), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_RLC0_DUMMY_REG), SOC15_REG_ENTRY_STR(GC, 0, regSDMA_VM_CNTL) }; #define mmSMNAID_AID0_MCA_SMU 0x03b30400 #define WREG32_SDMA(instance, offset, value) \ WREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset)), value) #define RREG32_SDMA(instance, offset) \ RREG32(sdma_v4_4_2_get_reg_offset(adev, (instance), (offset))) static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev); static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev); static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev); static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev); static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev); static u32 sdma_v4_4_2_get_reg_offset(struct amdgpu_device *adev, u32 instance, u32 offset) { u32 dev_inst = GET_INST(SDMA0, instance); return (adev->reg_offset[SDMA0_HWIP][dev_inst][0] + offset); } static unsigned sdma_v4_4_2_seq_to_irq_id(int seq_num) { switch (seq_num) { case 0: return SOC15_IH_CLIENTID_SDMA0; case 1: return SOC15_IH_CLIENTID_SDMA1; case 2: return SOC15_IH_CLIENTID_SDMA2; case 3: return SOC15_IH_CLIENTID_SDMA3; default: return -EINVAL; } } static int sdma_v4_4_2_irq_id_to_seq(struct amdgpu_device *adev, unsigned client_id) { switch (client_id) { case SOC15_IH_CLIENTID_SDMA0: return 0; case SOC15_IH_CLIENTID_SDMA1: return 1; case SOC15_IH_CLIENTID_SDMA2: if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1)) return 0; else return 2; case SOC15_IH_CLIENTID_SDMA3: if (amdgpu_sriov_vf(adev) && (adev->gfx.xcc_mask == 0x1)) return 1; else return 3; default: return -EINVAL; } } static void sdma_v4_4_2_inst_init_golden_registers(struct amdgpu_device *adev, uint32_t inst_mask) { u32 val; int i; for (i = 0; i < adev->sdma.num_instances; i++) { val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG); val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, NUM_BANKS, 4); val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG, PIPE_INTERLEAVE_SIZE, 0); WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG, val); val = RREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ); val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, NUM_BANKS, 4); val = REG_SET_FIELD(val, SDMA_GB_ADDR_CONFIG_READ, PIPE_INTERLEAVE_SIZE, 0); WREG32_SDMA(i, regSDMA_GB_ADDR_CONFIG_READ, val); } } /** * sdma_v4_4_2_init_microcode - load ucode images from disk * * @adev: amdgpu_device pointer * * Use the firmware interface to load the ucode images into * the driver (not loaded into hw). * Returns 0 on success, error on failure. */ static int sdma_v4_4_2_init_microcode(struct amdgpu_device *adev) { int ret, i; for (i = 0; i < adev->sdma.num_instances; i++) { if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) || amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) { ret = amdgpu_sdma_init_microcode(adev, 0, true); break; } else { ret = amdgpu_sdma_init_microcode(adev, i, false); if (ret) return ret; } } return ret; } /** * sdma_v4_4_2_ring_get_rptr - get the current read pointer * * @ring: amdgpu ring pointer * * Get the current rptr from the hardware. */ static uint64_t sdma_v4_4_2_ring_get_rptr(struct amdgpu_ring *ring) { u64 rptr; /* XXX check if swapping is necessary on BE */ rptr = READ_ONCE(*((u64 *)&ring->adev->wb.wb[ring->rptr_offs])); DRM_DEBUG("rptr before shift == 0x%016llx\n", rptr); return rptr >> 2; } /** * sdma_v4_4_2_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware. */ static uint64_t sdma_v4_4_2_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr); } else { wptr = RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI); wptr = wptr << 32; wptr |= RREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR); DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n", ring->me, wptr); } return wptr >> 2; } /** * sdma_v4_4_2_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware. */ static void sdma_v4_4_2_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; DRM_DEBUG("Setting write pointer\n"); if (ring->use_doorbell) { u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; DRM_DEBUG("Using doorbell -- " "wptr_offs == 0x%08x " "lower_32_bits(ring->wptr) << 2 == 0x%08x " "upper_32_bits(ring->wptr) << 2 == 0x%08x\n", ring->wptr_offs, lower_32_bits(ring->wptr << 2), upper_32_bits(ring->wptr << 2)); /* XXX check if swapping is necessary on BE */ WRITE_ONCE(*wb, (ring->wptr << 2)); DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n", ring->doorbell_index, ring->wptr << 2); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); } else { DRM_DEBUG("Not using doorbell -- " "regSDMA%i_GFX_RB_WPTR == 0x%08x " "regSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n", ring->me, lower_32_bits(ring->wptr << 2), ring->me, upper_32_bits(ring->wptr << 2)); WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR, lower_32_bits(ring->wptr << 2)); WREG32_SDMA(ring->me, regSDMA_GFX_RB_WPTR_HI, upper_32_bits(ring->wptr << 2)); } } /** * sdma_v4_4_2_page_ring_get_wptr - get the current write pointer * * @ring: amdgpu ring pointer * * Get the current wptr from the hardware. */ static uint64_t sdma_v4_4_2_page_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u64 wptr; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs])); } else { wptr = RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI); wptr = wptr << 32; wptr |= RREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR); } return wptr >> 2; } /** * sdma_v4_4_2_page_ring_set_wptr - commit the write pointer * * @ring: amdgpu ring pointer * * Write the wptr back to the hardware. */ static void sdma_v4_4_2_page_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs]; /* XXX check if swapping is necessary on BE */ WRITE_ONCE(*wb, (ring->wptr << 2)); WDOORBELL64(ring->doorbell_index, ring->wptr << 2); } else { uint64_t wptr = ring->wptr << 2; WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR, lower_32_bits(wptr)); WREG32_SDMA(ring->me, regSDMA_PAGE_RB_WPTR_HI, upper_32_bits(wptr)); } } static void sdma_v4_4_2_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); int i; for (i = 0; i < count; i++) if (sdma && sdma->burst_nop && (i == 0)) amdgpu_ring_write(ring, ring->funcs->nop | SDMA_PKT_NOP_HEADER_COUNT(count - 1)); else amdgpu_ring_write(ring, ring->funcs->nop); } /** * sdma_v4_4_2_ring_emit_ib - Schedule an IB on the DMA engine * * @ring: amdgpu ring pointer * @job: job to retrieve vmid from * @ib: IB object to schedule * @flags: unused * * Schedule an IB in the DMA ring. */ static void sdma_v4_4_2_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); /* IB packet must end on a 8 DW boundary */ sdma_v4_4_2_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7); amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf)); /* base must be 32 byte aligned */ amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); amdgpu_ring_write(ring, ib->length_dw); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); } static void sdma_v4_4_2_wait_reg_mem(struct amdgpu_ring *ring, int mem_space, int hdp, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) | SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) | SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ if (mem_space) { /* memory */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); } else { /* registers */ amdgpu_ring_write(ring, addr0 << 2); amdgpu_ring_write(ring, addr1 << 2); } amdgpu_ring_write(ring, ref); /* reference */ amdgpu_ring_write(ring, mask); /* mask */ amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */ } /** * sdma_v4_4_2_ring_emit_hdp_flush - emit an hdp flush on the DMA ring * * @ring: amdgpu ring pointer * * Emit an hdp flush packet on the requested DMA ring. */ static void sdma_v4_4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 ref_and_mask = 0; const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg; ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << (ring->me % adev->sdma.num_inst_per_aid); sdma_v4_4_2_wait_reg_mem(ring, 0, 1, adev->nbio.funcs->get_hdp_flush_done_offset(adev), adev->nbio.funcs->get_hdp_flush_req_offset(adev), ref_and_mask, ref_and_mask, 10); } /** * sdma_v4_4_2_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @addr: address * @seq: sequence number * @flags: fence related flags * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed. */ static void sdma_v4_4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); /* zero in first two bits */ BUG_ON(addr & 0x3); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* generate an interrupt */ amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); } /** * sdma_v4_4_2_inst_gfx_stop - stop the gfx async dma engines * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be disabled * * Stop the gfx async dma ring buffers. */ static void sdma_v4_4_2_inst_gfx_stop(struct amdgpu_device *adev, uint32_t inst_mask) { struct amdgpu_ring *sdma[AMDGPU_MAX_SDMA_INSTANCES]; u32 doorbell_offset, doorbell; u32 rb_cntl, ib_cntl; int i; for_each_inst(i, inst_mask) { sdma[i] = &adev->sdma.instance[i].ring; rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 0); WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 0); WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); if (sdma[i]->use_doorbell) { doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, 0); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA_GFX_DOORBELL_OFFSET, OFFSET, 0); WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); } } } /** * sdma_v4_4_2_inst_rlc_stop - stop the compute async dma engines * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be disabled * * Stop the compute async dma queues. */ static void sdma_v4_4_2_inst_rlc_stop(struct amdgpu_device *adev, uint32_t inst_mask) { /* XXX todo */ } /** * sdma_v4_4_2_inst_page_stop - stop the page async dma engines * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be disabled * * Stop the page async dma ring buffers. */ static void sdma_v4_4_2_inst_page_stop(struct amdgpu_device *adev, uint32_t inst_mask) { u32 rb_cntl, ib_cntl; int i; for_each_inst(i, inst_mask) { rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 0); WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 0); WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); } } /** * sdma_v4_4_2_inst_ctx_switch_enable - stop the async dma engines context switch * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs context switch. * @inst_mask: mask of dma engine instances to be enabled * * Halt or unhalt the async dma engines context switch. */ static void sdma_v4_4_2_inst_ctx_switch_enable(struct amdgpu_device *adev, bool enable, uint32_t inst_mask) { u32 f32_cntl, phase_quantum = 0; int i; if (amdgpu_sdma_phase_quantum) { unsigned value = amdgpu_sdma_phase_quantum; unsigned unit = 0; while (value > (SDMA_PHASE0_QUANTUM__VALUE_MASK >> SDMA_PHASE0_QUANTUM__VALUE__SHIFT)) { value = (value + 1) >> 1; unit++; } if (unit > (SDMA_PHASE0_QUANTUM__UNIT_MASK >> SDMA_PHASE0_QUANTUM__UNIT__SHIFT)) { value = (SDMA_PHASE0_QUANTUM__VALUE_MASK >> SDMA_PHASE0_QUANTUM__VALUE__SHIFT); unit = (SDMA_PHASE0_QUANTUM__UNIT_MASK >> SDMA_PHASE0_QUANTUM__UNIT__SHIFT); WARN_ONCE(1, "clamping sdma_phase_quantum to %uK clock cycles\n", value << unit); } phase_quantum = value << SDMA_PHASE0_QUANTUM__VALUE__SHIFT | unit << SDMA_PHASE0_QUANTUM__UNIT__SHIFT; } for_each_inst(i, inst_mask) { f32_cntl = RREG32_SDMA(i, regSDMA_CNTL); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_CNTL, AUTO_CTXSW_ENABLE, enable ? 1 : 0); if (enable && amdgpu_sdma_phase_quantum) { WREG32_SDMA(i, regSDMA_PHASE0_QUANTUM, phase_quantum); WREG32_SDMA(i, regSDMA_PHASE1_QUANTUM, phase_quantum); WREG32_SDMA(i, regSDMA_PHASE2_QUANTUM, phase_quantum); } WREG32_SDMA(i, regSDMA_CNTL, f32_cntl); /* Extend page fault timeout to avoid interrupt storm */ WREG32_SDMA(i, regSDMA_UTCL1_TIMEOUT, 0x00800080); } } /** * sdma_v4_4_2_inst_enable - stop the async dma engines * * @adev: amdgpu_device pointer * @enable: enable/disable the DMA MEs. * @inst_mask: mask of dma engine instances to be enabled * * Halt or unhalt the async dma engines. */ static void sdma_v4_4_2_inst_enable(struct amdgpu_device *adev, bool enable, uint32_t inst_mask) { u32 f32_cntl; int i; if (!enable) { sdma_v4_4_2_inst_gfx_stop(adev, inst_mask); sdma_v4_4_2_inst_rlc_stop(adev, inst_mask); if (adev->sdma.has_page_queue) sdma_v4_4_2_inst_page_stop(adev, inst_mask); /* SDMA FW needs to respond to FREEZE requests during reset. * Keep it running during reset */ if (!amdgpu_sriov_vf(adev) && amdgpu_in_reset(adev)) return; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) return; for_each_inst(i, inst_mask) { f32_cntl = RREG32_SDMA(i, regSDMA_F32_CNTL); f32_cntl = REG_SET_FIELD(f32_cntl, SDMA_F32_CNTL, HALT, enable ? 0 : 1); WREG32_SDMA(i, regSDMA_F32_CNTL, f32_cntl); } } /* * sdma_v4_4_2_rb_cntl - get parameters for rb_cntl */ static uint32_t sdma_v4_4_2_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl) { /* Set ring buffer size in dwords */ uint32_t rb_bufsz = order_base_2(ring->ring_size / 4); barrier(); /* work around https://llvm.org/pr42576 */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SIZE, rb_bufsz); #ifdef __BIG_ENDIAN rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RPTR_WRITEBACK_SWAP_ENABLE, 1); #endif return rb_cntl; } /** * sdma_v4_4_2_gfx_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * @i: instance to resume * * Set up the gfx DMA ring buffers and enable them. * Returns 0 for success, error for failure. */ static void sdma_v4_4_2_gfx_resume(struct amdgpu_device *adev, unsigned int i) { struct amdgpu_ring *ring = &adev->sdma.instance[i].ring; u32 rb_cntl, ib_cntl, wptr_poll_cntl; u32 wb_offset; u32 doorbell; u32 doorbell_offset; u64 wptr_gpu_addr; wb_offset = (ring->rptr_offs * 4); rb_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_CNTL); rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); /* set the wb address whether it's enabled or not */ WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_HI, upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_ADDR_LO, lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32_SDMA(i, regSDMA_GFX_RB_BASE, ring->gpu_addr >> 8); WREG32_SDMA(i, regSDMA_GFX_RB_BASE_HI, ring->gpu_addr >> 40); ring->wptr = 0; /* before programing wptr to a less value, need set minor_ptr_update first */ WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 1); /* Initialize the ring buffer's read and write pointers */ WREG32_SDMA(i, regSDMA_GFX_RB_RPTR, 0); WREG32_SDMA(i, regSDMA_GFX_RB_RPTR_HI, 0); WREG32_SDMA(i, regSDMA_GFX_RB_WPTR, 0); WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_HI, 0); doorbell = RREG32_SDMA(i, regSDMA_GFX_DOORBELL); doorbell_offset = RREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET); doorbell = REG_SET_FIELD(doorbell, SDMA_GFX_DOORBELL, ENABLE, ring->use_doorbell); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA_GFX_DOORBELL_OFFSET, OFFSET, ring->doorbell_index); WREG32_SDMA(i, regSDMA_GFX_DOORBELL, doorbell); WREG32_SDMA(i, regSDMA_GFX_DOORBELL_OFFSET, doorbell_offset); sdma_v4_4_2_ring_set_wptr(ring); /* set minor_ptr_update to 0 after wptr programed */ WREG32_SDMA(i, regSDMA_GFX_MINOR_PTR_UPDATE, 0); /* setup the wptr shadow polling */ wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA_GFX_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); WREG32_SDMA(i, regSDMA_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl); /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_GFX_RB_CNTL, RB_ENABLE, 1); WREG32_SDMA(i, regSDMA_GFX_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, regSDMA_GFX_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32_SDMA(i, regSDMA_GFX_IB_CNTL, ib_cntl); } /** * sdma_v4_4_2_page_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * @i: instance to resume * * Set up the page DMA ring buffers and enable them. * Returns 0 for success, error for failure. */ static void sdma_v4_4_2_page_resume(struct amdgpu_device *adev, unsigned int i) { struct amdgpu_ring *ring = &adev->sdma.instance[i].page; u32 rb_cntl, ib_cntl, wptr_poll_cntl; u32 wb_offset; u32 doorbell; u32 doorbell_offset; u64 wptr_gpu_addr; wb_offset = (ring->rptr_offs * 4); rb_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_CNTL); rb_cntl = sdma_v4_4_2_rb_cntl(ring, rb_cntl); WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR, 0); WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_HI, 0); WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR, 0); WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_HI, 0); /* set the wb address whether it's enabled or not */ WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_HI, upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); WREG32_SDMA(i, regSDMA_PAGE_RB_RPTR_ADDR_LO, lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); WREG32_SDMA(i, regSDMA_PAGE_RB_BASE, ring->gpu_addr >> 8); WREG32_SDMA(i, regSDMA_PAGE_RB_BASE_HI, ring->gpu_addr >> 40); ring->wptr = 0; /* before programing wptr to a less value, need set minor_ptr_update first */ WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 1); doorbell = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL); doorbell_offset = RREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET); doorbell = REG_SET_FIELD(doorbell, SDMA_PAGE_DOORBELL, ENABLE, ring->use_doorbell); doorbell_offset = REG_SET_FIELD(doorbell_offset, SDMA_PAGE_DOORBELL_OFFSET, OFFSET, ring->doorbell_index); WREG32_SDMA(i, regSDMA_PAGE_DOORBELL, doorbell); WREG32_SDMA(i, regSDMA_PAGE_DOORBELL_OFFSET, doorbell_offset); /* paging queue doorbell range is setup at sdma_v4_4_2_gfx_resume */ sdma_v4_4_2_page_ring_set_wptr(ring); /* set minor_ptr_update to 0 after wptr programed */ WREG32_SDMA(i, regSDMA_PAGE_MINOR_PTR_UPDATE, 0); /* setup the wptr shadow polling */ wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4); WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); wptr_poll_cntl = RREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL); wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl, SDMA_PAGE_RB_WPTR_POLL_CNTL, F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0); WREG32_SDMA(i, regSDMA_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl); /* enable DMA RB */ rb_cntl = REG_SET_FIELD(rb_cntl, SDMA_PAGE_RB_CNTL, RB_ENABLE, 1); WREG32_SDMA(i, regSDMA_PAGE_RB_CNTL, rb_cntl); ib_cntl = RREG32_SDMA(i, regSDMA_PAGE_IB_CNTL); ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_ENABLE, 1); #ifdef __BIG_ENDIAN ib_cntl = REG_SET_FIELD(ib_cntl, SDMA_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1); #endif /* enable DMA IBs */ WREG32_SDMA(i, regSDMA_PAGE_IB_CNTL, ib_cntl); } static void sdma_v4_4_2_init_pg(struct amdgpu_device *adev) { } /** * sdma_v4_4_2_inst_rlc_resume - setup and start the async dma engines * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be enabled * * Set up the compute DMA queues and enable them. * Returns 0 for success, error for failure. */ static int sdma_v4_4_2_inst_rlc_resume(struct amdgpu_device *adev, uint32_t inst_mask) { sdma_v4_4_2_init_pg(adev); return 0; } /** * sdma_v4_4_2_inst_load_microcode - load the sDMA ME ucode * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be enabled * * Loads the sDMA0/1 ucode. * Returns 0 for success, -EINVAL if the ucode is not available. */ static int sdma_v4_4_2_inst_load_microcode(struct amdgpu_device *adev, uint32_t inst_mask) { const struct sdma_firmware_header_v1_0 *hdr; const __le32 *fw_data; u32 fw_size; int i, j; /* halt the MEs */ sdma_v4_4_2_inst_enable(adev, false, inst_mask); for_each_inst(i, inst_mask) { if (!adev->sdma.instance[i].fw) return -EINVAL; hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; amdgpu_ucode_print_sdma_hdr(&hdr->header); fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; fw_data = (const __le32 *) (adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); WREG32_SDMA(i, regSDMA_UCODE_ADDR, 0); for (j = 0; j < fw_size; j++) WREG32_SDMA(i, regSDMA_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32_SDMA(i, regSDMA_UCODE_ADDR, adev->sdma.instance[i].fw_version); } return 0; } /** * sdma_v4_4_2_inst_start - setup and start the async dma engines * * @adev: amdgpu_device pointer * @inst_mask: mask of dma engine instances to be enabled * * Set up the DMA engines and enable them. * Returns 0 for success, error for failure. */ static int sdma_v4_4_2_inst_start(struct amdgpu_device *adev, uint32_t inst_mask) { struct amdgpu_ring *ring; uint32_t tmp_mask; int i, r = 0; if (amdgpu_sriov_vf(adev)) { sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); sdma_v4_4_2_inst_enable(adev, false, inst_mask); } else { /* bypass sdma microcode loading on Gopher */ if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP && adev->sdma.instance[0].fw) { r = sdma_v4_4_2_inst_load_microcode(adev, inst_mask); if (r) return r; } /* unhalt the MEs */ sdma_v4_4_2_inst_enable(adev, true, inst_mask); /* enable sdma ring preemption */ sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); } /* start the gfx rings and rlc compute queues */ tmp_mask = inst_mask; for_each_inst(i, tmp_mask) { uint32_t temp; WREG32_SDMA(i, regSDMA_SEM_WAIT_FAIL_TIMER_CNTL, 0); sdma_v4_4_2_gfx_resume(adev, i); if (adev->sdma.has_page_queue) sdma_v4_4_2_page_resume(adev, i); /* set utc l1 enable flag always to 1 */ temp = RREG32_SDMA(i, regSDMA_CNTL); temp = REG_SET_FIELD(temp, SDMA_CNTL, UTC_L1_ENABLE, 1); /* enable context empty interrupt during initialization */ temp = REG_SET_FIELD(temp, SDMA_CNTL, CTXEMPTY_INT_ENABLE, 1); WREG32_SDMA(i, regSDMA_CNTL, temp); if (!amdgpu_sriov_vf(adev)) { if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { /* unhalt engine */ temp = RREG32_SDMA(i, regSDMA_F32_CNTL); temp = REG_SET_FIELD(temp, SDMA_F32_CNTL, HALT, 0); WREG32_SDMA(i, regSDMA_F32_CNTL, temp); } } } if (amdgpu_sriov_vf(adev)) { sdma_v4_4_2_inst_ctx_switch_enable(adev, true, inst_mask); sdma_v4_4_2_inst_enable(adev, true, inst_mask); } else { r = sdma_v4_4_2_inst_rlc_resume(adev, inst_mask); if (r) return r; } tmp_mask = inst_mask; for_each_inst(i, tmp_mask) { ring = &adev->sdma.instance[i].ring; r = amdgpu_ring_test_helper(ring); if (r) return r; if (adev->sdma.has_page_queue) { struct amdgpu_ring *page = &adev->sdma.instance[i].page; r = amdgpu_ring_test_helper(page); if (r) return r; } } return r; } /** * sdma_v4_4_2_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. * Returns 0 for success, error for failure. */ static int sdma_v4_4_2_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ring_alloc(ring, 5); if (r) goto error_free_wb; amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; error_free_wb: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v4_4_2_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT * * Test a simple IB in the DMA ring. * Returns 0 on success, error on failure. */ static int sdma_v4_4_2_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; long r; u32 tmp = 0; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, AMDGPU_IB_POOL_DIRECT, &ib); if (r) goto err0; ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr); ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0); ib.ptr[4] = 0xDEADBEEF; ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); ib.length_dw = 8; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err1; } else if (r < 0) { goto err1; } tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return r; } /** * sdma_v4_4_2_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using sDMA. */ static void sdma_v4_4_2_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); ib->ptr[ib->length_dw++] = bytes - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(src); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); } /** * sdma_v4_4_2_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @value: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * * Update PTEs by writing them manually using sDMA. */ static void sdma_v4_4_2_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = ndw - 1; for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * sdma_v4_4_2_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA. */ static void sdma_v4_4_2_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE); ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(addr); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; ib->ptr[ib->length_dw++] = count - 1; /* number of entries */ } /** * sdma_v4_4_2_ring_pad_ib - pad the IB to the required number of dw * * @ring: amdgpu_ring structure holding ring information * @ib: indirect buffer to fill with padding */ static void sdma_v4_4_2_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring); u32 pad_count; int i; pad_count = (-ib->length_dw) & 7; for (i = 0; i < pad_count; i++) if (sdma && sdma->burst_nop && (i == 0)) ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); else ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP); } /** * sdma_v4_4_2_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void sdma_v4_4_2_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ sdma_v4_4_2_wait_reg_mem(ring, 1, 0, addr & 0xfffffffc, upper_32_bits(addr) & 0xffffffff, seq, 0xffffffff, 4); } /** * sdma_v4_4_2_ring_emit_vm_flush - vm flush using sDMA * * @ring: amdgpu_ring pointer * @vmid: vmid number to use * @pd_addr: address * * Update the page table base and flush the VM TLB * using sDMA. */ static void sdma_v4_4_2_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); } static void sdma_v4_4_2_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, val); } static void sdma_v4_4_2_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { sdma_v4_4_2_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10); } static bool sdma_v4_4_2_fw_support_paging_queue(struct amdgpu_device *adev) { switch (amdgpu_ip_version(adev, SDMA0_HWIP, 0)) { case IP_VERSION(4, 4, 2): case IP_VERSION(4, 4, 5): return false; default: return false; } } static int sdma_v4_4_2_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; r = sdma_v4_4_2_init_microcode(adev); if (r) return r; /* TODO: Page queue breaks driver reload under SRIOV */ if (sdma_v4_4_2_fw_support_paging_queue(adev)) adev->sdma.has_page_queue = true; sdma_v4_4_2_set_ring_funcs(adev); sdma_v4_4_2_set_buffer_funcs(adev); sdma_v4_4_2_set_vm_pte_funcs(adev); sdma_v4_4_2_set_irq_funcs(adev); sdma_v4_4_2_set_ras_funcs(adev); return 0; } #if 0 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, void *err_data, struct amdgpu_iv_entry *entry); #endif static int sdma_v4_4_2_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; #if 0 struct ras_ih_if ih_info = { .cb = sdma_v4_4_2_process_ras_data_cb, }; #endif if (!amdgpu_persistent_edc_harvesting_supported(adev)) amdgpu_ras_reset_error_count(adev, AMDGPU_RAS_BLOCK__SDMA); return 0; } static int sdma_v4_4_2_sw_init(void *handle) { struct amdgpu_ring *ring; int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 aid_id; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); uint32_t *ptr; /* SDMA trap event */ for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_TRAP, &adev->sdma.trap_irq); if (r) return r; } /* SDMA SRAM ECC event */ for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_SRAM_ECC, &adev->sdma.ecc_irq); if (r) return r; } /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/ for (i = 0; i < adev->sdma.num_inst_per_aid; i++) { r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_VM_HOLE, &adev->sdma.vm_hole_irq); if (r) return r; r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID, &adev->sdma.doorbell_invalid_irq); if (r) return r; r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT, &adev->sdma.pool_timeout_irq); if (r) return r; r = amdgpu_irq_add_id(adev, sdma_v4_4_2_seq_to_irq_id(i), SDMA0_4_0__SRCID__SDMA_SRBMWRITE, &adev->sdma.srbm_write_irq); if (r) return r; } for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; ring->use_doorbell = true; aid_id = adev->sdma.instance[i].aid_id; DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i, ring->use_doorbell?"true":"false"); /* doorbell size is 2 dwords, get DWORD offset */ ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1; ring->vm_hub = AMDGPU_MMHUB0(aid_id); sprintf(ring->name, "sdma%d.%d", aid_id, i % adev->sdma.num_inst_per_aid); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, AMDGPU_SDMA_IRQ_INSTANCE0 + i, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; if (adev->sdma.has_page_queue) { ring = &adev->sdma.instance[i].page; ring->ring_obj = NULL; ring->use_doorbell = true; /* doorbell index of page queue is assigned right after * gfx queue on the same instance */ ring->doorbell_index = (adev->doorbell_index.sdma_engine[i] + 1) << 1; ring->vm_hub = AMDGPU_MMHUB0(aid_id); sprintf(ring->name, "page%d.%d", aid_id, i % adev->sdma.num_inst_per_aid); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, AMDGPU_SDMA_IRQ_INSTANCE0 + i, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; } } if (amdgpu_sdma_ras_sw_init(adev)) { dev_err(adev->dev, "fail to initialize sdma ras block\n"); return -EINVAL; } /* Allocate memory for SDMA IP Dump buffer */ ptr = kcalloc(adev->sdma.num_instances * reg_count, sizeof(uint32_t), GFP_KERNEL); if (ptr) adev->sdma.ip_dump = ptr; else DRM_ERROR("Failed to allocated memory for SDMA IP Dump\n"); return r; } static int sdma_v4_4_2_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) { amdgpu_ring_fini(&adev->sdma.instance[i].ring); if (adev->sdma.has_page_queue) amdgpu_ring_fini(&adev->sdma.instance[i].page); } if (amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 2) || amdgpu_ip_version(adev, SDMA0_HWIP, 0) == IP_VERSION(4, 4, 5)) amdgpu_sdma_destroy_inst_ctx(adev, true); else amdgpu_sdma_destroy_inst_ctx(adev, false); kfree(adev->sdma.ip_dump); return 0; } static int sdma_v4_4_2_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; uint32_t inst_mask; inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); if (!amdgpu_sriov_vf(adev)) sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); r = sdma_v4_4_2_inst_start(adev, inst_mask); return r; } static int sdma_v4_4_2_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uint32_t inst_mask; int i; if (amdgpu_sriov_vf(adev)) return 0; inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { for (i = 0; i < adev->sdma.num_instances; i++) { amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0 + i); } } sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); sdma_v4_4_2_inst_enable(adev, false, inst_mask); return 0; } static int sdma_v4_4_2_set_clockgating_state(void *handle, enum amd_clockgating_state state); static int sdma_v4_4_2_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (amdgpu_in_reset(adev)) sdma_v4_4_2_set_clockgating_state(adev, AMD_CG_STATE_UNGATE); return sdma_v4_4_2_hw_fini(adev); } static int sdma_v4_4_2_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return sdma_v4_4_2_hw_init(adev); } static bool sdma_v4_4_2_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 i; for (i = 0; i < adev->sdma.num_instances; i++) { u32 tmp = RREG32_SDMA(i, regSDMA_STATUS_REG); if (!(tmp & SDMA_STATUS_REG__IDLE_MASK)) return false; } return true; } static int sdma_v4_4_2_wait_for_idle(void *handle) { unsigned i, j; u32 sdma[AMDGPU_MAX_SDMA_INSTANCES]; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { for (j = 0; j < adev->sdma.num_instances; j++) { sdma[j] = RREG32_SDMA(j, regSDMA_STATUS_REG); if (!(sdma[j] & SDMA_STATUS_REG__IDLE_MASK)) break; } if (j == adev->sdma.num_instances) return 0; udelay(1); } return -ETIMEDOUT; } static int sdma_v4_4_2_soft_reset(void *handle) { /* todo */ return 0; } static int sdma_v4_4_2_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, TRAP_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); return 0; } static int sdma_v4_4_2_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t instance, i; DRM_DEBUG("IH: SDMA trap\n"); instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); /* Client id gives the SDMA instance in AID. To know the exact SDMA * instance, interrupt entry gives the node id which corresponds to the AID instance. * Match node id with the AID id associated with the SDMA instance. */ for (i = instance; i < adev->sdma.num_instances; i += adev->sdma.num_inst_per_aid) { if (adev->sdma.instance[i].aid_id == node_id_to_phys_map[entry->node_id]) break; } if (i >= adev->sdma.num_instances) { dev_WARN_ONCE( adev->dev, 1, "Couldn't find the right sdma instance in trap handler"); return 0; } switch (entry->ring_id) { case 0: amdgpu_fence_process(&adev->sdma.instance[i].ring); break; default: break; } return 0; } #if 0 static int sdma_v4_4_2_process_ras_data_cb(struct amdgpu_device *adev, void *err_data, struct amdgpu_iv_entry *entry) { int instance; /* When “Full RAS” is enabled, the per-IP interrupt sources should * be disabled and the driver should only look for the aggregated * interrupt via sync flood */ if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) goto out; instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); if (instance < 0) goto out; amdgpu_sdma_process_ras_data_cb(adev, err_data, entry); out: return AMDGPU_RAS_SUCCESS; } #endif static int sdma_v4_4_2_process_illegal_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int instance; DRM_ERROR("Illegal instruction in SDMA command stream\n"); instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); if (instance < 0) return 0; switch (entry->ring_id) { case 0: drm_sched_fault(&adev->sdma.instance[instance].ring.sched); break; } return 0; } static int sdma_v4_4_2_set_ecc_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; sdma_cntl = RREG32_SDMA(type, regSDMA_CNTL); sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA_CNTL, DRAM_ECC_INT_ENABLE, state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0); WREG32_SDMA(type, regSDMA_CNTL, sdma_cntl); return 0; } static int sdma_v4_4_2_print_iv_entry(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { int instance; struct amdgpu_task_info *task_info; u64 addr; instance = sdma_v4_4_2_irq_id_to_seq(adev, entry->client_id); if (instance < 0 || instance >= adev->sdma.num_instances) { dev_err(adev->dev, "sdma instance invalid %d\n", instance); return -EINVAL; } addr = (u64)entry->src_data[0] << 12; addr |= ((u64)entry->src_data[1] & 0xf) << 44; dev_dbg_ratelimited(adev->dev, "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u pasid:%u\n", instance, addr, entry->src_id, entry->ring_id, entry->vmid, entry->pasid); task_info = amdgpu_vm_get_task_info_pasid(adev, entry->pasid); if (task_info) { dev_dbg_ratelimited(adev->dev, " for process %s pid %d thread %s pid %d\n", task_info->process_name, task_info->tgid, task_info->task_name, task_info->pid); amdgpu_vm_put_task_info(task_info); } return 0; } static int sdma_v4_4_2_process_vm_hole_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n"); sdma_v4_4_2_print_iv_entry(adev, entry); return 0; } static int sdma_v4_4_2_process_doorbell_invalid_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n"); sdma_v4_4_2_print_iv_entry(adev, entry); return 0; } static int sdma_v4_4_2_process_pool_timeout_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { dev_dbg_ratelimited(adev->dev, "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n"); sdma_v4_4_2_print_iv_entry(adev, entry); return 0; } static int sdma_v4_4_2_process_srbm_write_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { dev_dbg_ratelimited(adev->dev, "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n"); sdma_v4_4_2_print_iv_entry(adev, entry); return 0; } static void sdma_v4_4_2_inst_update_medium_grain_light_sleep( struct amdgpu_device *adev, bool enable, uint32_t inst_mask) { uint32_t data, def; int i; /* leave as default if it is not driver controlled */ if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) return; if (enable) { for_each_inst(i, inst_mask) { /* 1-not override: enable sdma mem light sleep */ def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); data |= SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32_SDMA(i, regSDMA_POWER_CNTL, data); } } else { for_each_inst(i, inst_mask) { /* 0-override:disable sdma mem light sleep */ def = data = RREG32_SDMA(i, regSDMA_POWER_CNTL); data &= ~SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; if (def != data) WREG32_SDMA(i, regSDMA_POWER_CNTL, data); } } } static void sdma_v4_4_2_inst_update_medium_grain_clock_gating( struct amdgpu_device *adev, bool enable, uint32_t inst_mask) { uint32_t data, def; int i; /* leave as default if it is not driver controlled */ if (!(adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) return; if (enable) { for_each_inst(i, inst_mask) { def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); data &= ~(SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32_SDMA(i, regSDMA_CLK_CTRL, data); } } else { for_each_inst(i, inst_mask) { def = data = RREG32_SDMA(i, regSDMA_CLK_CTRL); data |= (SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE4_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE3_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE2_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE1_MASK | SDMA_CLK_CTRL__SOFT_OVERRIDE0_MASK); if (def != data) WREG32_SDMA(i, regSDMA_CLK_CTRL, data); } } } static int sdma_v4_4_2_set_clockgating_state(void *handle, enum amd_clockgating_state state) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uint32_t inst_mask; if (amdgpu_sriov_vf(adev)) return 0; inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); sdma_v4_4_2_inst_update_medium_grain_clock_gating( adev, state == AMD_CG_STATE_GATE, inst_mask); sdma_v4_4_2_inst_update_medium_grain_light_sleep( adev, state == AMD_CG_STATE_GATE, inst_mask); return 0; } static int sdma_v4_4_2_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static void sdma_v4_4_2_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_SDMA_MGCG */ data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_CLK_CTRL)); if (!(data & SDMA_CLK_CTRL__SOFT_OVERRIDE5_MASK)) *flags |= AMD_CG_SUPPORT_SDMA_MGCG; /* AMD_CG_SUPPORT_SDMA_LS */ data = RREG32(SOC15_REG_OFFSET(SDMA0, GET_INST(SDMA0, 0), regSDMA_POWER_CNTL)); if (data & SDMA_POWER_CNTL__MEM_POWER_OVERRIDE_MASK) *flags |= AMD_CG_SUPPORT_SDMA_LS; } static void sdma_v4_4_2_print_ip_state(void *handle, struct drm_printer *p) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i, j; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); uint32_t instance_offset; if (!adev->sdma.ip_dump) return; drm_printf(p, "num_instances:%d\n", adev->sdma.num_instances); for (i = 0; i < adev->sdma.num_instances; i++) { instance_offset = i * reg_count; drm_printf(p, "\nInstance:%d\n", i); for (j = 0; j < reg_count; j++) drm_printf(p, "%-50s \t 0x%08x\n", sdma_reg_list_4_4_2[j].reg_name, adev->sdma.ip_dump[instance_offset + j]); } } static void sdma_v4_4_2_dump_ip_state(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i, j; uint32_t instance_offset; uint32_t reg_count = ARRAY_SIZE(sdma_reg_list_4_4_2); if (!adev->sdma.ip_dump) return; amdgpu_gfx_off_ctrl(adev, false); for (i = 0; i < adev->sdma.num_instances; i++) { instance_offset = i * reg_count; for (j = 0; j < reg_count; j++) adev->sdma.ip_dump[instance_offset + j] = RREG32(sdma_v4_4_2_get_reg_offset(adev, i, sdma_reg_list_4_4_2[j].reg_offset)); } amdgpu_gfx_off_ctrl(adev, true); } const struct amd_ip_funcs sdma_v4_4_2_ip_funcs = { .name = "sdma_v4_4_2", .early_init = sdma_v4_4_2_early_init, .late_init = sdma_v4_4_2_late_init, .sw_init = sdma_v4_4_2_sw_init, .sw_fini = sdma_v4_4_2_sw_fini, .hw_init = sdma_v4_4_2_hw_init, .hw_fini = sdma_v4_4_2_hw_fini, .suspend = sdma_v4_4_2_suspend, .resume = sdma_v4_4_2_resume, .is_idle = sdma_v4_4_2_is_idle, .wait_for_idle = sdma_v4_4_2_wait_for_idle, .soft_reset = sdma_v4_4_2_soft_reset, .set_clockgating_state = sdma_v4_4_2_set_clockgating_state, .set_powergating_state = sdma_v4_4_2_set_powergating_state, .get_clockgating_state = sdma_v4_4_2_get_clockgating_state, .dump_ip_state = sdma_v4_4_2_dump_ip_state, .print_ip_state = sdma_v4_4_2_print_ip_state, }; static const struct amdgpu_ring_funcs sdma_v4_4_2_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xff, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = true, .get_rptr = sdma_v4_4_2_ring_get_rptr, .get_wptr = sdma_v4_4_2_ring_get_wptr, .set_wptr = sdma_v4_4_2_ring_set_wptr, .emit_frame_size = 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ /* sdma_v4_4_2_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ .emit_ib = sdma_v4_4_2_ring_emit_ib, .emit_fence = sdma_v4_4_2_ring_emit_fence, .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, .test_ring = sdma_v4_4_2_ring_test_ring, .test_ib = sdma_v4_4_2_ring_test_ib, .insert_nop = sdma_v4_4_2_ring_insert_nop, .pad_ib = sdma_v4_4_2_ring_pad_ib, .emit_wreg = sdma_v4_4_2_ring_emit_wreg, .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, }; static const struct amdgpu_ring_funcs sdma_v4_4_2_page_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xff, .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), .support_64bit_ptrs = true, .get_rptr = sdma_v4_4_2_ring_get_rptr, .get_wptr = sdma_v4_4_2_page_ring_get_wptr, .set_wptr = sdma_v4_4_2_page_ring_set_wptr, .emit_frame_size = 6 + /* sdma_v4_4_2_ring_emit_hdp_flush */ 3 + /* hdp invalidate */ 6 + /* sdma_v4_4_2_ring_emit_pipeline_sync */ /* sdma_v4_4_2_ring_emit_vm_flush */ SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 + SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 + 10 + 10 + 10, /* sdma_v4_4_2_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 6, /* sdma_v4_4_2_ring_emit_ib */ .emit_ib = sdma_v4_4_2_ring_emit_ib, .emit_fence = sdma_v4_4_2_ring_emit_fence, .emit_pipeline_sync = sdma_v4_4_2_ring_emit_pipeline_sync, .emit_vm_flush = sdma_v4_4_2_ring_emit_vm_flush, .emit_hdp_flush = sdma_v4_4_2_ring_emit_hdp_flush, .test_ring = sdma_v4_4_2_ring_test_ring, .test_ib = sdma_v4_4_2_ring_test_ib, .insert_nop = sdma_v4_4_2_ring_insert_nop, .pad_ib = sdma_v4_4_2_ring_pad_ib, .emit_wreg = sdma_v4_4_2_ring_emit_wreg, .emit_reg_wait = sdma_v4_4_2_ring_emit_reg_wait, .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper, }; static void sdma_v4_4_2_set_ring_funcs(struct amdgpu_device *adev) { int i, dev_inst; for (i = 0; i < adev->sdma.num_instances; i++) { adev->sdma.instance[i].ring.funcs = &sdma_v4_4_2_ring_funcs; adev->sdma.instance[i].ring.me = i; if (adev->sdma.has_page_queue) { adev->sdma.instance[i].page.funcs = &sdma_v4_4_2_page_ring_funcs; adev->sdma.instance[i].page.me = i; } dev_inst = GET_INST(SDMA0, i); /* AID to which SDMA belongs depends on physical instance */ adev->sdma.instance[i].aid_id = dev_inst / adev->sdma.num_inst_per_aid; } } static const struct amdgpu_irq_src_funcs sdma_v4_4_2_trap_irq_funcs = { .set = sdma_v4_4_2_set_trap_irq_state, .process = sdma_v4_4_2_process_trap_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_illegal_inst_irq_funcs = { .process = sdma_v4_4_2_process_illegal_inst_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_ecc_irq_funcs = { .set = sdma_v4_4_2_set_ecc_irq_state, .process = amdgpu_sdma_process_ecc_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_vm_hole_irq_funcs = { .process = sdma_v4_4_2_process_vm_hole_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_doorbell_invalid_irq_funcs = { .process = sdma_v4_4_2_process_doorbell_invalid_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_pool_timeout_irq_funcs = { .process = sdma_v4_4_2_process_pool_timeout_irq, }; static const struct amdgpu_irq_src_funcs sdma_v4_4_2_srbm_write_irq_funcs = { .process = sdma_v4_4_2_process_srbm_write_irq, }; static void sdma_v4_4_2_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = adev->sdma.num_instances; adev->sdma.ecc_irq.num_types = adev->sdma.num_instances; adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances; adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances; adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances; adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances; adev->sdma.trap_irq.funcs = &sdma_v4_4_2_trap_irq_funcs; adev->sdma.illegal_inst_irq.funcs = &sdma_v4_4_2_illegal_inst_irq_funcs; adev->sdma.ecc_irq.funcs = &sdma_v4_4_2_ecc_irq_funcs; adev->sdma.vm_hole_irq.funcs = &sdma_v4_4_2_vm_hole_irq_funcs; adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_4_2_doorbell_invalid_irq_funcs; adev->sdma.pool_timeout_irq.funcs = &sdma_v4_4_2_pool_timeout_irq_funcs; adev->sdma.srbm_write_irq.funcs = &sdma_v4_4_2_srbm_write_irq_funcs; } /** * sdma_v4_4_2_emit_copy_buffer - copy buffer using the sDMA engine * * @ib: indirect buffer to copy to * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * @copy_flags: copy flags for the buffers * * Copy GPU buffers using the DMA engine. * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void sdma_v4_4_2_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count, uint32_t copy_flags) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) | SDMA_PKT_COPY_LINEAR_HEADER_TMZ((copy_flags & AMDGPU_COPY_FLAGS_TMZ) ? 1 : 0); ib->ptr[ib->length_dw++] = byte_count - 1; ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); } /** * sdma_v4_4_2_emit_fill_buffer - fill buffer using the sDMA engine * * @ib: indirect buffer to copy to * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine. */ static void sdma_v4_4_2_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = byte_count - 1; } static const struct amdgpu_buffer_funcs sdma_v4_4_2_buffer_funcs = { .copy_max_bytes = 0x400000, .copy_num_dw = 7, .emit_copy_buffer = sdma_v4_4_2_emit_copy_buffer, .fill_max_bytes = 0x400000, .fill_num_dw = 5, .emit_fill_buffer = sdma_v4_4_2_emit_fill_buffer, }; static void sdma_v4_4_2_set_buffer_funcs(struct amdgpu_device *adev) { adev->mman.buffer_funcs = &sdma_v4_4_2_buffer_funcs; if (adev->sdma.has_page_queue) adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page; else adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } static const struct amdgpu_vm_pte_funcs sdma_v4_4_2_vm_pte_funcs = { .copy_pte_num_dw = 7, .copy_pte = sdma_v4_4_2_vm_copy_pte, .write_pte = sdma_v4_4_2_vm_write_pte, .set_pte_pde = sdma_v4_4_2_vm_set_pte_pde, }; static void sdma_v4_4_2_set_vm_pte_funcs(struct amdgpu_device *adev) { struct drm_gpu_scheduler *sched; unsigned i; adev->vm_manager.vm_pte_funcs = &sdma_v4_4_2_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { if (adev->sdma.has_page_queue) sched = &adev->sdma.instance[i].page.sched; else sched = &adev->sdma.instance[i].ring.sched; adev->vm_manager.vm_pte_scheds[i] = sched; } adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; } const struct amdgpu_ip_block_version sdma_v4_4_2_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 4, .minor = 4, .rev = 2, .funcs = &sdma_v4_4_2_ip_funcs, }; static int sdma_v4_4_2_xcp_resume(void *handle, uint32_t inst_mask) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; if (!amdgpu_sriov_vf(adev)) sdma_v4_4_2_inst_init_golden_registers(adev, inst_mask); r = sdma_v4_4_2_inst_start(adev, inst_mask); return r; } static int sdma_v4_4_2_xcp_suspend(void *handle, uint32_t inst_mask) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uint32_t tmp_mask = inst_mask; int i; if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { for_each_inst(i, tmp_mask) { amdgpu_irq_put(adev, &adev->sdma.ecc_irq, AMDGPU_SDMA_IRQ_INSTANCE0 + i); } } sdma_v4_4_2_inst_ctx_switch_enable(adev, false, inst_mask); sdma_v4_4_2_inst_enable(adev, false, inst_mask); return 0; } struct amdgpu_xcp_ip_funcs sdma_v4_4_2_xcp_funcs = { .suspend = &sdma_v4_4_2_xcp_suspend, .resume = &sdma_v4_4_2_xcp_resume }; static const struct amdgpu_ras_err_status_reg_entry sdma_v4_2_2_ue_reg_list[] = { {AMDGPU_RAS_REG_ENTRY(SDMA0, 0, regSDMA_UE_ERR_STATUS_LO, regSDMA_UE_ERR_STATUS_HI), 1, (AMDGPU_RAS_ERR_INFO_VALID | AMDGPU_RAS_ERR_STATUS_VALID), "SDMA"}, }; static const struct amdgpu_ras_memory_id_entry sdma_v4_4_2_ras_memory_list[] = { {AMDGPU_SDMA_MBANK_DATA_BUF0, "SDMA_MBANK_DATA_BUF0"}, {AMDGPU_SDMA_MBANK_DATA_BUF1, "SDMA_MBANK_DATA_BUF1"}, {AMDGPU_SDMA_MBANK_DATA_BUF2, "SDMA_MBANK_DATA_BUF2"}, {AMDGPU_SDMA_MBANK_DATA_BUF3, "SDMA_MBANK_DATA_BUF3"}, {AMDGPU_SDMA_MBANK_DATA_BUF4, "SDMA_MBANK_DATA_BUF4"}, {AMDGPU_SDMA_MBANK_DATA_BUF5, "SDMA_MBANK_DATA_BUF5"}, {AMDGPU_SDMA_MBANK_DATA_BUF6, "SDMA_MBANK_DATA_BUF6"}, {AMDGPU_SDMA_MBANK_DATA_BUF7, "SDMA_MBANK_DATA_BUF7"}, {AMDGPU_SDMA_MBANK_DATA_BUF8, "SDMA_MBANK_DATA_BUF8"}, {AMDGPU_SDMA_MBANK_DATA_BUF9, "SDMA_MBANK_DATA_BUF9"}, {AMDGPU_SDMA_MBANK_DATA_BUF10, "SDMA_MBANK_DATA_BUF10"}, {AMDGPU_SDMA_MBANK_DATA_BUF11, "SDMA_MBANK_DATA_BUF11"}, {AMDGPU_SDMA_MBANK_DATA_BUF12, "SDMA_MBANK_DATA_BUF12"}, {AMDGPU_SDMA_MBANK_DATA_BUF13, "SDMA_MBANK_DATA_BUF13"}, {AMDGPU_SDMA_MBANK_DATA_BUF14, "SDMA_MBANK_DATA_BUF14"}, {AMDGPU_SDMA_MBANK_DATA_BUF15, "SDMA_MBANK_DATA_BUF15"}, {AMDGPU_SDMA_UCODE_BUF, "SDMA_UCODE_BUF"}, {AMDGPU_SDMA_RB_CMD_BUF, "SDMA_RB_CMD_BUF"}, {AMDGPU_SDMA_IB_CMD_BUF, "SDMA_IB_CMD_BUF"}, {AMDGPU_SDMA_UTCL1_RD_FIFO, "SDMA_UTCL1_RD_FIFO"}, {AMDGPU_SDMA_UTCL1_RDBST_FIFO, "SDMA_UTCL1_RDBST_FIFO"}, {AMDGPU_SDMA_UTCL1_WR_FIFO, "SDMA_UTCL1_WR_FIFO"}, {AMDGPU_SDMA_DATA_LUT_FIFO, "SDMA_DATA_LUT_FIFO"}, {AMDGPU_SDMA_SPLIT_DAT_BUF, "SDMA_SPLIT_DAT_BUF"}, }; static void sdma_v4_4_2_inst_query_ras_error_count(struct amdgpu_device *adev, uint32_t sdma_inst, void *ras_err_status) { struct ras_err_data *err_data = (struct ras_err_data *)ras_err_status; uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); unsigned long ue_count = 0; struct amdgpu_smuio_mcm_config_info mcm_info = { .socket_id = adev->smuio.funcs->get_socket_id(adev), .die_id = adev->sdma.instance[sdma_inst].aid_id, }; /* sdma v4_4_2 doesn't support query ce counts */ amdgpu_ras_inst_query_ras_error_count(adev, sdma_v4_2_2_ue_reg_list, ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), sdma_v4_4_2_ras_memory_list, ARRAY_SIZE(sdma_v4_4_2_ras_memory_list), sdma_dev_inst, AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE, &ue_count); amdgpu_ras_error_statistic_ue_count(err_data, &mcm_info, ue_count); } static void sdma_v4_4_2_query_ras_error_count(struct amdgpu_device *adev, void *ras_err_status) { uint32_t inst_mask; int i = 0; inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { for_each_inst(i, inst_mask) sdma_v4_4_2_inst_query_ras_error_count(adev, i, ras_err_status); } else { dev_warn(adev->dev, "SDMA RAS is not supported\n"); } } static void sdma_v4_4_2_inst_reset_ras_error_count(struct amdgpu_device *adev, uint32_t sdma_inst) { uint32_t sdma_dev_inst = GET_INST(SDMA0, sdma_inst); amdgpu_ras_inst_reset_ras_error_count(adev, sdma_v4_2_2_ue_reg_list, ARRAY_SIZE(sdma_v4_2_2_ue_reg_list), sdma_dev_inst); } static void sdma_v4_4_2_reset_ras_error_count(struct amdgpu_device *adev) { uint32_t inst_mask; int i = 0; inst_mask = GENMASK(adev->sdma.num_instances - 1, 0); if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) { for_each_inst(i, inst_mask) sdma_v4_4_2_inst_reset_ras_error_count(adev, i); } else { dev_warn(adev->dev, "SDMA RAS is not supported\n"); } } static const struct amdgpu_ras_block_hw_ops sdma_v4_4_2_ras_hw_ops = { .query_ras_error_count = sdma_v4_4_2_query_ras_error_count, .reset_ras_error_count = sdma_v4_4_2_reset_ras_error_count, }; static int sdma_v4_4_2_aca_bank_parser(struct aca_handle *handle, struct aca_bank *bank, enum aca_smu_type type, void *data) { struct aca_bank_info info; u64 misc0; int ret; ret = aca_bank_info_decode(bank, &info); if (ret) return ret; misc0 = bank->regs[ACA_REG_IDX_MISC0]; switch (type) { case ACA_SMU_TYPE_UE: ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_UE, 1ULL); break; case ACA_SMU_TYPE_CE: ret = aca_error_cache_log_bank_error(handle, &info, ACA_ERROR_TYPE_CE, ACA_REG__MISC0__ERRCNT(misc0)); break; default: return -EINVAL; } return ret; } /* CODE_SDMA0 - CODE_SDMA4, reference to smu driver if header file */ static int sdma_v4_4_2_err_codes[] = { 33, 34, 35, 36 }; static bool sdma_v4_4_2_aca_bank_is_valid(struct aca_handle *handle, struct aca_bank *bank, enum aca_smu_type type, void *data) { u32 instlo; instlo = ACA_REG__IPID__INSTANCEIDLO(bank->regs[ACA_REG_IDX_IPID]); instlo &= GENMASK(31, 1); if (instlo != mmSMNAID_AID0_MCA_SMU) return false; if (aca_bank_check_error_codes(handle->adev, bank, sdma_v4_4_2_err_codes, ARRAY_SIZE(sdma_v4_4_2_err_codes))) return false; return true; } static const struct aca_bank_ops sdma_v4_4_2_aca_bank_ops = { .aca_bank_parser = sdma_v4_4_2_aca_bank_parser, .aca_bank_is_valid = sdma_v4_4_2_aca_bank_is_valid, }; static const struct aca_info sdma_v4_4_2_aca_info = { .hwip = ACA_HWIP_TYPE_SMU, .mask = ACA_ERROR_UE_MASK, .bank_ops = &sdma_v4_4_2_aca_bank_ops, }; static int sdma_v4_4_2_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int r; r = amdgpu_sdma_ras_late_init(adev, ras_block); if (r) return r; return amdgpu_ras_bind_aca(adev, AMDGPU_RAS_BLOCK__SDMA, &sdma_v4_4_2_aca_info, NULL); } static struct amdgpu_sdma_ras sdma_v4_4_2_ras = { .ras_block = { .hw_ops = &sdma_v4_4_2_ras_hw_ops, .ras_late_init = sdma_v4_4_2_ras_late_init, }, }; static void sdma_v4_4_2_set_ras_funcs(struct amdgpu_device *adev) { adev->sdma.ras = &sdma_v4_4_2_ras; }