/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_ring.h" #include "vi.h" #include "vi_structs.h" #include "vid.h" #include "amdgpu_ucode.h" #include "amdgpu_atombios.h" #include "atombios_i2c.h" #include "clearstate_vi.h" #include "gmc/gmc_8_2_d.h" #include "gmc/gmc_8_2_sh_mask.h" #include "oss/oss_3_0_d.h" #include "oss/oss_3_0_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "gca/gfx_8_0_d.h" #include "gca/gfx_8_0_enum.h" #include "gca/gfx_8_0_sh_mask.h" #include "dce/dce_10_0_d.h" #include "dce/dce_10_0_sh_mask.h" #include "smu/smu_7_1_3_d.h" #include "ivsrcid/ivsrcid_vislands30.h" #define GFX8_NUM_GFX_RINGS 1 #define GFX8_MEC_HPD_SIZE 4096 #define TOPAZ_GB_ADDR_CONFIG_GOLDEN 0x22010001 #define CARRIZO_GB_ADDR_CONFIG_GOLDEN 0x22010001 #define POLARIS11_GB_ADDR_CONFIG_GOLDEN 0x22011002 #define TONGA_GB_ADDR_CONFIG_GOLDEN 0x22011003 #define ARRAY_MODE(x) ((x) << GB_TILE_MODE0__ARRAY_MODE__SHIFT) #define PIPE_CONFIG(x) ((x) << GB_TILE_MODE0__PIPE_CONFIG__SHIFT) #define TILE_SPLIT(x) ((x) << GB_TILE_MODE0__TILE_SPLIT__SHIFT) #define MICRO_TILE_MODE_NEW(x) ((x) << GB_TILE_MODE0__MICRO_TILE_MODE_NEW__SHIFT) #define SAMPLE_SPLIT(x) ((x) << GB_TILE_MODE0__SAMPLE_SPLIT__SHIFT) #define BANK_WIDTH(x) ((x) << GB_MACROTILE_MODE0__BANK_WIDTH__SHIFT) #define BANK_HEIGHT(x) ((x) << GB_MACROTILE_MODE0__BANK_HEIGHT__SHIFT) #define MACRO_TILE_ASPECT(x) ((x) << GB_MACROTILE_MODE0__MACRO_TILE_ASPECT__SHIFT) #define NUM_BANKS(x) ((x) << GB_MACROTILE_MODE0__NUM_BANKS__SHIFT) #define RLC_CGTT_MGCG_OVERRIDE__CPF_MASK 0x00000001L #define RLC_CGTT_MGCG_OVERRIDE__RLC_MASK 0x00000002L #define RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK 0x00000004L #define RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK 0x00000008L #define RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK 0x00000010L #define RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK 0x00000020L /* BPM SERDES CMD */ #define SET_BPM_SERDES_CMD 1 #define CLE_BPM_SERDES_CMD 0 /* BPM Register Address*/ enum { BPM_REG_CGLS_EN = 0, /* Enable/Disable CGLS */ BPM_REG_CGLS_ON, /* ON/OFF CGLS: shall be controlled by RLC FW */ BPM_REG_CGCG_OVERRIDE, /* Set/Clear CGCG Override */ BPM_REG_MGCG_OVERRIDE, /* Set/Clear MGCG Override */ BPM_REG_FGCG_OVERRIDE, /* Set/Clear FGCG Override */ BPM_REG_FGCG_MAX }; #define RLC_FormatDirectRegListLength 14 MODULE_FIRMWARE("amdgpu/carrizo_ce.bin"); MODULE_FIRMWARE("amdgpu/carrizo_pfp.bin"); MODULE_FIRMWARE("amdgpu/carrizo_me.bin"); MODULE_FIRMWARE("amdgpu/carrizo_mec.bin"); MODULE_FIRMWARE("amdgpu/carrizo_mec2.bin"); MODULE_FIRMWARE("amdgpu/carrizo_rlc.bin"); MODULE_FIRMWARE("amdgpu/stoney_ce.bin"); MODULE_FIRMWARE("amdgpu/stoney_pfp.bin"); MODULE_FIRMWARE("amdgpu/stoney_me.bin"); MODULE_FIRMWARE("amdgpu/stoney_mec.bin"); MODULE_FIRMWARE("amdgpu/stoney_rlc.bin"); MODULE_FIRMWARE("amdgpu/tonga_ce.bin"); MODULE_FIRMWARE("amdgpu/tonga_pfp.bin"); MODULE_FIRMWARE("amdgpu/tonga_me.bin"); MODULE_FIRMWARE("amdgpu/tonga_mec.bin"); MODULE_FIRMWARE("amdgpu/tonga_mec2.bin"); MODULE_FIRMWARE("amdgpu/tonga_rlc.bin"); MODULE_FIRMWARE("amdgpu/topaz_ce.bin"); MODULE_FIRMWARE("amdgpu/topaz_pfp.bin"); MODULE_FIRMWARE("amdgpu/topaz_me.bin"); MODULE_FIRMWARE("amdgpu/topaz_mec.bin"); MODULE_FIRMWARE("amdgpu/topaz_rlc.bin"); MODULE_FIRMWARE("amdgpu/fiji_ce.bin"); MODULE_FIRMWARE("amdgpu/fiji_pfp.bin"); MODULE_FIRMWARE("amdgpu/fiji_me.bin"); MODULE_FIRMWARE("amdgpu/fiji_mec.bin"); MODULE_FIRMWARE("amdgpu/fiji_mec2.bin"); MODULE_FIRMWARE("amdgpu/fiji_rlc.bin"); MODULE_FIRMWARE("amdgpu/polaris10_ce.bin"); MODULE_FIRMWARE("amdgpu/polaris10_ce_2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_pfp.bin"); MODULE_FIRMWARE("amdgpu/polaris10_pfp_2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_me.bin"); MODULE_FIRMWARE("amdgpu/polaris10_me_2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_mec.bin"); MODULE_FIRMWARE("amdgpu/polaris10_mec_2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_mec2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_mec2_2.bin"); MODULE_FIRMWARE("amdgpu/polaris10_rlc.bin"); MODULE_FIRMWARE("amdgpu/polaris11_ce.bin"); MODULE_FIRMWARE("amdgpu/polaris11_ce_2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_pfp.bin"); MODULE_FIRMWARE("amdgpu/polaris11_pfp_2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_me.bin"); MODULE_FIRMWARE("amdgpu/polaris11_me_2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_mec.bin"); MODULE_FIRMWARE("amdgpu/polaris11_mec_2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_mec2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_mec2_2.bin"); MODULE_FIRMWARE("amdgpu/polaris11_rlc.bin"); MODULE_FIRMWARE("amdgpu/polaris12_ce.bin"); MODULE_FIRMWARE("amdgpu/polaris12_ce_2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_pfp.bin"); MODULE_FIRMWARE("amdgpu/polaris12_pfp_2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_me.bin"); MODULE_FIRMWARE("amdgpu/polaris12_me_2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_mec.bin"); MODULE_FIRMWARE("amdgpu/polaris12_mec_2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_mec2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_mec2_2.bin"); MODULE_FIRMWARE("amdgpu/polaris12_rlc.bin"); MODULE_FIRMWARE("amdgpu/vegam_ce.bin"); MODULE_FIRMWARE("amdgpu/vegam_pfp.bin"); MODULE_FIRMWARE("amdgpu/vegam_me.bin"); MODULE_FIRMWARE("amdgpu/vegam_mec.bin"); MODULE_FIRMWARE("amdgpu/vegam_mec2.bin"); MODULE_FIRMWARE("amdgpu/vegam_rlc.bin"); static const struct amdgpu_gds_reg_offset amdgpu_gds_reg_offset[] = { {mmGDS_VMID0_BASE, mmGDS_VMID0_SIZE, mmGDS_GWS_VMID0, mmGDS_OA_VMID0}, {mmGDS_VMID1_BASE, mmGDS_VMID1_SIZE, mmGDS_GWS_VMID1, mmGDS_OA_VMID1}, {mmGDS_VMID2_BASE, mmGDS_VMID2_SIZE, mmGDS_GWS_VMID2, mmGDS_OA_VMID2}, {mmGDS_VMID3_BASE, mmGDS_VMID3_SIZE, mmGDS_GWS_VMID3, mmGDS_OA_VMID3}, {mmGDS_VMID4_BASE, mmGDS_VMID4_SIZE, mmGDS_GWS_VMID4, mmGDS_OA_VMID4}, {mmGDS_VMID5_BASE, mmGDS_VMID5_SIZE, mmGDS_GWS_VMID5, mmGDS_OA_VMID5}, {mmGDS_VMID6_BASE, mmGDS_VMID6_SIZE, mmGDS_GWS_VMID6, mmGDS_OA_VMID6}, {mmGDS_VMID7_BASE, mmGDS_VMID7_SIZE, mmGDS_GWS_VMID7, mmGDS_OA_VMID7}, {mmGDS_VMID8_BASE, mmGDS_VMID8_SIZE, mmGDS_GWS_VMID8, mmGDS_OA_VMID8}, {mmGDS_VMID9_BASE, mmGDS_VMID9_SIZE, mmGDS_GWS_VMID9, mmGDS_OA_VMID9}, {mmGDS_VMID10_BASE, mmGDS_VMID10_SIZE, mmGDS_GWS_VMID10, mmGDS_OA_VMID10}, {mmGDS_VMID11_BASE, mmGDS_VMID11_SIZE, mmGDS_GWS_VMID11, mmGDS_OA_VMID11}, {mmGDS_VMID12_BASE, mmGDS_VMID12_SIZE, mmGDS_GWS_VMID12, mmGDS_OA_VMID12}, {mmGDS_VMID13_BASE, mmGDS_VMID13_SIZE, mmGDS_GWS_VMID13, mmGDS_OA_VMID13}, {mmGDS_VMID14_BASE, mmGDS_VMID14_SIZE, mmGDS_GWS_VMID14, mmGDS_OA_VMID14}, {mmGDS_VMID15_BASE, mmGDS_VMID15_SIZE, mmGDS_GWS_VMID15, mmGDS_OA_VMID15} }; static const u32 golden_settings_tonga_a11[] = { mmCB_HW_CONTROL, 0xfffdf3cf, 0x00007208, mmCB_HW_CONTROL_3, 0x00000040, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmGB_GPU_ID, 0x0000000f, 0x00000000, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_FIFO_DEPTH_CNTL, 0x000003ff, 0x000000fc, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c, mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCC_EXE_DISABLE, 0x00000002, 0x00000002, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000002fb, mmTCP_CHAN_STEER_HI, 0xffffffff, 0x0000543b, mmTCP_CHAN_STEER_LO, 0xffffffff, 0xa9210876, mmVGT_RESET_DEBUG, 0x00000004, 0x00000004, }; static const u32 tonga_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x16000012, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002A, mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF }; static const u32 tonga_mgcg_cgcg_init[] = { mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100, mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100, mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100, mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100, mmTA_CGTT_CTRL, 0xffffffff, 0x00000100, mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTD_CGTT_CTRL, 0xffffffff, 0x00000100, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200, mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100, mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c, mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001, }; static const u32 golden_settings_vegam_a11[] = { mmCB_HW_CONTROL, 0x0001f3cf, 0x00007208, mmCB_HW_CONTROL_2, 0x0f000000, 0x0d000000, mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x3a00161a, mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x0000002e, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c, mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c, mmSQ_CONFIG, 0x07f80000, 0x01180000, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f7, mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000, mmTCP_CHAN_STEER_LO, 0xffffffff, 0x32761054, mmVGT_RESET_DEBUG, 0x00000004, 0x00000004, }; static const u32 vegam_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF, }; static const u32 golden_settings_polaris11_a11[] = { mmCB_HW_CONTROL, 0x0000f3cf, 0x00007208, mmCB_HW_CONTROL_2, 0x0f000000, 0x0f000000, mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x16000012, mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c, mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c, mmSQ_CONFIG, 0x07f80000, 0x01180000, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f3, mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000, mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00003210, mmVGT_RESET_DEBUG, 0x00000004, 0x00000004, }; static const u32 polaris11_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmGB_ADDR_CONFIG, 0xffffffff, 0x22011002, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF, }; static const u32 golden_settings_polaris10_a11[] = { mmATC_MISC_CG, 0x000c0fc0, 0x000c0200, mmCB_HW_CONTROL, 0x0001f3cf, 0x00007208, mmCB_HW_CONTROL_2, 0x0f000000, 0x0f000000, mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x16000012, mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x0000002a, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c, mmRLC_CGCG_CGLS_CTRL_3D, 0xffffffff, 0x0001003c, mmSQ_CONFIG, 0x07f80000, 0x07180000, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f7, mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000, mmVGT_RESET_DEBUG, 0x00000004, 0x00000004, }; static const u32 polaris10_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x16000012, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002A, mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF, }; static const u32 fiji_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x3a00161a, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x0000002e, mmGB_ADDR_CONFIG, 0xffffffff, 0x22011003, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmSPI_CONFIG_CNTL_1, 0x0000000f, 0x00000009, }; static const u32 golden_settings_fiji_a10[] = { mmCB_HW_CONTROL_3, 0x000001ff, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c, mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCC_EXE_DISABLE, 0x00000002, 0x00000002, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000ff, mmVGT_RESET_DEBUG, 0x00000004, 0x00000004, }; static const u32 fiji_mgcg_cgcg_init[] = { mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x40000100, mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100, mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100, mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100, mmTA_CGTT_CTRL, 0xffffffff, 0x00000100, mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTD_CGTT_CTRL, 0xffffffff, 0x00000100, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200, mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100, mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c, mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001, }; static const u32 golden_settings_iceland_a11[] = { mmCB_HW_CONTROL_3, 0x00000040, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmDB_DEBUG3, 0xc0000000, 0xc0000000, mmGB_GPU_ID, 0x0000000f, 0x00000000, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmPA_SC_RASTER_CONFIG, 0x3f3fffff, 0x00000002, mmPA_SC_RASTER_CONFIG_1, 0x0000003f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c, mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCC_EXE_DISABLE, 0x00000002, 0x00000002, mmTCP_ADDR_CONFIG, 0x000003ff, 0x000000f1, mmTCP_CHAN_STEER_HI, 0xffffffff, 0x00000000, mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00000010, }; static const u32 iceland_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000, mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF }; static const u32 iceland_mgcg_cgcg_init[] = { mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CP_CLK_CTRL, 0xffffffff, 0xc0000100, mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0xc0000100, mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0xc0000100, mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100, mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0xff000100, mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100, mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100, mmTA_CGTT_CTRL, 0xffffffff, 0x00000100, mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTD_CGTT_CTRL, 0xffffffff, 0x00000100, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87, mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x0f840f87, mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200, mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100, mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003c, }; static const u32 cz_golden_settings_a11[] = { mmCB_HW_CONTROL_3, 0x00000040, 0x00000040, mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmGB_GPU_ID, 0x0000000f, 0x00000000, mmPA_SC_ENHANCE, 0xffffffff, 0x00000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0000003c, mmSQ_RANDOM_WAVE_PRI, 0x001fffff, 0x000006fd, mmTA_CNTL_AUX, 0x000f000f, 0x00010000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCC_EXE_DISABLE, 0x00000002, 0x00000002, mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f3, mmTCP_CHAN_STEER_LO, 0xffffffff, 0x00001302 }; static const u32 cz_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000002, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000, mmGB_ADDR_CONFIG, 0xffffffff, 0x22010001, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF }; static const u32 cz_mgcg_cgcg_init[] = { mmRLC_CGTT_MGCG_OVERRIDE, 0xffffffff, 0xffffffff, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCB_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_BCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_CPF_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_GDS_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_IA_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PA_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_WD_CLK_CTRL, 0xffffffff, 0x06000100, mmCGTT_PC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_RLC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SC_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SPI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQ_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SQG_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL0, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL1, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL2, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL3, 0xffffffff, 0x00000100, mmCGTT_SX_CLK_CTRL4, 0xffffffff, 0x00000100, mmCGTT_TCI_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_TCP_CLK_CTRL, 0xffffffff, 0x00000100, mmCGTT_VGT_CLK_CTRL, 0xffffffff, 0x06000100, mmDB_CGTT_CLK_CTRL_0, 0xffffffff, 0x00000100, mmTA_CGTT_CTRL, 0xffffffff, 0x00000100, mmTCA_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTCC_CGTT_SCLK_CTRL, 0xffffffff, 0x00000100, mmTD_CGTT_CTRL, 0xffffffff, 0x00000100, mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmCGTS_CU0_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU0_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU0_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU0_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU0_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU1_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU1_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU1_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU1_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU1_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU2_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU2_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU2_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU2_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU2_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU3_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU3_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU3_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU3_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU3_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU4_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU4_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU4_TA_SQC_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU4_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU4_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU5_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU5_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU5_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU5_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU5_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU6_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU6_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU6_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU6_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU6_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_CU7_SP0_CTRL_REG, 0xffffffff, 0x00010000, mmCGTS_CU7_LDS_SQ_CTRL_REG, 0xffffffff, 0x00030002, mmCGTS_CU7_TA_CTRL_REG, 0xffffffff, 0x00040007, mmCGTS_CU7_SP1_CTRL_REG, 0xffffffff, 0x00060005, mmCGTS_CU7_TD_TCP_CTRL_REG, 0xffffffff, 0x00090008, mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96e00200, mmCP_RB_WPTR_POLL_CNTL, 0xffffffff, 0x00900100, mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f, mmCP_MEM_SLP_CNTL, 0x00000001, 0x00000001, }; static const u32 stoney_golden_settings_a11[] = { mmDB_DEBUG2, 0xf00fffff, 0x00000400, mmGB_GPU_ID, 0x0000000f, 0x00000000, mmPA_SC_ENHANCE, 0xffffffff, 0x20000001, mmPA_SC_LINE_STIPPLE_STATE, 0x0000ff0f, 0x00000000, mmRLC_CGCG_CGLS_CTRL, 0x00000003, 0x0001003c, mmTA_CNTL_AUX, 0x000f000f, 0x000b0000, mmTCC_CTRL, 0x00100000, 0xf31fff7f, mmTCC_EXE_DISABLE, 0x00000002, 0x00000002, mmTCP_ADDR_CONFIG, 0x0000000f, 0x000000f1, mmTCP_CHAN_STEER_LO, 0xffffffff, 0x10101010, }; static const u32 stoney_golden_common_all[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmPA_SC_RASTER_CONFIG, 0xffffffff, 0x00000000, mmPA_SC_RASTER_CONFIG_1, 0xffffffff, 0x00000000, mmGB_ADDR_CONFIG, 0xffffffff, 0x12010001, mmSPI_RESOURCE_RESERVE_CU_0, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_CU_1, 0xffffffff, 0x00000800, mmSPI_RESOURCE_RESERVE_EN_CU_0, 0xffffffff, 0x00FF7FBF, mmSPI_RESOURCE_RESERVE_EN_CU_1, 0xffffffff, 0x00FF7FAF, }; static const u32 stoney_mgcg_cgcg_init[] = { mmGRBM_GFX_INDEX, 0xffffffff, 0xe0000000, mmRLC_CGCG_CGLS_CTRL, 0xffffffff, 0x0020003f, mmCP_MEM_SLP_CNTL, 0xffffffff, 0x00020201, mmRLC_MEM_SLP_CNTL, 0xffffffff, 0x00020201, mmCGTS_SM_CTRL_REG, 0xffffffff, 0x96940200, }; static const char * const sq_edc_source_names[] = { "SQ_EDC_INFO_SOURCE_INVALID: No EDC error has occurred", "SQ_EDC_INFO_SOURCE_INST: EDC source is Instruction Fetch", "SQ_EDC_INFO_SOURCE_SGPR: EDC source is SGPR or SQC data return", "SQ_EDC_INFO_SOURCE_VGPR: EDC source is VGPR", "SQ_EDC_INFO_SOURCE_LDS: EDC source is LDS", "SQ_EDC_INFO_SOURCE_GDS: EDC source is GDS", "SQ_EDC_INFO_SOURCE_TA: EDC source is TA", }; static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev); static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev); static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev); static void gfx_v8_0_set_rlc_funcs(struct amdgpu_device *adev); static u32 gfx_v8_0_get_csb_size(struct amdgpu_device *adev); static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev); static void gfx_v8_0_ring_emit_ce_meta(struct amdgpu_ring *ring); static void gfx_v8_0_ring_emit_de_meta(struct amdgpu_ring *ring); #define CG_ACLK_CNTL__ACLK_DIVIDER_MASK 0x0000007fL #define CG_ACLK_CNTL__ACLK_DIVIDER__SHIFT 0x00000000L static void gfx_v8_0_init_golden_registers(struct amdgpu_device *adev) { uint32_t data; switch (adev->asic_type) { case CHIP_TOPAZ: amdgpu_device_program_register_sequence(adev, iceland_mgcg_cgcg_init, ARRAY_SIZE(iceland_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, golden_settings_iceland_a11, ARRAY_SIZE(golden_settings_iceland_a11)); amdgpu_device_program_register_sequence(adev, iceland_golden_common_all, ARRAY_SIZE(iceland_golden_common_all)); break; case CHIP_FIJI: amdgpu_device_program_register_sequence(adev, fiji_mgcg_cgcg_init, ARRAY_SIZE(fiji_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, golden_settings_fiji_a10, ARRAY_SIZE(golden_settings_fiji_a10)); amdgpu_device_program_register_sequence(adev, fiji_golden_common_all, ARRAY_SIZE(fiji_golden_common_all)); break; case CHIP_TONGA: amdgpu_device_program_register_sequence(adev, tonga_mgcg_cgcg_init, ARRAY_SIZE(tonga_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, golden_settings_tonga_a11, ARRAY_SIZE(golden_settings_tonga_a11)); amdgpu_device_program_register_sequence(adev, tonga_golden_common_all, ARRAY_SIZE(tonga_golden_common_all)); break; case CHIP_VEGAM: amdgpu_device_program_register_sequence(adev, golden_settings_vegam_a11, ARRAY_SIZE(golden_settings_vegam_a11)); amdgpu_device_program_register_sequence(adev, vegam_golden_common_all, ARRAY_SIZE(vegam_golden_common_all)); break; case CHIP_POLARIS11: case CHIP_POLARIS12: amdgpu_device_program_register_sequence(adev, golden_settings_polaris11_a11, ARRAY_SIZE(golden_settings_polaris11_a11)); amdgpu_device_program_register_sequence(adev, polaris11_golden_common_all, ARRAY_SIZE(polaris11_golden_common_all)); break; case CHIP_POLARIS10: amdgpu_device_program_register_sequence(adev, golden_settings_polaris10_a11, ARRAY_SIZE(golden_settings_polaris10_a11)); amdgpu_device_program_register_sequence(adev, polaris10_golden_common_all, ARRAY_SIZE(polaris10_golden_common_all)); data = RREG32_SMC(ixCG_ACLK_CNTL); data &= ~CG_ACLK_CNTL__ACLK_DIVIDER_MASK; data |= 0x18 << CG_ACLK_CNTL__ACLK_DIVIDER__SHIFT; WREG32_SMC(ixCG_ACLK_CNTL, data); if ((adev->pdev->device == 0x67DF) && (adev->pdev->revision == 0xc7) && ((adev->pdev->subsystem_device == 0xb37 && adev->pdev->subsystem_vendor == 0x1002) || (adev->pdev->subsystem_device == 0x4a8 && adev->pdev->subsystem_vendor == 0x1043) || (adev->pdev->subsystem_device == 0x9480 && adev->pdev->subsystem_vendor == 0x1680))) { amdgpu_atombios_i2c_channel_trans(adev, 0x10, 0x96, 0x1E, 0xDD); amdgpu_atombios_i2c_channel_trans(adev, 0x10, 0x96, 0x1F, 0xD0); } break; case CHIP_CARRIZO: amdgpu_device_program_register_sequence(adev, cz_mgcg_cgcg_init, ARRAY_SIZE(cz_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, cz_golden_settings_a11, ARRAY_SIZE(cz_golden_settings_a11)); amdgpu_device_program_register_sequence(adev, cz_golden_common_all, ARRAY_SIZE(cz_golden_common_all)); break; case CHIP_STONEY: amdgpu_device_program_register_sequence(adev, stoney_mgcg_cgcg_init, ARRAY_SIZE(stoney_mgcg_cgcg_init)); amdgpu_device_program_register_sequence(adev, stoney_golden_settings_a11, ARRAY_SIZE(stoney_golden_settings_a11)); amdgpu_device_program_register_sequence(adev, stoney_golden_common_all, ARRAY_SIZE(stoney_golden_common_all)); break; default: break; } } static int gfx_v8_0_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t tmp = 0; unsigned i; int r; WREG32(mmSCRATCH_REG0, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) return r; amdgpu_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1)); amdgpu_ring_write(ring, mmSCRATCH_REG0 - PACKET3_SET_UCONFIG_REG_START); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(mmSCRATCH_REG0); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; return r; } static int gfx_v8_0_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned int index; uint64_t gpu_addr; uint32_t tmp; long r; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); adev->wb.wb[index] = cpu_to_le32(0xCAFEDEAD); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 20, AMDGPU_IB_POOL_DIRECT, &ib); if (r) goto err1; ib.ptr[0] = PACKET3(PACKET3_WRITE_DATA, 3); ib.ptr[1] = WRITE_DATA_DST_SEL(5) | WR_CONFIRM; ib.ptr[2] = lower_32_bits(gpu_addr); ib.ptr[3] = upper_32_bits(gpu_addr); ib.ptr[4] = 0xDEADBEEF; ib.length_dw = 5; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err2; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err2; } else if (r < 0) { goto err2; } tmp = adev->wb.wb[index]; if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err2: amdgpu_ib_free(&ib, NULL); dma_fence_put(f); err1: amdgpu_device_wb_free(adev, index); return r; } static void gfx_v8_0_free_microcode(struct amdgpu_device *adev) { amdgpu_ucode_release(&adev->gfx.pfp_fw); amdgpu_ucode_release(&adev->gfx.me_fw); amdgpu_ucode_release(&adev->gfx.ce_fw); amdgpu_ucode_release(&adev->gfx.rlc_fw); amdgpu_ucode_release(&adev->gfx.mec_fw); if ((adev->asic_type != CHIP_STONEY) && (adev->asic_type != CHIP_TOPAZ)) amdgpu_ucode_release(&adev->gfx.mec2_fw); kfree(adev->gfx.rlc.register_list_format); } static int gfx_v8_0_init_microcode(struct amdgpu_device *adev) { const char *chip_name; int err; struct amdgpu_firmware_info *info = NULL; const struct common_firmware_header *header = NULL; const struct gfx_firmware_header_v1_0 *cp_hdr; const struct rlc_firmware_header_v2_0 *rlc_hdr; unsigned int *tmp = NULL, i; DRM_DEBUG("\n"); switch (adev->asic_type) { case CHIP_TOPAZ: chip_name = "topaz"; break; case CHIP_TONGA: chip_name = "tonga"; break; case CHIP_CARRIZO: chip_name = "carrizo"; break; case CHIP_FIJI: chip_name = "fiji"; break; case CHIP_STONEY: chip_name = "stoney"; break; case CHIP_POLARIS10: chip_name = "polaris10"; break; case CHIP_POLARIS11: chip_name = "polaris11"; break; case CHIP_POLARIS12: chip_name = "polaris12"; break; case CHIP_VEGAM: chip_name = "vegam"; break; default: BUG(); } if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) { err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw, AMDGPU_UCODE_OPTIONAL, "amdgpu/%s_pfp_2.bin", chip_name); if (err == -ENODEV) { err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_pfp.bin", chip_name); } } else { err = amdgpu_ucode_request(adev, &adev->gfx.pfp_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_pfp.bin", chip_name); } if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) { err = amdgpu_ucode_request(adev, &adev->gfx.me_fw, AMDGPU_UCODE_OPTIONAL, "amdgpu/%s_me_2.bin", chip_name); if (err == -ENODEV) { err = amdgpu_ucode_request(adev, &adev->gfx.me_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_me.bin", chip_name); } } else { err = amdgpu_ucode_request(adev, &adev->gfx.me_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_me.bin", chip_name); } if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) { err = amdgpu_ucode_request(adev, &adev->gfx.ce_fw, AMDGPU_UCODE_OPTIONAL, "amdgpu/%s_ce_2.bin", chip_name); if (err == -ENODEV) { err = amdgpu_ucode_request(adev, &adev->gfx.ce_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_ce.bin", chip_name); } } else { err = amdgpu_ucode_request(adev, &adev->gfx.ce_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_ce.bin", chip_name); } if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.ce_fw->data; adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); /* * Support for MCBP/Virtualization in combination with chained IBs is * formal released on feature version #46 */ if (adev->gfx.ce_feature_version >= 46 && adev->gfx.pfp_feature_version >= 46) { adev->virt.chained_ib_support = true; DRM_INFO("Chained IB support enabled!\n"); } else adev->virt.chained_ib_support = false; err = amdgpu_ucode_request(adev, &adev->gfx.rlc_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_rlc.bin", chip_name); if (err) goto out; rlc_hdr = (const struct rlc_firmware_header_v2_0 *)adev->gfx.rlc_fw->data; adev->gfx.rlc_fw_version = le32_to_cpu(rlc_hdr->header.ucode_version); adev->gfx.rlc_feature_version = le32_to_cpu(rlc_hdr->ucode_feature_version); adev->gfx.rlc.save_and_restore_offset = le32_to_cpu(rlc_hdr->save_and_restore_offset); adev->gfx.rlc.clear_state_descriptor_offset = le32_to_cpu(rlc_hdr->clear_state_descriptor_offset); adev->gfx.rlc.avail_scratch_ram_locations = le32_to_cpu(rlc_hdr->avail_scratch_ram_locations); adev->gfx.rlc.reg_restore_list_size = le32_to_cpu(rlc_hdr->reg_restore_list_size); adev->gfx.rlc.reg_list_format_start = le32_to_cpu(rlc_hdr->reg_list_format_start); adev->gfx.rlc.reg_list_format_separate_start = le32_to_cpu(rlc_hdr->reg_list_format_separate_start); adev->gfx.rlc.starting_offsets_start = le32_to_cpu(rlc_hdr->starting_offsets_start); adev->gfx.rlc.reg_list_format_size_bytes = le32_to_cpu(rlc_hdr->reg_list_format_size_bytes); adev->gfx.rlc.reg_list_size_bytes = le32_to_cpu(rlc_hdr->reg_list_size_bytes); adev->gfx.rlc.register_list_format = kmalloc(adev->gfx.rlc.reg_list_format_size_bytes + adev->gfx.rlc.reg_list_size_bytes, GFP_KERNEL); if (!adev->gfx.rlc.register_list_format) { err = -ENOMEM; goto out; } tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_format_array_offset_bytes)); for (i = 0 ; i < (adev->gfx.rlc.reg_list_format_size_bytes >> 2); i++) adev->gfx.rlc.register_list_format[i] = le32_to_cpu(tmp[i]); adev->gfx.rlc.register_restore = adev->gfx.rlc.register_list_format + i; tmp = (unsigned int *)((uintptr_t)rlc_hdr + le32_to_cpu(rlc_hdr->reg_list_array_offset_bytes)); for (i = 0 ; i < (adev->gfx.rlc.reg_list_size_bytes >> 2); i++) adev->gfx.rlc.register_restore[i] = le32_to_cpu(tmp[i]); if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) { err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw, AMDGPU_UCODE_OPTIONAL, "amdgpu/%s_mec_2.bin", chip_name); if (err == -ENODEV) { err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_mec.bin", chip_name); } } else { err = amdgpu_ucode_request(adev, &adev->gfx.mec_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_mec.bin", chip_name); } if (err) goto out; cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); if ((adev->asic_type != CHIP_STONEY) && (adev->asic_type != CHIP_TOPAZ)) { if (adev->asic_type >= CHIP_POLARIS10 && adev->asic_type <= CHIP_POLARIS12) { err = amdgpu_ucode_request(adev, &adev->gfx.mec2_fw, AMDGPU_UCODE_OPTIONAL, "amdgpu/%s_mec2_2.bin", chip_name); if (err == -ENODEV) { err = amdgpu_ucode_request(adev, &adev->gfx.mec2_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_mec2.bin", chip_name); } } else { err = amdgpu_ucode_request(adev, &adev->gfx.mec2_fw, AMDGPU_UCODE_REQUIRED, "amdgpu/%s_mec2.bin", chip_name); } if (!err) { cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; adev->gfx.mec2_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); } else { err = 0; adev->gfx.mec2_fw = NULL; } } info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_PFP]; info->ucode_id = AMDGPU_UCODE_ID_CP_PFP; info->fw = adev->gfx.pfp_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_ME]; info->ucode_id = AMDGPU_UCODE_ID_CP_ME; info->fw = adev->gfx.me_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_CE]; info->ucode_id = AMDGPU_UCODE_ID_CP_CE; info->fw = adev->gfx.ce_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_RLC_G]; info->ucode_id = AMDGPU_UCODE_ID_RLC_G; info->fw = adev->gfx.rlc_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC1]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC1; info->fw = adev->gfx.mec_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); /* we need account JT in */ cp_hdr = (const struct gfx_firmware_header_v1_0 *)adev->gfx.mec_fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(cp_hdr->jt_size) << 2, PAGE_SIZE); if (amdgpu_sriov_vf(adev)) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_STORAGE]; info->ucode_id = AMDGPU_UCODE_ID_STORAGE; info->fw = adev->gfx.mec_fw; adev->firmware.fw_size += ALIGN(le32_to_cpu(64 * PAGE_SIZE), PAGE_SIZE); } if (adev->gfx.mec2_fw) { info = &adev->firmware.ucode[AMDGPU_UCODE_ID_CP_MEC2]; info->ucode_id = AMDGPU_UCODE_ID_CP_MEC2; info->fw = adev->gfx.mec2_fw; header = (const struct common_firmware_header *)info->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { dev_err(adev->dev, "gfx8: Failed to load firmware %s gfx firmware\n", chip_name); amdgpu_ucode_release(&adev->gfx.pfp_fw); amdgpu_ucode_release(&adev->gfx.me_fw); amdgpu_ucode_release(&adev->gfx.ce_fw); amdgpu_ucode_release(&adev->gfx.rlc_fw); amdgpu_ucode_release(&adev->gfx.mec_fw); amdgpu_ucode_release(&adev->gfx.mec2_fw); } return err; } static void gfx_v8_0_get_csb_buffer(struct amdgpu_device *adev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (adev->gfx.rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = adev->gfx.rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 2)); buffer[count++] = cpu_to_le32(mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START); buffer[count++] = cpu_to_le32(adev->gfx.config.rb_config[0][0].raster_config); buffer[count++] = cpu_to_le32(adev->gfx.config.rb_config[0][0].raster_config_1); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static int gfx_v8_0_cp_jump_table_num(struct amdgpu_device *adev) { if (adev->asic_type == CHIP_CARRIZO) return 5; else return 4; } static int gfx_v8_0_rlc_init(struct amdgpu_device *adev) { const struct cs_section_def *cs_data; int r; adev->gfx.rlc.cs_data = vi_cs_data; cs_data = adev->gfx.rlc.cs_data; if (cs_data) { /* init clear state block */ r = amdgpu_gfx_rlc_init_csb(adev); if (r) return r; } if ((adev->asic_type == CHIP_CARRIZO) || (adev->asic_type == CHIP_STONEY)) { adev->gfx.rlc.cp_table_size = ALIGN(96 * 5 * 4, 2048) + (64 * 1024); /* JT + GDS */ r = amdgpu_gfx_rlc_init_cpt(adev); if (r) return r; } /* init spm vmid with 0xf */ if (adev->gfx.rlc.funcs->update_spm_vmid) adev->gfx.rlc.funcs->update_spm_vmid(adev, NULL, 0xf); return 0; } static void gfx_v8_0_mec_fini(struct amdgpu_device *adev) { amdgpu_bo_free_kernel(&adev->gfx.mec.hpd_eop_obj, NULL, NULL); } static int gfx_v8_0_mec_init(struct amdgpu_device *adev) { int r; u32 *hpd; size_t mec_hpd_size; bitmap_zero(adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES); /* take ownership of the relevant compute queues */ amdgpu_gfx_compute_queue_acquire(adev); mec_hpd_size = adev->gfx.num_compute_rings * GFX8_MEC_HPD_SIZE; if (mec_hpd_size) { r = amdgpu_bo_create_reserved(adev, mec_hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.mec.hpd_eop_obj, &adev->gfx.mec.hpd_eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "(%d) create HDP EOP bo failed\n", r); return r; } memset(hpd, 0, mec_hpd_size); amdgpu_bo_kunmap(adev->gfx.mec.hpd_eop_obj); amdgpu_bo_unreserve(adev->gfx.mec.hpd_eop_obj); } return 0; } static const u32 vgpr_init_compute_shader[] = { 0x7e000209, 0x7e020208, 0x7e040207, 0x7e060206, 0x7e080205, 0x7e0a0204, 0x7e0c0203, 0x7e0e0202, 0x7e100201, 0x7e120200, 0x7e140209, 0x7e160208, 0x7e180207, 0x7e1a0206, 0x7e1c0205, 0x7e1e0204, 0x7e200203, 0x7e220202, 0x7e240201, 0x7e260200, 0x7e280209, 0x7e2a0208, 0x7e2c0207, 0x7e2e0206, 0x7e300205, 0x7e320204, 0x7e340203, 0x7e360202, 0x7e380201, 0x7e3a0200, 0x7e3c0209, 0x7e3e0208, 0x7e400207, 0x7e420206, 0x7e440205, 0x7e460204, 0x7e480203, 0x7e4a0202, 0x7e4c0201, 0x7e4e0200, 0x7e500209, 0x7e520208, 0x7e540207, 0x7e560206, 0x7e580205, 0x7e5a0204, 0x7e5c0203, 0x7e5e0202, 0x7e600201, 0x7e620200, 0x7e640209, 0x7e660208, 0x7e680207, 0x7e6a0206, 0x7e6c0205, 0x7e6e0204, 0x7e700203, 0x7e720202, 0x7e740201, 0x7e760200, 0x7e780209, 0x7e7a0208, 0x7e7c0207, 0x7e7e0206, 0xbf8a0000, 0xbf810000, }; static const u32 sgpr_init_compute_shader[] = { 0xbe8a0100, 0xbe8c0102, 0xbe8e0104, 0xbe900106, 0xbe920108, 0xbe940100, 0xbe960102, 0xbe980104, 0xbe9a0106, 0xbe9c0108, 0xbe9e0100, 0xbea00102, 0xbea20104, 0xbea40106, 0xbea60108, 0xbea80100, 0xbeaa0102, 0xbeac0104, 0xbeae0106, 0xbeb00108, 0xbeb20100, 0xbeb40102, 0xbeb60104, 0xbeb80106, 0xbeba0108, 0xbebc0100, 0xbebe0102, 0xbec00104, 0xbec20106, 0xbec40108, 0xbec60100, 0xbec80102, 0xbee60004, 0xbee70005, 0xbeea0006, 0xbeeb0007, 0xbee80008, 0xbee90009, 0xbefc0000, 0xbf8a0000, 0xbf810000, 0x00000000, }; static const u32 vgpr_init_regs[] = { mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xffffffff, mmCOMPUTE_RESOURCE_LIMITS, 0x1000000, /* CU_GROUP_COUNT=1 */ mmCOMPUTE_NUM_THREAD_X, 256*4, mmCOMPUTE_NUM_THREAD_Y, 1, mmCOMPUTE_NUM_THREAD_Z, 1, mmCOMPUTE_PGM_RSRC1, 0x100004f, /* VGPRS=15 (64 logical VGPRs), SGPRS=1 (16 SGPRs), BULKY=1 */ mmCOMPUTE_PGM_RSRC2, 20, mmCOMPUTE_USER_DATA_0, 0xedcedc00, mmCOMPUTE_USER_DATA_1, 0xedcedc01, mmCOMPUTE_USER_DATA_2, 0xedcedc02, mmCOMPUTE_USER_DATA_3, 0xedcedc03, mmCOMPUTE_USER_DATA_4, 0xedcedc04, mmCOMPUTE_USER_DATA_5, 0xedcedc05, mmCOMPUTE_USER_DATA_6, 0xedcedc06, mmCOMPUTE_USER_DATA_7, 0xedcedc07, mmCOMPUTE_USER_DATA_8, 0xedcedc08, mmCOMPUTE_USER_DATA_9, 0xedcedc09, }; static const u32 sgpr1_init_regs[] = { mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0x0f, mmCOMPUTE_RESOURCE_LIMITS, 0x1000000, /* CU_GROUP_COUNT=1 */ mmCOMPUTE_NUM_THREAD_X, 256*5, mmCOMPUTE_NUM_THREAD_Y, 1, mmCOMPUTE_NUM_THREAD_Z, 1, mmCOMPUTE_PGM_RSRC1, 0x240, /* SGPRS=9 (80 GPRS) */ mmCOMPUTE_PGM_RSRC2, 20, mmCOMPUTE_USER_DATA_0, 0xedcedc00, mmCOMPUTE_USER_DATA_1, 0xedcedc01, mmCOMPUTE_USER_DATA_2, 0xedcedc02, mmCOMPUTE_USER_DATA_3, 0xedcedc03, mmCOMPUTE_USER_DATA_4, 0xedcedc04, mmCOMPUTE_USER_DATA_5, 0xedcedc05, mmCOMPUTE_USER_DATA_6, 0xedcedc06, mmCOMPUTE_USER_DATA_7, 0xedcedc07, mmCOMPUTE_USER_DATA_8, 0xedcedc08, mmCOMPUTE_USER_DATA_9, 0xedcedc09, }; static const u32 sgpr2_init_regs[] = { mmCOMPUTE_STATIC_THREAD_MGMT_SE0, 0xf0, mmCOMPUTE_RESOURCE_LIMITS, 0x1000000, mmCOMPUTE_NUM_THREAD_X, 256*5, mmCOMPUTE_NUM_THREAD_Y, 1, mmCOMPUTE_NUM_THREAD_Z, 1, mmCOMPUTE_PGM_RSRC1, 0x240, /* SGPRS=9 (80 GPRS) */ mmCOMPUTE_PGM_RSRC2, 20, mmCOMPUTE_USER_DATA_0, 0xedcedc00, mmCOMPUTE_USER_DATA_1, 0xedcedc01, mmCOMPUTE_USER_DATA_2, 0xedcedc02, mmCOMPUTE_USER_DATA_3, 0xedcedc03, mmCOMPUTE_USER_DATA_4, 0xedcedc04, mmCOMPUTE_USER_DATA_5, 0xedcedc05, mmCOMPUTE_USER_DATA_6, 0xedcedc06, mmCOMPUTE_USER_DATA_7, 0xedcedc07, mmCOMPUTE_USER_DATA_8, 0xedcedc08, mmCOMPUTE_USER_DATA_9, 0xedcedc09, }; static const u32 sec_ded_counter_registers[] = { mmCPC_EDC_ATC_CNT, mmCPC_EDC_SCRATCH_CNT, mmCPC_EDC_UCODE_CNT, mmCPF_EDC_ATC_CNT, mmCPF_EDC_ROQ_CNT, mmCPF_EDC_TAG_CNT, mmCPG_EDC_ATC_CNT, mmCPG_EDC_DMA_CNT, mmCPG_EDC_TAG_CNT, mmDC_EDC_CSINVOC_CNT, mmDC_EDC_RESTORE_CNT, mmDC_EDC_STATE_CNT, mmGDS_EDC_CNT, mmGDS_EDC_GRBM_CNT, mmGDS_EDC_OA_DED, mmSPI_EDC_CNT, mmSQC_ATC_EDC_GATCL1_CNT, mmSQC_EDC_CNT, mmSQ_EDC_DED_CNT, mmSQ_EDC_INFO, mmSQ_EDC_SEC_CNT, mmTCC_EDC_CNT, mmTCP_ATC_EDC_GATCL1_CNT, mmTCP_EDC_CNT, mmTD_EDC_CNT }; static int gfx_v8_0_do_edc_gpr_workarounds(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[0]; struct amdgpu_ib ib; struct dma_fence *f = NULL; int r, i; u32 tmp; unsigned total_size, vgpr_offset, sgpr_offset; u64 gpu_addr; /* only supported on CZ */ if (adev->asic_type != CHIP_CARRIZO) return 0; /* bail if the compute ring is not ready */ if (!ring->sched.ready) return 0; tmp = RREG32(mmGB_EDC_MODE); WREG32(mmGB_EDC_MODE, 0); total_size = (((ARRAY_SIZE(vgpr_init_regs) / 2) * 3) + 4 + 5 + 2) * 4; total_size += (((ARRAY_SIZE(sgpr1_init_regs) / 2) * 3) + 4 + 5 + 2) * 4; total_size += (((ARRAY_SIZE(sgpr2_init_regs) / 2) * 3) + 4 + 5 + 2) * 4; total_size = ALIGN(total_size, 256); vgpr_offset = total_size; total_size += ALIGN(sizeof(vgpr_init_compute_shader), 256); sgpr_offset = total_size; total_size += sizeof(sgpr_init_compute_shader); /* allocate an indirect buffer to put the commands in */ memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, total_size, AMDGPU_IB_POOL_DIRECT, &ib); if (r) { DRM_ERROR("amdgpu: failed to get ib (%d).\n", r); return r; } /* load the compute shaders */ for (i = 0; i < ARRAY_SIZE(vgpr_init_compute_shader); i++) ib.ptr[i + (vgpr_offset / 4)] = vgpr_init_compute_shader[i]; for (i = 0; i < ARRAY_SIZE(sgpr_init_compute_shader); i++) ib.ptr[i + (sgpr_offset / 4)] = sgpr_init_compute_shader[i]; /* init the ib length to 0 */ ib.length_dw = 0; /* VGPR */ /* write the register state for the compute dispatch */ for (i = 0; i < ARRAY_SIZE(vgpr_init_regs); i += 2) { ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1); ib.ptr[ib.length_dw++] = vgpr_init_regs[i] - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = vgpr_init_regs[i + 1]; } /* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */ gpu_addr = (ib.gpu_addr + (u64)vgpr_offset) >> 8; ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2); ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr); ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr); /* write dispatch packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3); ib.ptr[ib.length_dw++] = 8; /* x */ ib.ptr[ib.length_dw++] = 1; /* y */ ib.ptr[ib.length_dw++] = 1; /* z */ ib.ptr[ib.length_dw++] = REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1); /* write CS partial flush packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0); ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4); /* SGPR1 */ /* write the register state for the compute dispatch */ for (i = 0; i < ARRAY_SIZE(sgpr1_init_regs); i += 2) { ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1); ib.ptr[ib.length_dw++] = sgpr1_init_regs[i] - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = sgpr1_init_regs[i + 1]; } /* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */ gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8; ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2); ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr); ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr); /* write dispatch packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3); ib.ptr[ib.length_dw++] = 8; /* x */ ib.ptr[ib.length_dw++] = 1; /* y */ ib.ptr[ib.length_dw++] = 1; /* z */ ib.ptr[ib.length_dw++] = REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1); /* write CS partial flush packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0); ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4); /* SGPR2 */ /* write the register state for the compute dispatch */ for (i = 0; i < ARRAY_SIZE(sgpr2_init_regs); i += 2) { ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 1); ib.ptr[ib.length_dw++] = sgpr2_init_regs[i] - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = sgpr2_init_regs[i + 1]; } /* write the shader start address: mmCOMPUTE_PGM_LO, mmCOMPUTE_PGM_HI */ gpu_addr = (ib.gpu_addr + (u64)sgpr_offset) >> 8; ib.ptr[ib.length_dw++] = PACKET3(PACKET3_SET_SH_REG, 2); ib.ptr[ib.length_dw++] = mmCOMPUTE_PGM_LO - PACKET3_SET_SH_REG_START; ib.ptr[ib.length_dw++] = lower_32_bits(gpu_addr); ib.ptr[ib.length_dw++] = upper_32_bits(gpu_addr); /* write dispatch packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_DISPATCH_DIRECT, 3); ib.ptr[ib.length_dw++] = 8; /* x */ ib.ptr[ib.length_dw++] = 1; /* y */ ib.ptr[ib.length_dw++] = 1; /* z */ ib.ptr[ib.length_dw++] = REG_SET_FIELD(0, COMPUTE_DISPATCH_INITIATOR, COMPUTE_SHADER_EN, 1); /* write CS partial flush packet */ ib.ptr[ib.length_dw++] = PACKET3(PACKET3_EVENT_WRITE, 0); ib.ptr[ib.length_dw++] = EVENT_TYPE(7) | EVENT_INDEX(4); /* shedule the ib on the ring */ r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) { DRM_ERROR("amdgpu: ib submit failed (%d).\n", r); goto fail; } /* wait for the GPU to finish processing the IB */ r = dma_fence_wait(f, false); if (r) { DRM_ERROR("amdgpu: fence wait failed (%d).\n", r); goto fail; } tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, DED_MODE, 2); tmp = REG_SET_FIELD(tmp, GB_EDC_MODE, PROP_FED, 1); WREG32(mmGB_EDC_MODE, tmp); tmp = RREG32(mmCC_GC_EDC_CONFIG); tmp = REG_SET_FIELD(tmp, CC_GC_EDC_CONFIG, DIS_EDC, 0) | 1; WREG32(mmCC_GC_EDC_CONFIG, tmp); /* read back registers to clear the counters */ for (i = 0; i < ARRAY_SIZE(sec_ded_counter_registers); i++) RREG32(sec_ded_counter_registers[i]); fail: amdgpu_ib_free(&ib, NULL); dma_fence_put(f); return r; } static int gfx_v8_0_gpu_early_init(struct amdgpu_device *adev) { u32 gb_addr_config; u32 mc_arb_ramcfg; u32 dimm00_addr_map, dimm01_addr_map, dimm10_addr_map, dimm11_addr_map; u32 tmp; int ret; switch (adev->asic_type) { case CHIP_TOPAZ: adev->gfx.config.max_shader_engines = 1; adev->gfx.config.max_tile_pipes = 2; adev->gfx.config.max_cu_per_sh = 6; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 2; adev->gfx.config.max_texture_channel_caches = 2; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TOPAZ_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_FIJI: adev->gfx.config.max_shader_engines = 4; adev->gfx.config.max_tile_pipes = 16; adev->gfx.config.max_cu_per_sh = 16; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 4; adev->gfx.config.max_texture_channel_caches = 16; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_POLARIS11: case CHIP_POLARIS12: ret = amdgpu_atombios_get_gfx_info(adev); if (ret) return ret; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = POLARIS11_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_POLARIS10: case CHIP_VEGAM: ret = amdgpu_atombios_get_gfx_info(adev); if (ret) return ret; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_TONGA: adev->gfx.config.max_shader_engines = 4; adev->gfx.config.max_tile_pipes = 8; adev->gfx.config.max_cu_per_sh = 8; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 2; adev->gfx.config.max_texture_channel_caches = 8; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_CARRIZO: adev->gfx.config.max_shader_engines = 1; adev->gfx.config.max_tile_pipes = 2; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 2; adev->gfx.config.max_cu_per_sh = 8; adev->gfx.config.max_texture_channel_caches = 2; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_STONEY: adev->gfx.config.max_shader_engines = 1; adev->gfx.config.max_tile_pipes = 2; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 1; adev->gfx.config.max_cu_per_sh = 3; adev->gfx.config.max_texture_channel_caches = 2; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 16; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = CARRIZO_GB_ADDR_CONFIG_GOLDEN; break; default: adev->gfx.config.max_shader_engines = 2; adev->gfx.config.max_tile_pipes = 4; adev->gfx.config.max_cu_per_sh = 2; adev->gfx.config.max_sh_per_se = 1; adev->gfx.config.max_backends_per_se = 2; adev->gfx.config.max_texture_channel_caches = 4; adev->gfx.config.max_gprs = 256; adev->gfx.config.max_gs_threads = 32; adev->gfx.config.max_hw_contexts = 8; adev->gfx.config.sc_prim_fifo_size_frontend = 0x20; adev->gfx.config.sc_prim_fifo_size_backend = 0x100; adev->gfx.config.sc_hiz_tile_fifo_size = 0x30; adev->gfx.config.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TONGA_GB_ADDR_CONFIG_GOLDEN; break; } adev->gfx.config.mc_arb_ramcfg = RREG32(mmMC_ARB_RAMCFG); mc_arb_ramcfg = adev->gfx.config.mc_arb_ramcfg; adev->gfx.config.num_banks = REG_GET_FIELD(mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFBANK); adev->gfx.config.num_ranks = REG_GET_FIELD(mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFRANKS); adev->gfx.config.num_tile_pipes = adev->gfx.config.max_tile_pipes; adev->gfx.config.mem_max_burst_length_bytes = 256; if (adev->flags & AMD_IS_APU) { /* Get memory bank mapping mode. */ tmp = RREG32(mmMC_FUS_DRAM0_BANK_ADDR_MAPPING); dimm00_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM0ADDRMAP); dimm01_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM0_BANK_ADDR_MAPPING, DIMM1ADDRMAP); tmp = RREG32(mmMC_FUS_DRAM1_BANK_ADDR_MAPPING); dimm10_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM0ADDRMAP); dimm11_addr_map = REG_GET_FIELD(tmp, MC_FUS_DRAM1_BANK_ADDR_MAPPING, DIMM1ADDRMAP); /* Validate settings in case only one DIMM installed. */ if ((dimm00_addr_map == 0) || (dimm00_addr_map == 3) || (dimm00_addr_map == 4) || (dimm00_addr_map > 12)) dimm00_addr_map = 0; if ((dimm01_addr_map == 0) || (dimm01_addr_map == 3) || (dimm01_addr_map == 4) || (dimm01_addr_map > 12)) dimm01_addr_map = 0; if ((dimm10_addr_map == 0) || (dimm10_addr_map == 3) || (dimm10_addr_map == 4) || (dimm10_addr_map > 12)) dimm10_addr_map = 0; if ((dimm11_addr_map == 0) || (dimm11_addr_map == 3) || (dimm11_addr_map == 4) || (dimm11_addr_map > 12)) dimm11_addr_map = 0; /* If DIMM Addr map is 8GB, ROW size should be 2KB. Otherwise 1KB. */ /* If ROW size(DIMM1) != ROW size(DMIMM0), ROW size should be larger one. */ if ((dimm00_addr_map == 11) || (dimm01_addr_map == 11) || (dimm10_addr_map == 11) || (dimm11_addr_map == 11)) adev->gfx.config.mem_row_size_in_kb = 2; else adev->gfx.config.mem_row_size_in_kb = 1; } else { tmp = REG_GET_FIELD(mc_arb_ramcfg, MC_ARB_RAMCFG, NOOFCOLS); adev->gfx.config.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (adev->gfx.config.mem_row_size_in_kb > 4) adev->gfx.config.mem_row_size_in_kb = 4; } adev->gfx.config.shader_engine_tile_size = 32; adev->gfx.config.num_gpus = 1; adev->gfx.config.multi_gpu_tile_size = 64; /* fix up row size */ switch (adev->gfx.config.mem_row_size_in_kb) { case 1: default: gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 0); break; case 2: gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 1); break; case 4: gb_addr_config = REG_SET_FIELD(gb_addr_config, GB_ADDR_CONFIG, ROW_SIZE, 2); break; } adev->gfx.config.gb_addr_config = gb_addr_config; return 0; } static int gfx_v8_0_compute_ring_init(struct amdgpu_device *adev, int ring_id, int mec, int pipe, int queue) { int r; unsigned irq_type; struct amdgpu_ring *ring = &adev->gfx.compute_ring[ring_id]; unsigned int hw_prio; ring = &adev->gfx.compute_ring[ring_id]; /* mec0 is me1 */ ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; ring->ring_obj = NULL; ring->use_doorbell = true; ring->doorbell_index = adev->doorbell_index.mec_ring0 + ring_id; ring->eop_gpu_addr = adev->gfx.mec.hpd_eop_gpu_addr + (ring_id * GFX8_MEC_HPD_SIZE); sprintf(ring->name, "comp_%d.%d.%d", ring->me, ring->pipe, ring->queue); irq_type = AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP + ((ring->me - 1) * adev->gfx.mec.num_pipe_per_mec) + ring->pipe; hw_prio = amdgpu_gfx_is_high_priority_compute_queue(adev, ring) ? AMDGPU_RING_PRIO_2 : AMDGPU_RING_PRIO_DEFAULT; /* type-2 packets are deprecated on MEC, use type-3 instead */ r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, irq_type, hw_prio, NULL); if (r) return r; return 0; } static void gfx_v8_0_sq_irq_work_func(struct work_struct *work); static int gfx_v8_0_sw_init(struct amdgpu_ip_block *ip_block) { int i, j, k, r, ring_id; int xcc_id = 0; struct amdgpu_ring *ring; struct amdgpu_device *adev = ip_block->adev; switch (adev->asic_type) { case CHIP_TONGA: case CHIP_CARRIZO: case CHIP_FIJI: case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: adev->gfx.mec.num_mec = 2; break; case CHIP_TOPAZ: case CHIP_STONEY: default: adev->gfx.mec.num_mec = 1; break; } adev->gfx.mec.num_pipe_per_mec = 4; adev->gfx.mec.num_queue_per_pipe = 8; /* EOP Event */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_END_OF_PIPE, &adev->gfx.eop_irq); if (r) return r; /* Privileged reg */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_PRIV_REG_FAULT, &adev->gfx.priv_reg_irq); if (r) return r; /* Privileged inst */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_PRIV_INSTR_FAULT, &adev->gfx.priv_inst_irq); if (r) return r; /* Add CP EDC/ECC irq */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_CP_ECC_ERROR, &adev->gfx.cp_ecc_error_irq); if (r) return r; /* SQ interrupts. */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SQ_INTERRUPT_MSG, &adev->gfx.sq_irq); if (r) { DRM_ERROR("amdgpu_irq_add() for SQ failed: %d\n", r); return r; } INIT_WORK(&adev->gfx.sq_work.work, gfx_v8_0_sq_irq_work_func); adev->gfx.gfx_current_status = AMDGPU_GFX_NORMAL_MODE; r = gfx_v8_0_init_microcode(adev); if (r) { DRM_ERROR("Failed to load gfx firmware!\n"); return r; } r = adev->gfx.rlc.funcs->init(adev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } r = gfx_v8_0_mec_init(adev); if (r) { DRM_ERROR("Failed to init MEC BOs!\n"); return r; } /* set up the gfx ring */ for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; ring->ring_obj = NULL; sprintf(ring->name, "gfx"); /* no gfx doorbells on iceland */ if (adev->asic_type != CHIP_TOPAZ) { ring->use_doorbell = true; ring->doorbell_index = adev->doorbell_index.gfx_ring0; } r = amdgpu_ring_init(adev, ring, 1024, &adev->gfx.eop_irq, AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) return r; } /* set up the compute queues - allocate horizontally across pipes */ ring_id = 0; for (i = 0; i < adev->gfx.mec.num_mec; ++i) { for (j = 0; j < adev->gfx.mec.num_queue_per_pipe; j++) { for (k = 0; k < adev->gfx.mec.num_pipe_per_mec; k++) { if (!amdgpu_gfx_is_mec_queue_enabled(adev, 0, i, k, j)) continue; r = gfx_v8_0_compute_ring_init(adev, ring_id, i, k, j); if (r) return r; ring_id++; } } } r = amdgpu_gfx_kiq_init(adev, GFX8_MEC_HPD_SIZE, 0); if (r) { DRM_ERROR("Failed to init KIQ BOs!\n"); return r; } r = amdgpu_gfx_kiq_init_ring(adev, xcc_id); if (r) return r; /* create MQD for all compute queues as well as KIQ for SRIOV case */ r = amdgpu_gfx_mqd_sw_init(adev, sizeof(struct vi_mqd_allocation), 0); if (r) return r; adev->gfx.ce_ram_size = 0x8000; r = gfx_v8_0_gpu_early_init(adev); if (r) return r; return 0; } static int gfx_v8_0_sw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int i; for (i = 0; i < adev->gfx.num_gfx_rings; i++) amdgpu_ring_fini(&adev->gfx.gfx_ring[i]); for (i = 0; i < adev->gfx.num_compute_rings; i++) amdgpu_ring_fini(&adev->gfx.compute_ring[i]); amdgpu_gfx_mqd_sw_fini(adev, 0); amdgpu_gfx_kiq_free_ring(&adev->gfx.kiq[0].ring); amdgpu_gfx_kiq_fini(adev, 0); gfx_v8_0_mec_fini(adev); amdgpu_gfx_rlc_fini(adev); amdgpu_bo_free_kernel(&adev->gfx.rlc.clear_state_obj, &adev->gfx.rlc.clear_state_gpu_addr, (void **)&adev->gfx.rlc.cs_ptr); if ((adev->asic_type == CHIP_CARRIZO) || (adev->asic_type == CHIP_STONEY)) { amdgpu_bo_free_kernel(&adev->gfx.rlc.cp_table_obj, &adev->gfx.rlc.cp_table_gpu_addr, (void **)&adev->gfx.rlc.cp_table_ptr); } gfx_v8_0_free_microcode(adev); return 0; } static void gfx_v8_0_tiling_mode_table_init(struct amdgpu_device *adev) { uint32_t *modearray, *mod2array; const u32 num_tile_mode_states = ARRAY_SIZE(adev->gfx.config.tile_mode_array); const u32 num_secondary_tile_mode_states = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); u32 reg_offset; modearray = adev->gfx.config.tile_mode_array; mod2array = adev->gfx.config.macrotile_mode_array; for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) modearray[reg_offset] = 0; for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) mod2array[reg_offset] = 0; switch (adev->asic_type) { case CHIP_TOPAZ: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P2)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 && reg_offset != 23) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; case CHIP_FIJI: case CHIP_VEGAM: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P16_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; case CHIP_TONGA: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; case CHIP_POLARIS11: case CHIP_POLARIS12: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P4_16x16)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; case CHIP_POLARIS10: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[7] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[12] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[17] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[23] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[30] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P4_16x16) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) | NUM_BANKS(ADDR_SURF_4_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; case CHIP_STONEY: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P2)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 && reg_offset != 23) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; default: dev_warn(adev->dev, "Unknown chip type (%d) in function gfx_v8_0_tiling_mode_table_init() falling through to CHIP_CARRIZO\n", adev->asic_type); fallthrough; case CHIP_CARRIZO: modearray[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[4] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[5] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[6] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_2KB) | MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING)); modearray[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | PIPE_CONFIG(ADDR_SURF_P2)); modearray[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[11] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[15] = (ARRAY_MODE(ARRAY_3D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[16] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); modearray[18] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[19] = (ARRAY_MODE(ARRAY_1D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[20] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[21] = (ARRAY_MODE(ARRAY_3D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[22] = (ARRAY_MODE(ARRAY_PRT_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[24] = (ARRAY_MODE(ARRAY_2D_TILED_THICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[25] = (ARRAY_MODE(ARRAY_2D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[26] = (ARRAY_MODE(ARRAY_3D_TILED_XTHICK) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_THICK_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_1)); modearray[27] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[28] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2)); modearray[29] = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) | PIPE_CONFIG(ADDR_SURF_P2) | MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) | SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_8)); mod2array[0] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[1] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[2] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[3] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[4] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[5] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[6] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); mod2array[8] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[9] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[10] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[11] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[12] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[13] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) | NUM_BANKS(ADDR_SURF_16_BANK)); mod2array[14] = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) | NUM_BANKS(ADDR_SURF_8_BANK)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) if (reg_offset != 7 && reg_offset != 12 && reg_offset != 17 && reg_offset != 23) WREG32(mmGB_TILE_MODE0 + reg_offset, modearray[reg_offset]); for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) if (reg_offset != 7) WREG32(mmGB_MACROTILE_MODE0 + reg_offset, mod2array[reg_offset]); break; } } static void gfx_v8_0_select_se_sh(struct amdgpu_device *adev, u32 se_num, u32 sh_num, u32 instance, int xcc_id) { u32 data; if (instance == 0xffffffff) data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(0, GRBM_GFX_INDEX, INSTANCE_INDEX, instance); if (se_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_INDEX, se_num); if (sh_num == 0xffffffff) data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); else data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_INDEX, sh_num); WREG32(mmGRBM_GFX_INDEX, data); } static void gfx_v8_0_select_me_pipe_q(struct amdgpu_device *adev, u32 me, u32 pipe, u32 q, u32 vm, u32 xcc_id) { vi_srbm_select(adev, me, pipe, q, vm); } static u32 gfx_v8_0_get_rb_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32(mmCC_RB_BACKEND_DISABLE) | RREG32(mmGC_USER_RB_BACKEND_DISABLE); data = REG_GET_FIELD(data, GC_USER_RB_BACKEND_DISABLE, BACKEND_DISABLE); mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se); return (~data) & mask; } static void gfx_v8_0_raster_config(struct amdgpu_device *adev, u32 *rconf, u32 *rconf1) { switch (adev->asic_type) { case CHIP_FIJI: case CHIP_VEGAM: *rconf |= RB_MAP_PKR0(2) | RB_MAP_PKR1(2) | RB_XSEL2(1) | PKR_MAP(2) | PKR_XSEL(1) | PKR_YSEL(1) | SE_MAP(2) | SE_XSEL(2) | SE_YSEL(3); *rconf1 |= SE_PAIR_MAP(2) | SE_PAIR_XSEL(3) | SE_PAIR_YSEL(2); break; case CHIP_TONGA: case CHIP_POLARIS10: *rconf |= RB_MAP_PKR0(2) | RB_XSEL2(1) | SE_MAP(2) | SE_XSEL(1) | SE_YSEL(1); *rconf1 |= SE_PAIR_MAP(2) | SE_PAIR_XSEL(2) | SE_PAIR_YSEL(2); break; case CHIP_TOPAZ: case CHIP_CARRIZO: *rconf |= RB_MAP_PKR0(2); *rconf1 |= 0x0; break; case CHIP_POLARIS11: case CHIP_POLARIS12: *rconf |= RB_MAP_PKR0(2) | RB_XSEL2(1) | SE_MAP(2) | SE_XSEL(1) | SE_YSEL(1); *rconf1 |= 0x0; break; case CHIP_STONEY: *rconf |= 0x0; *rconf1 |= 0x0; break; default: DRM_ERROR("unknown asic: 0x%x\n", adev->asic_type); break; } } static void gfx_v8_0_write_harvested_raster_configs(struct amdgpu_device *adev, u32 raster_config, u32 raster_config_1, unsigned rb_mask, unsigned num_rb) { unsigned sh_per_se = max_t(unsigned, adev->gfx.config.max_sh_per_se, 1); unsigned num_se = max_t(unsigned, adev->gfx.config.max_shader_engines, 1); unsigned rb_per_pkr = min_t(unsigned, num_rb / num_se / sh_per_se, 2); unsigned rb_per_se = num_rb / num_se; unsigned se_mask[4]; unsigned se; se_mask[0] = ((1 << rb_per_se) - 1) & rb_mask; se_mask[1] = (se_mask[0] << rb_per_se) & rb_mask; se_mask[2] = (se_mask[1] << rb_per_se) & rb_mask; se_mask[3] = (se_mask[2] << rb_per_se) & rb_mask; WARN_ON(!(num_se == 1 || num_se == 2 || num_se == 4)); WARN_ON(!(sh_per_se == 1 || sh_per_se == 2)); WARN_ON(!(rb_per_pkr == 1 || rb_per_pkr == 2)); if ((num_se > 2) && ((!se_mask[0] && !se_mask[1]) || (!se_mask[2] && !se_mask[3]))) { raster_config_1 &= ~SE_PAIR_MAP_MASK; if (!se_mask[0] && !se_mask[1]) { raster_config_1 |= SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_3); } else { raster_config_1 |= SE_PAIR_MAP(RASTER_CONFIG_SE_PAIR_MAP_0); } } for (se = 0; se < num_se; se++) { unsigned raster_config_se = raster_config; unsigned pkr0_mask = ((1 << rb_per_pkr) - 1) << (se * rb_per_se); unsigned pkr1_mask = pkr0_mask << rb_per_pkr; int idx = (se / 2) * 2; if ((num_se > 1) && (!se_mask[idx] || !se_mask[idx + 1])) { raster_config_se &= ~SE_MAP_MASK; if (!se_mask[idx]) { raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_3); } else { raster_config_se |= SE_MAP(RASTER_CONFIG_SE_MAP_0); } } pkr0_mask &= rb_mask; pkr1_mask &= rb_mask; if (rb_per_se > 2 && (!pkr0_mask || !pkr1_mask)) { raster_config_se &= ~PKR_MAP_MASK; if (!pkr0_mask) { raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_3); } else { raster_config_se |= PKR_MAP(RASTER_CONFIG_PKR_MAP_0); } } if (rb_per_se >= 2) { unsigned rb0_mask = 1 << (se * rb_per_se); unsigned rb1_mask = rb0_mask << 1; rb0_mask &= rb_mask; rb1_mask &= rb_mask; if (!rb0_mask || !rb1_mask) { raster_config_se &= ~RB_MAP_PKR0_MASK; if (!rb0_mask) { raster_config_se |= RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_3); } else { raster_config_se |= RB_MAP_PKR0(RASTER_CONFIG_RB_MAP_0); } } if (rb_per_se > 2) { rb0_mask = 1 << (se * rb_per_se + rb_per_pkr); rb1_mask = rb0_mask << 1; rb0_mask &= rb_mask; rb1_mask &= rb_mask; if (!rb0_mask || !rb1_mask) { raster_config_se &= ~RB_MAP_PKR1_MASK; if (!rb0_mask) { raster_config_se |= RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_3); } else { raster_config_se |= RB_MAP_PKR1(RASTER_CONFIG_RB_MAP_0); } } } } /* GRBM_GFX_INDEX has a different offset on VI */ gfx_v8_0_select_se_sh(adev, se, 0xffffffff, 0xffffffff, 0); WREG32(mmPA_SC_RASTER_CONFIG, raster_config_se); WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1); } /* GRBM_GFX_INDEX has a different offset on VI */ gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); } static void gfx_v8_0_setup_rb(struct amdgpu_device *adev) { int i, j; u32 data; u32 raster_config = 0, raster_config_1 = 0; u32 active_rbs = 0; u32 rb_bitmap_width_per_sh = adev->gfx.config.max_backends_per_se / adev->gfx.config.max_sh_per_se; unsigned num_rb_pipes; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff, 0); data = gfx_v8_0_get_rb_active_bitmap(adev); active_rbs |= data << ((i * adev->gfx.config.max_sh_per_se + j) * rb_bitmap_width_per_sh); } } gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); adev->gfx.config.backend_enable_mask = active_rbs; adev->gfx.config.num_rbs = hweight32(active_rbs); num_rb_pipes = min_t(unsigned, adev->gfx.config.max_backends_per_se * adev->gfx.config.max_shader_engines, 16); gfx_v8_0_raster_config(adev, &raster_config, &raster_config_1); if (!adev->gfx.config.backend_enable_mask || adev->gfx.config.num_rbs >= num_rb_pipes) { WREG32(mmPA_SC_RASTER_CONFIG, raster_config); WREG32(mmPA_SC_RASTER_CONFIG_1, raster_config_1); } else { gfx_v8_0_write_harvested_raster_configs(adev, raster_config, raster_config_1, adev->gfx.config.backend_enable_mask, num_rb_pipes); } /* cache the values for userspace */ for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff, 0); adev->gfx.config.rb_config[i][j].rb_backend_disable = RREG32(mmCC_RB_BACKEND_DISABLE); adev->gfx.config.rb_config[i][j].user_rb_backend_disable = RREG32(mmGC_USER_RB_BACKEND_DISABLE); adev->gfx.config.rb_config[i][j].raster_config = RREG32(mmPA_SC_RASTER_CONFIG); adev->gfx.config.rb_config[i][j].raster_config_1 = RREG32(mmPA_SC_RASTER_CONFIG_1); } } gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); } #define DEFAULT_SH_MEM_BASES (0x6000) /** * gfx_v8_0_init_compute_vmid - gart enable * * @adev: amdgpu_device pointer * * Initialize compute vmid sh_mem registers * */ static void gfx_v8_0_init_compute_vmid(struct amdgpu_device *adev) { int i; uint32_t sh_mem_config; uint32_t sh_mem_bases; /* * Configure apertures: * LDS: 0x60000000'00000000 - 0x60000001'00000000 (4GB) * Scratch: 0x60000001'00000000 - 0x60000002'00000000 (4GB) * GPUVM: 0x60010000'00000000 - 0x60020000'00000000 (1TB) */ sh_mem_bases = DEFAULT_SH_MEM_BASES | (DEFAULT_SH_MEM_BASES << 16); sh_mem_config = SH_MEM_ADDRESS_MODE_HSA64 << SH_MEM_CONFIG__ADDRESS_MODE__SHIFT | SH_MEM_ALIGNMENT_MODE_UNALIGNED << SH_MEM_CONFIG__ALIGNMENT_MODE__SHIFT | MTYPE_CC << SH_MEM_CONFIG__DEFAULT_MTYPE__SHIFT | SH_MEM_CONFIG__PRIVATE_ATC_MASK; mutex_lock(&adev->srbm_mutex); for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { vi_srbm_select(adev, 0, 0, 0, i); /* CP and shaders */ WREG32(mmSH_MEM_CONFIG, sh_mem_config); WREG32(mmSH_MEM_APE1_BASE, 1); WREG32(mmSH_MEM_APE1_LIMIT, 0); WREG32(mmSH_MEM_BASES, sh_mem_bases); } vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); /* Initialize all compute VMIDs to have no GDS, GWS, or OA access. These should be enabled by FW for target VMIDs. */ for (i = adev->vm_manager.first_kfd_vmid; i < AMDGPU_NUM_VMID; i++) { WREG32(amdgpu_gds_reg_offset[i].mem_base, 0); WREG32(amdgpu_gds_reg_offset[i].mem_size, 0); WREG32(amdgpu_gds_reg_offset[i].gws, 0); WREG32(amdgpu_gds_reg_offset[i].oa, 0); } } static void gfx_v8_0_init_gds_vmid(struct amdgpu_device *adev) { int vmid; /* * Initialize all compute and user-gfx VMIDs to have no GDS, GWS, or OA * access. Compute VMIDs should be enabled by FW for target VMIDs, * the driver can enable them for graphics. VMID0 should maintain * access so that HWS firmware can save/restore entries. */ for (vmid = 1; vmid < AMDGPU_NUM_VMID; vmid++) { WREG32(amdgpu_gds_reg_offset[vmid].mem_base, 0); WREG32(amdgpu_gds_reg_offset[vmid].mem_size, 0); WREG32(amdgpu_gds_reg_offset[vmid].gws, 0); WREG32(amdgpu_gds_reg_offset[vmid].oa, 0); } } static void gfx_v8_0_config_init(struct amdgpu_device *adev) { switch (adev->asic_type) { default: adev->gfx.config.double_offchip_lds_buf = 1; break; case CHIP_CARRIZO: case CHIP_STONEY: adev->gfx.config.double_offchip_lds_buf = 0; break; } } static void gfx_v8_0_constants_init(struct amdgpu_device *adev) { u32 tmp, sh_static_mem_cfg; int i; WREG32_FIELD(GRBM_CNTL, READ_TIMEOUT, 0xFF); WREG32(mmGB_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmHDP_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmDMIF_ADDR_CALC, adev->gfx.config.gb_addr_config); gfx_v8_0_tiling_mode_table_init(adev); gfx_v8_0_setup_rb(adev); gfx_v8_0_get_cu_info(adev); gfx_v8_0_config_init(adev); /* XXX SH_MEM regs */ /* where to put LDS, scratch, GPUVM in FSA64 space */ sh_static_mem_cfg = REG_SET_FIELD(0, SH_STATIC_MEM_CONFIG, SWIZZLE_ENABLE, 1); sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG, ELEMENT_SIZE, 1); sh_static_mem_cfg = REG_SET_FIELD(sh_static_mem_cfg, SH_STATIC_MEM_CONFIG, INDEX_STRIDE, 3); WREG32(mmSH_STATIC_MEM_CONFIG, sh_static_mem_cfg); mutex_lock(&adev->srbm_mutex); for (i = 0; i < adev->vm_manager.id_mgr[0].num_ids; i++) { vi_srbm_select(adev, 0, 0, 0, i); /* CP and shaders */ if (i == 0) { tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_UC); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); WREG32(mmSH_MEM_CONFIG, tmp); WREG32(mmSH_MEM_BASES, 0); } else { tmp = REG_SET_FIELD(0, SH_MEM_CONFIG, DEFAULT_MTYPE, MTYPE_NC); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, APE1_MTYPE, MTYPE_UC); tmp = REG_SET_FIELD(tmp, SH_MEM_CONFIG, ALIGNMENT_MODE, SH_MEM_ALIGNMENT_MODE_UNALIGNED); WREG32(mmSH_MEM_CONFIG, tmp); tmp = adev->gmc.shared_aperture_start >> 48; WREG32(mmSH_MEM_BASES, tmp); } WREG32(mmSH_MEM_APE1_BASE, 1); WREG32(mmSH_MEM_APE1_LIMIT, 0); } vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); gfx_v8_0_init_compute_vmid(adev); gfx_v8_0_init_gds_vmid(adev); mutex_lock(&adev->grbm_idx_mutex); /* * making sure that the following register writes will be broadcasted * to all the shaders */ gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); WREG32(mmPA_SC_FIFO_SIZE, (adev->gfx.config.sc_prim_fifo_size_frontend << PA_SC_FIFO_SIZE__SC_FRONTEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_prim_fifo_size_backend << PA_SC_FIFO_SIZE__SC_BACKEND_PRIM_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_hiz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_HIZ_TILE_FIFO_SIZE__SHIFT) | (adev->gfx.config.sc_earlyz_tile_fifo_size << PA_SC_FIFO_SIZE__SC_EARLYZ_TILE_FIFO_SIZE__SHIFT)); tmp = RREG32(mmSPI_ARB_PRIORITY); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS0, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS1, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS2, 2); tmp = REG_SET_FIELD(tmp, SPI_ARB_PRIORITY, PIPE_ORDER_TS3, 2); WREG32(mmSPI_ARB_PRIORITY, tmp); mutex_unlock(&adev->grbm_idx_mutex); } static void gfx_v8_0_wait_for_rlc_serdes(struct amdgpu_device *adev) { u32 i, j, k; u32 mask; mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff, 0); for (k = 0; k < adev->usec_timeout; k++) { if (RREG32(mmRLC_SERDES_CU_MASTER_BUSY) == 0) break; udelay(1); } if (k == adev->usec_timeout) { gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); DRM_INFO("Timeout wait for RLC serdes %u,%u\n", i, j); return; } } } gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); mask = RLC_SERDES_NONCU_MASTER_BUSY__SE_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__GC_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC0_MASTER_BUSY_MASK | RLC_SERDES_NONCU_MASTER_BUSY__TC1_MASTER_BUSY_MASK; for (k = 0; k < adev->usec_timeout; k++) { if ((RREG32(mmRLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0) break; udelay(1); } } static void gfx_v8_0_enable_gui_idle_interrupt(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32(mmCP_INT_CNTL_RING0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CNTX_EMPTY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, CMP_BUSY_INT_ENABLE, enable ? 1 : 0); tmp = REG_SET_FIELD(tmp, CP_INT_CNTL_RING0, GFX_IDLE_INT_ENABLE, enable ? 1 : 0); WREG32(mmCP_INT_CNTL_RING0, tmp); } static void gfx_v8_0_init_csb(struct amdgpu_device *adev) { adev->gfx.rlc.funcs->get_csb_buffer(adev, adev->gfx.rlc.cs_ptr); /* csib */ WREG32(mmRLC_CSIB_ADDR_HI, adev->gfx.rlc.clear_state_gpu_addr >> 32); WREG32(mmRLC_CSIB_ADDR_LO, adev->gfx.rlc.clear_state_gpu_addr & 0xfffffffc); WREG32(mmRLC_CSIB_LENGTH, adev->gfx.rlc.clear_state_size); } static void gfx_v8_0_parse_ind_reg_list(int *register_list_format, int ind_offset, int list_size, int *unique_indices, int *indices_count, int max_indices, int *ind_start_offsets, int *offset_count, int max_offset) { int indices; bool new_entry = true; for (; ind_offset < list_size; ind_offset++) { if (new_entry) { new_entry = false; ind_start_offsets[*offset_count] = ind_offset; *offset_count = *offset_count + 1; BUG_ON(*offset_count >= max_offset); } if (register_list_format[ind_offset] == 0xFFFFFFFF) { new_entry = true; continue; } ind_offset += 2; /* look for the matching indice */ for (indices = 0; indices < *indices_count; indices++) { if (unique_indices[indices] == register_list_format[ind_offset]) break; } if (indices >= *indices_count) { unique_indices[*indices_count] = register_list_format[ind_offset]; indices = *indices_count; *indices_count = *indices_count + 1; BUG_ON(*indices_count >= max_indices); } register_list_format[ind_offset] = indices; } } static int gfx_v8_0_init_save_restore_list(struct amdgpu_device *adev) { int i, temp, data; int unique_indices[] = {0, 0, 0, 0, 0, 0, 0, 0}; int indices_count = 0; int indirect_start_offsets[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int offset_count = 0; int list_size; unsigned int *register_list_format = kmemdup(adev->gfx.rlc.register_list_format, adev->gfx.rlc.reg_list_format_size_bytes, GFP_KERNEL); if (!register_list_format) return -ENOMEM; gfx_v8_0_parse_ind_reg_list(register_list_format, RLC_FormatDirectRegListLength, adev->gfx.rlc.reg_list_format_size_bytes >> 2, unique_indices, &indices_count, ARRAY_SIZE(unique_indices), indirect_start_offsets, &offset_count, ARRAY_SIZE(indirect_start_offsets)); /* save and restore list */ WREG32_FIELD(RLC_SRM_CNTL, AUTO_INCR_ADDR, 1); WREG32(mmRLC_SRM_ARAM_ADDR, 0); for (i = 0; i < adev->gfx.rlc.reg_list_size_bytes >> 2; i++) WREG32(mmRLC_SRM_ARAM_DATA, adev->gfx.rlc.register_restore[i]); /* indirect list */ WREG32(mmRLC_GPM_SCRATCH_ADDR, adev->gfx.rlc.reg_list_format_start); for (i = 0; i < adev->gfx.rlc.reg_list_format_size_bytes >> 2; i++) WREG32(mmRLC_GPM_SCRATCH_DATA, register_list_format[i]); list_size = adev->gfx.rlc.reg_list_size_bytes >> 2; list_size = list_size >> 1; WREG32(mmRLC_GPM_SCRATCH_ADDR, adev->gfx.rlc.reg_restore_list_size); WREG32(mmRLC_GPM_SCRATCH_DATA, list_size); /* starting offsets starts */ WREG32(mmRLC_GPM_SCRATCH_ADDR, adev->gfx.rlc.starting_offsets_start); for (i = 0; i < ARRAY_SIZE(indirect_start_offsets); i++) WREG32(mmRLC_GPM_SCRATCH_DATA, indirect_start_offsets[i]); /* unique indices */ temp = mmRLC_SRM_INDEX_CNTL_ADDR_0; data = mmRLC_SRM_INDEX_CNTL_DATA_0; for (i = 0; i < ARRAY_SIZE(unique_indices); i++) { if (unique_indices[i] != 0) { WREG32(temp + i, unique_indices[i] & 0x3FFFF); WREG32(data + i, unique_indices[i] >> 20); } } kfree(register_list_format); return 0; } static void gfx_v8_0_enable_save_restore_machine(struct amdgpu_device *adev) { WREG32_FIELD(RLC_SRM_CNTL, SRM_ENABLE, 1); } static void gfx_v8_0_init_power_gating(struct amdgpu_device *adev) { uint32_t data; WREG32_FIELD(CP_RB_WPTR_POLL_CNTL, IDLE_POLL_COUNT, 0x60); data = REG_SET_FIELD(0, RLC_PG_DELAY, POWER_UP_DELAY, 0x10); data = REG_SET_FIELD(data, RLC_PG_DELAY, POWER_DOWN_DELAY, 0x10); data = REG_SET_FIELD(data, RLC_PG_DELAY, CMD_PROPAGATE_DELAY, 0x10); data = REG_SET_FIELD(data, RLC_PG_DELAY, MEM_SLEEP_DELAY, 0x10); WREG32(mmRLC_PG_DELAY, data); WREG32_FIELD(RLC_PG_DELAY_2, SERDES_CMD_DELAY, 0x3); WREG32_FIELD(RLC_AUTO_PG_CTRL, GRBM_REG_SAVE_GFX_IDLE_THRESHOLD, 0x55f0); } static void cz_enable_sck_slow_down_on_power_up(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, SMU_CLK_SLOWDOWN_ON_PU_ENABLE, enable ? 1 : 0); } static void cz_enable_sck_slow_down_on_power_down(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, SMU_CLK_SLOWDOWN_ON_PD_ENABLE, enable ? 1 : 0); } static void cz_enable_cp_power_gating(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, CP_PG_DISABLE, enable ? 0 : 1); } static void gfx_v8_0_init_pg(struct amdgpu_device *adev) { if ((adev->asic_type == CHIP_CARRIZO) || (adev->asic_type == CHIP_STONEY)) { gfx_v8_0_init_csb(adev); gfx_v8_0_init_save_restore_list(adev); gfx_v8_0_enable_save_restore_machine(adev); WREG32(mmRLC_JUMP_TABLE_RESTORE, adev->gfx.rlc.cp_table_gpu_addr >> 8); gfx_v8_0_init_power_gating(adev); WREG32(mmRLC_PG_ALWAYS_ON_CU_MASK, adev->gfx.cu_info.ao_cu_mask); } else if ((adev->asic_type == CHIP_POLARIS11) || (adev->asic_type == CHIP_POLARIS12) || (adev->asic_type == CHIP_VEGAM)) { gfx_v8_0_init_csb(adev); gfx_v8_0_init_save_restore_list(adev); gfx_v8_0_enable_save_restore_machine(adev); gfx_v8_0_init_power_gating(adev); } } static void gfx_v8_0_rlc_stop(struct amdgpu_device *adev) { WREG32_FIELD(RLC_CNTL, RLC_ENABLE_F32, 0); gfx_v8_0_enable_gui_idle_interrupt(adev, false); gfx_v8_0_wait_for_rlc_serdes(adev); } static void gfx_v8_0_rlc_reset(struct amdgpu_device *adev) { WREG32_FIELD(GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); udelay(50); WREG32_FIELD(GRBM_SOFT_RESET, SOFT_RESET_RLC, 0); udelay(50); } static void gfx_v8_0_rlc_start(struct amdgpu_device *adev) { WREG32_FIELD(RLC_CNTL, RLC_ENABLE_F32, 1); /* carrizo do enable cp interrupt after cp inited */ if (!(adev->flags & AMD_IS_APU)) gfx_v8_0_enable_gui_idle_interrupt(adev, true); udelay(50); } static int gfx_v8_0_rlc_resume(struct amdgpu_device *adev) { if (amdgpu_sriov_vf(adev)) { gfx_v8_0_init_csb(adev); return 0; } adev->gfx.rlc.funcs->stop(adev); adev->gfx.rlc.funcs->reset(adev); gfx_v8_0_init_pg(adev); adev->gfx.rlc.funcs->start(adev); return 0; } static void gfx_v8_0_cp_gfx_enable(struct amdgpu_device *adev, bool enable) { u32 tmp = RREG32(mmCP_ME_CNTL); if (enable) { tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 0); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 0); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 0); } else { tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, ME_HALT, 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, PFP_HALT, 1); tmp = REG_SET_FIELD(tmp, CP_ME_CNTL, CE_HALT, 1); } WREG32(mmCP_ME_CNTL, tmp); udelay(50); } static u32 gfx_v8_0_get_csb_size(struct amdgpu_device *adev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = vi_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* pa_sc_raster_config/pa_sc_raster_config1 */ count += 4; /* end clear state */ count += 2; /* clear state */ count += 2; return count; } static int gfx_v8_0_cp_gfx_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->gfx.gfx_ring[0]; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; int r, i; /* init the CP */ WREG32(mmCP_MAX_CONTEXT, adev->gfx.config.max_hw_contexts - 1); WREG32(mmCP_ENDIAN_SWAP, 0); WREG32(mmCP_DEVICE_ID, 1); gfx_v8_0_cp_gfx_enable(adev, true); r = amdgpu_ring_alloc(ring, gfx_v8_0_get_csb_size(adev) + 4); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring (%d).\n", r); return r; } /* clear state buffer */ amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, 0x80000000); amdgpu_ring_write(ring, 0x80000000); for (sect = vi_cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); amdgpu_ring_write(ring, ext->reg_index - PACKET3_SET_CONTEXT_REG_START); for (i = 0; i < ext->reg_count; i++) amdgpu_ring_write(ring, ext->extent[i]); } } } amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); amdgpu_ring_write(ring, mmPA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START); amdgpu_ring_write(ring, adev->gfx.config.rb_config[0][0].raster_config); amdgpu_ring_write(ring, adev->gfx.config.rb_config[0][0].raster_config_1); amdgpu_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); amdgpu_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); amdgpu_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); amdgpu_ring_write(ring, 0); /* init the CE partitions */ amdgpu_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); amdgpu_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_write(ring, 0x8000); amdgpu_ring_commit(ring); return 0; } static void gfx_v8_0_set_cpg_door_bell(struct amdgpu_device *adev, struct amdgpu_ring *ring) { u32 tmp; /* no gfx doorbells on iceland */ if (adev->asic_type == CHIP_TOPAZ) return; tmp = RREG32(mmCP_RB_DOORBELL_CONTROL); if (ring->use_doorbell) { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_HIT, 0); tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 1); } else { tmp = REG_SET_FIELD(tmp, CP_RB_DOORBELL_CONTROL, DOORBELL_EN, 0); } WREG32(mmCP_RB_DOORBELL_CONTROL, tmp); if (adev->flags & AMD_IS_APU) return; tmp = REG_SET_FIELD(0, CP_RB_DOORBELL_RANGE_LOWER, DOORBELL_RANGE_LOWER, adev->doorbell_index.gfx_ring0); WREG32(mmCP_RB_DOORBELL_RANGE_LOWER, tmp); WREG32(mmCP_RB_DOORBELL_RANGE_UPPER, CP_RB_DOORBELL_RANGE_UPPER__DOORBELL_RANGE_UPPER_MASK); } static int gfx_v8_0_cp_gfx_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 tmp; u32 rb_bufsz; u64 rb_addr, rptr_addr, wptr_gpu_addr; /* Set the write pointer delay */ WREG32(mmCP_RB_WPTR_DELAY, 0); /* set the RB to use vmid 0 */ WREG32(mmCP_RB_VMID, 0); /* Set ring buffer size */ ring = &adev->gfx.gfx_ring[0]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = REG_SET_FIELD(0, CP_RB0_CNTL, RB_BUFSZ, rb_bufsz); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, RB_BLKSZ, rb_bufsz - 2); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MTYPE, 3); tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, MIN_IB_AVAILSZ, 1); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_RB0_CNTL, BUF_SWAP, 1); #endif WREG32(mmCP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(mmCP_RB0_CNTL, tmp | CP_RB0_CNTL__RB_RPTR_WR_ENA_MASK); ring->wptr = 0; WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); /* set the wb address whether it's enabled or not */ rptr_addr = ring->rptr_gpu_addr; WREG32(mmCP_RB0_RPTR_ADDR, lower_32_bits(rptr_addr)); WREG32(mmCP_RB0_RPTR_ADDR_HI, upper_32_bits(rptr_addr) & 0xFF); wptr_gpu_addr = ring->wptr_gpu_addr; WREG32(mmCP_RB_WPTR_POLL_ADDR_LO, lower_32_bits(wptr_gpu_addr)); WREG32(mmCP_RB_WPTR_POLL_ADDR_HI, upper_32_bits(wptr_gpu_addr)); mdelay(1); WREG32(mmCP_RB0_CNTL, tmp); rb_addr = ring->gpu_addr >> 8; WREG32(mmCP_RB0_BASE, rb_addr); WREG32(mmCP_RB0_BASE_HI, upper_32_bits(rb_addr)); gfx_v8_0_set_cpg_door_bell(adev, ring); /* start the ring */ amdgpu_ring_clear_ring(ring); gfx_v8_0_cp_gfx_start(adev); return 0; } static void gfx_v8_0_cp_compute_enable(struct amdgpu_device *adev, bool enable) { if (enable) { WREG32(mmCP_MEC_CNTL, 0); } else { WREG32(mmCP_MEC_CNTL, (CP_MEC_CNTL__MEC_ME1_HALT_MASK | CP_MEC_CNTL__MEC_ME2_HALT_MASK)); adev->gfx.kiq[0].ring.sched.ready = false; } udelay(50); } /* KIQ functions */ static void gfx_v8_0_kiq_setting(struct amdgpu_ring *ring) { uint32_t tmp; struct amdgpu_device *adev = ring->adev; /* tell RLC which is KIQ queue */ tmp = RREG32(mmRLC_CP_SCHEDULERS); tmp &= 0xffffff00; tmp |= (ring->me << 5) | (ring->pipe << 3) | (ring->queue); WREG32(mmRLC_CP_SCHEDULERS, tmp | 0x80); } static int gfx_v8_0_kiq_kcq_enable(struct amdgpu_device *adev) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring; uint64_t queue_mask = 0; int r, i; for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { if (!test_bit(i, adev->gfx.mec_bitmap[0].queue_bitmap)) continue; /* This situation may be hit in the future if a new HW * generation exposes more than 64 queues. If so, the * definition of queue_mask needs updating */ if (WARN_ON(i >= (sizeof(queue_mask)*8))) { DRM_ERROR("Invalid KCQ enabled: %d\n", i); break; } queue_mask |= (1ull << i); } r = amdgpu_ring_alloc(kiq_ring, (8 * adev->gfx.num_compute_rings) + 8); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); return r; } /* set resources */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_SET_RESOURCES, 6)); amdgpu_ring_write(kiq_ring, 0); /* vmid_mask:0 queue_type:0 (KIQ) */ amdgpu_ring_write(kiq_ring, lower_32_bits(queue_mask)); /* queue mask lo */ amdgpu_ring_write(kiq_ring, upper_32_bits(queue_mask)); /* queue mask hi */ amdgpu_ring_write(kiq_ring, 0); /* gws mask lo */ amdgpu_ring_write(kiq_ring, 0); /* gws mask hi */ amdgpu_ring_write(kiq_ring, 0); /* oac mask */ amdgpu_ring_write(kiq_ring, 0); /* gds heap base:0, gds heap size:0 */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; uint64_t mqd_addr = amdgpu_bo_gpu_offset(ring->mqd_obj); uint64_t wptr_addr = ring->wptr_gpu_addr; /* map queues */ amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); /* Q_sel:0, vmid:0, vidmem: 1, engine:0, num_Q:1*/ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(ring->doorbell_index) | PACKET3_MAP_QUEUES_QUEUE(ring->queue) | PACKET3_MAP_QUEUES_PIPE(ring->pipe) | PACKET3_MAP_QUEUES_ME(ring->me == 1 ? 0 : 1)); /* doorbell */ amdgpu_ring_write(kiq_ring, lower_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(mqd_addr)); amdgpu_ring_write(kiq_ring, lower_32_bits(wptr_addr)); amdgpu_ring_write(kiq_ring, upper_32_bits(wptr_addr)); } amdgpu_ring_commit(kiq_ring); return 0; } static int gfx_v8_0_deactivate_hqd(struct amdgpu_device *adev, u32 req) { int i, r = 0; if (RREG32(mmCP_HQD_ACTIVE) & CP_HQD_ACTIVE__ACTIVE_MASK) { WREG32_FIELD(CP_HQD_DEQUEUE_REQUEST, DEQUEUE_REQ, req); for (i = 0; i < adev->usec_timeout; i++) { if (!(RREG32(mmCP_HQD_ACTIVE) & CP_HQD_ACTIVE__ACTIVE_MASK)) break; udelay(1); } if (i == adev->usec_timeout) r = -ETIMEDOUT; } WREG32(mmCP_HQD_DEQUEUE_REQUEST, 0); WREG32(mmCP_HQD_PQ_RPTR, 0); WREG32(mmCP_HQD_PQ_WPTR, 0); return r; } static void gfx_v8_0_mqd_set_priority(struct amdgpu_ring *ring, struct vi_mqd *mqd) { struct amdgpu_device *adev = ring->adev; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) { if (amdgpu_gfx_is_high_priority_compute_queue(adev, ring)) { mqd->cp_hqd_pipe_priority = AMDGPU_GFX_PIPE_PRIO_HIGH; mqd->cp_hqd_queue_priority = AMDGPU_GFX_QUEUE_PRIORITY_MAXIMUM; } } } static int gfx_v8_0_mqd_init(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct vi_mqd *mqd = ring->mqd_ptr; uint64_t hqd_gpu_addr, wb_gpu_addr, eop_base_addr; uint32_t tmp; mqd->header = 0xC0310800; mqd->compute_pipelinestat_enable = 0x00000001; mqd->compute_static_thread_mgmt_se0 = 0xffffffff; mqd->compute_static_thread_mgmt_se1 = 0xffffffff; mqd->compute_static_thread_mgmt_se2 = 0xffffffff; mqd->compute_static_thread_mgmt_se3 = 0xffffffff; mqd->compute_misc_reserved = 0x00000003; mqd->dynamic_cu_mask_addr_lo = lower_32_bits(ring->mqd_gpu_addr + offsetof(struct vi_mqd_allocation, dynamic_cu_mask)); mqd->dynamic_cu_mask_addr_hi = upper_32_bits(ring->mqd_gpu_addr + offsetof(struct vi_mqd_allocation, dynamic_cu_mask)); eop_base_addr = ring->eop_gpu_addr >> 8; mqd->cp_hqd_eop_base_addr_lo = eop_base_addr; mqd->cp_hqd_eop_base_addr_hi = upper_32_bits(eop_base_addr); /* set the EOP size, register value is 2^(EOP_SIZE+1) dwords */ tmp = RREG32(mmCP_HQD_EOP_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_EOP_CONTROL, EOP_SIZE, (order_base_2(GFX8_MEC_HPD_SIZE / 4) - 1)); mqd->cp_hqd_eop_control = tmp; /* enable doorbell? */ tmp = REG_SET_FIELD(RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL), CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, ring->use_doorbell ? 1 : 0); mqd->cp_hqd_pq_doorbell_control = tmp; /* set the pointer to the MQD */ mqd->cp_mqd_base_addr_lo = ring->mqd_gpu_addr & 0xfffffffc; mqd->cp_mqd_base_addr_hi = upper_32_bits(ring->mqd_gpu_addr); /* set MQD vmid to 0 */ tmp = RREG32(mmCP_MQD_CONTROL); tmp = REG_SET_FIELD(tmp, CP_MQD_CONTROL, VMID, 0); mqd->cp_mqd_control = tmp; /* set the pointer to the HQD, this is similar CP_RB0_BASE/_HI */ hqd_gpu_addr = ring->gpu_addr >> 8; mqd->cp_hqd_pq_base_lo = hqd_gpu_addr; mqd->cp_hqd_pq_base_hi = upper_32_bits(hqd_gpu_addr); /* set up the HQD, this is similar to CP_RB0_CNTL */ tmp = RREG32(mmCP_HQD_PQ_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, QUEUE_SIZE, (order_base_2(ring->ring_size / 4) - 1)); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, RPTR_BLOCK_SIZE, (order_base_2(AMDGPU_GPU_PAGE_SIZE / 4) - 1)); #ifdef __BIG_ENDIAN tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ENDIAN_SWAP, 1); #endif tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, UNORD_DISPATCH, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, ROQ_PQ_IB_FLIP, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, PRIV_STATE, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_CONTROL, KMD_QUEUE, 1); mqd->cp_hqd_pq_control = tmp; /* set the wb address whether it's enabled or not */ wb_gpu_addr = ring->rptr_gpu_addr; mqd->cp_hqd_pq_rptr_report_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; /* only used if CP_PQ_WPTR_POLL_CNTL.CP_PQ_WPTR_POLL_CNTL__EN_MASK=1 */ wb_gpu_addr = ring->wptr_gpu_addr; mqd->cp_hqd_pq_wptr_poll_addr_lo = wb_gpu_addr & 0xfffffffc; mqd->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits(wb_gpu_addr) & 0xffff; tmp = 0; /* enable the doorbell if requested */ if (ring->use_doorbell) { tmp = RREG32(mmCP_HQD_PQ_DOORBELL_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_OFFSET, ring->doorbell_index); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_SOURCE, 0); tmp = REG_SET_FIELD(tmp, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_HIT, 0); } mqd->cp_hqd_pq_doorbell_control = tmp; /* reset read and write pointers, similar to CP_RB0_WPTR/_RPTR */ ring->wptr = 0; mqd->cp_hqd_pq_wptr = ring->wptr; mqd->cp_hqd_pq_rptr = RREG32(mmCP_HQD_PQ_RPTR); /* set the vmid for the queue */ mqd->cp_hqd_vmid = 0; tmp = RREG32(mmCP_HQD_PERSISTENT_STATE); tmp = REG_SET_FIELD(tmp, CP_HQD_PERSISTENT_STATE, PRELOAD_SIZE, 0x53); mqd->cp_hqd_persistent_state = tmp; /* set MTYPE */ tmp = RREG32(mmCP_HQD_IB_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MIN_IB_AVAIL_SIZE, 3); tmp = REG_SET_FIELD(tmp, CP_HQD_IB_CONTROL, MTYPE, 3); mqd->cp_hqd_ib_control = tmp; tmp = RREG32(mmCP_HQD_IQ_TIMER); tmp = REG_SET_FIELD(tmp, CP_HQD_IQ_TIMER, MTYPE, 3); mqd->cp_hqd_iq_timer = tmp; tmp = RREG32(mmCP_HQD_CTX_SAVE_CONTROL); tmp = REG_SET_FIELD(tmp, CP_HQD_CTX_SAVE_CONTROL, MTYPE, 3); mqd->cp_hqd_ctx_save_control = tmp; /* defaults */ mqd->cp_hqd_eop_rptr = RREG32(mmCP_HQD_EOP_RPTR); mqd->cp_hqd_eop_wptr = RREG32(mmCP_HQD_EOP_WPTR); mqd->cp_hqd_ctx_save_base_addr_lo = RREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_LO); mqd->cp_hqd_ctx_save_base_addr_hi = RREG32(mmCP_HQD_CTX_SAVE_BASE_ADDR_HI); mqd->cp_hqd_cntl_stack_offset = RREG32(mmCP_HQD_CNTL_STACK_OFFSET); mqd->cp_hqd_cntl_stack_size = RREG32(mmCP_HQD_CNTL_STACK_SIZE); mqd->cp_hqd_wg_state_offset = RREG32(mmCP_HQD_WG_STATE_OFFSET); mqd->cp_hqd_ctx_save_size = RREG32(mmCP_HQD_CTX_SAVE_SIZE); mqd->cp_hqd_eop_done_events = RREG32(mmCP_HQD_EOP_EVENTS); mqd->cp_hqd_error = RREG32(mmCP_HQD_ERROR); mqd->cp_hqd_eop_wptr_mem = RREG32(mmCP_HQD_EOP_WPTR_MEM); mqd->cp_hqd_eop_dones = RREG32(mmCP_HQD_EOP_DONES); /* set static priority for a queue/ring */ gfx_v8_0_mqd_set_priority(ring, mqd); mqd->cp_hqd_quantum = RREG32(mmCP_HQD_QUANTUM); /* map_queues packet doesn't need activate the queue, * so only kiq need set this field. */ if (ring->funcs->type == AMDGPU_RING_TYPE_KIQ) mqd->cp_hqd_active = 1; return 0; } static int gfx_v8_0_mqd_commit(struct amdgpu_device *adev, struct vi_mqd *mqd) { uint32_t mqd_reg; uint32_t *mqd_data; /* HQD registers extend from mmCP_MQD_BASE_ADDR to mmCP_HQD_ERROR */ mqd_data = &mqd->cp_mqd_base_addr_lo; /* disable wptr polling */ WREG32_FIELD(CP_PQ_WPTR_POLL_CNTL, EN, 0); /* program all HQD registers */ for (mqd_reg = mmCP_HQD_VMID; mqd_reg <= mmCP_HQD_EOP_CONTROL; mqd_reg++) WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]); /* Tonga errata: EOP RPTR/WPTR should be left unmodified. * This is safe since EOP RPTR==WPTR for any inactive HQD * on ASICs that do not support context-save. * EOP writes/reads can start anywhere in the ring. */ if (adev->asic_type != CHIP_TONGA) { WREG32(mmCP_HQD_EOP_RPTR, mqd->cp_hqd_eop_rptr); WREG32(mmCP_HQD_EOP_WPTR, mqd->cp_hqd_eop_wptr); WREG32(mmCP_HQD_EOP_WPTR_MEM, mqd->cp_hqd_eop_wptr_mem); } for (mqd_reg = mmCP_HQD_EOP_EVENTS; mqd_reg <= mmCP_HQD_ERROR; mqd_reg++) WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]); /* activate the HQD */ for (mqd_reg = mmCP_MQD_BASE_ADDR; mqd_reg <= mmCP_HQD_ACTIVE; mqd_reg++) WREG32(mqd_reg, mqd_data[mqd_reg - mmCP_MQD_BASE_ADDR]); return 0; } static int gfx_v8_0_kiq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct vi_mqd *mqd = ring->mqd_ptr; gfx_v8_0_kiq_setting(ring); if (amdgpu_in_reset(adev)) { /* for GPU_RESET case */ /* reset MQD to a clean status */ if (adev->gfx.kiq[0].mqd_backup) memcpy(mqd, adev->gfx.kiq[0].mqd_backup, sizeof(struct vi_mqd_allocation)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v8_0_mqd_commit(adev, mqd); vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } else { memset((void *)mqd, 0, sizeof(struct vi_mqd_allocation)); ((struct vi_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF; ((struct vi_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF; if (amdgpu_sriov_vf(adev) && adev->in_suspend) amdgpu_ring_clear_ring(ring); mutex_lock(&adev->srbm_mutex); vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v8_0_mqd_init(ring); gfx_v8_0_mqd_commit(adev, mqd); vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.kiq[0].mqd_backup) memcpy(adev->gfx.kiq[0].mqd_backup, mqd, sizeof(struct vi_mqd_allocation)); } return 0; } static int gfx_v8_0_kcq_init_queue(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct vi_mqd *mqd = ring->mqd_ptr; int mqd_idx = ring - &adev->gfx.compute_ring[0]; if (!amdgpu_in_reset(adev) && !adev->in_suspend) { memset((void *)mqd, 0, sizeof(struct vi_mqd_allocation)); ((struct vi_mqd_allocation *)mqd)->dynamic_cu_mask = 0xFFFFFFFF; ((struct vi_mqd_allocation *)mqd)->dynamic_rb_mask = 0xFFFFFFFF; mutex_lock(&adev->srbm_mutex); vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v8_0_mqd_init(ring); vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(adev->gfx.mec.mqd_backup[mqd_idx], mqd, sizeof(struct vi_mqd_allocation)); } else { /* restore MQD to a clean status */ if (adev->gfx.mec.mqd_backup[mqd_idx]) memcpy(mqd, adev->gfx.mec.mqd_backup[mqd_idx], sizeof(struct vi_mqd_allocation)); /* reset ring buffer */ ring->wptr = 0; amdgpu_ring_clear_ring(ring); } return 0; } static void gfx_v8_0_set_mec_doorbell_range(struct amdgpu_device *adev) { if (adev->asic_type > CHIP_TONGA) { WREG32(mmCP_MEC_DOORBELL_RANGE_LOWER, adev->doorbell_index.kiq << 2); WREG32(mmCP_MEC_DOORBELL_RANGE_UPPER, adev->doorbell_index.mec_ring7 << 2); } /* enable doorbells */ WREG32_FIELD(CP_PQ_STATUS, DOORBELL_ENABLE, 1); } static int gfx_v8_0_kiq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring; int r; ring = &adev->gfx.kiq[0].ring; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) return r; r = amdgpu_bo_kmap(ring->mqd_obj, &ring->mqd_ptr); if (unlikely(r != 0)) { amdgpu_bo_unreserve(ring->mqd_obj); return r; } gfx_v8_0_kiq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; amdgpu_bo_unreserve(ring->mqd_obj); return 0; } static int gfx_v8_0_kcq_resume(struct amdgpu_device *adev) { struct amdgpu_ring *ring = NULL; int r = 0, i; gfx_v8_0_cp_compute_enable(adev, true); for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; r = amdgpu_bo_reserve(ring->mqd_obj, false); if (unlikely(r != 0)) goto done; r = amdgpu_bo_kmap(ring->mqd_obj, &ring->mqd_ptr); if (!r) { r = gfx_v8_0_kcq_init_queue(ring); amdgpu_bo_kunmap(ring->mqd_obj); ring->mqd_ptr = NULL; } amdgpu_bo_unreserve(ring->mqd_obj); if (r) goto done; } gfx_v8_0_set_mec_doorbell_range(adev); r = gfx_v8_0_kiq_kcq_enable(adev); if (r) goto done; done: return r; } static int gfx_v8_0_cp_test_all_rings(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *ring; /* collect all the ring_tests here, gfx, kiq, compute */ ring = &adev->gfx.gfx_ring[0]; r = amdgpu_ring_test_helper(ring); if (r) return r; ring = &adev->gfx.kiq[0].ring; r = amdgpu_ring_test_helper(ring); if (r) return r; for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; amdgpu_ring_test_helper(ring); } return 0; } static int gfx_v8_0_cp_resume(struct amdgpu_device *adev) { int r; if (!(adev->flags & AMD_IS_APU)) gfx_v8_0_enable_gui_idle_interrupt(adev, false); r = gfx_v8_0_kiq_resume(adev); if (r) return r; r = gfx_v8_0_cp_gfx_resume(adev); if (r) return r; r = gfx_v8_0_kcq_resume(adev); if (r) return r; r = gfx_v8_0_cp_test_all_rings(adev); if (r) return r; gfx_v8_0_enable_gui_idle_interrupt(adev, true); return 0; } static void gfx_v8_0_cp_enable(struct amdgpu_device *adev, bool enable) { gfx_v8_0_cp_gfx_enable(adev, enable); gfx_v8_0_cp_compute_enable(adev, enable); } static int gfx_v8_0_hw_init(struct amdgpu_ip_block *ip_block) { int r; struct amdgpu_device *adev = ip_block->adev; gfx_v8_0_init_golden_registers(adev); gfx_v8_0_constants_init(adev); r = adev->gfx.rlc.funcs->resume(adev); if (r) return r; r = gfx_v8_0_cp_resume(adev); return r; } static int gfx_v8_0_kcq_disable(struct amdgpu_device *adev) { int r, i; struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[0].ring; r = amdgpu_ring_alloc(kiq_ring, 6 * adev->gfx.num_compute_rings); if (r) DRM_ERROR("Failed to lock KIQ (%d).\n", r); for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_UNMAP_QUEUES, 4)); amdgpu_ring_write(kiq_ring, /* Q_sel: 0, vmid: 0, engine: 0, num_Q: 1 */ PACKET3_UNMAP_QUEUES_ACTION(1) | /* RESET_QUEUES */ PACKET3_UNMAP_QUEUES_QUEUE_SEL(0) | PACKET3_UNMAP_QUEUES_ENGINE_SEL(0) | PACKET3_UNMAP_QUEUES_NUM_QUEUES(1)); amdgpu_ring_write(kiq_ring, PACKET3_UNMAP_QUEUES_DOORBELL_OFFSET0(ring->doorbell_index)); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); amdgpu_ring_write(kiq_ring, 0); } /* Submit unmap queue packet */ amdgpu_ring_commit(kiq_ring); /* * Ring test will do a basic scratch register change check. Just run * this to ensure that unmap queues that is submitted before got * processed successfully before returning. */ r = amdgpu_ring_test_helper(kiq_ring); if (r) DRM_ERROR("KCQ disable failed\n"); return r; } static bool gfx_v8_0_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (REG_GET_FIELD(RREG32(mmGRBM_STATUS), GRBM_STATUS, GUI_ACTIVE) || RREG32(mmGRBM_STATUS2) != 0x8) return false; else return true; } static bool gfx_v8_0_rlc_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (RREG32(mmGRBM_STATUS2) != 0x8) return false; else return true; } static int gfx_v8_0_wait_for_rlc_idle(void *handle) { unsigned int i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { if (gfx_v8_0_rlc_is_idle(handle)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v8_0_wait_for_idle(struct amdgpu_ip_block *ip_block) { unsigned int i; struct amdgpu_device *adev = ip_block->adev; for (i = 0; i < adev->usec_timeout; i++) { if (gfx_v8_0_is_idle(adev)) return 0; udelay(1); } return -ETIMEDOUT; } static int gfx_v8_0_hw_fini(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; amdgpu_irq_put(adev, &adev->gfx.priv_reg_irq, 0); amdgpu_irq_put(adev, &adev->gfx.priv_inst_irq, 0); amdgpu_irq_put(adev, &adev->gfx.cp_ecc_error_irq, 0); amdgpu_irq_put(adev, &adev->gfx.sq_irq, 0); /* disable KCQ to avoid CPC touch memory not valid anymore */ gfx_v8_0_kcq_disable(adev); if (amdgpu_sriov_vf(adev)) { pr_debug("For SRIOV client, shouldn't do anything.\n"); return 0; } amdgpu_gfx_rlc_enter_safe_mode(adev, 0); if (!gfx_v8_0_wait_for_idle(ip_block)) gfx_v8_0_cp_enable(adev, false); else pr_err("cp is busy, skip halt cp\n"); if (!gfx_v8_0_wait_for_rlc_idle(adev)) adev->gfx.rlc.funcs->stop(adev); else pr_err("rlc is busy, skip halt rlc\n"); amdgpu_gfx_rlc_exit_safe_mode(adev, 0); return 0; } static int gfx_v8_0_suspend(struct amdgpu_ip_block *ip_block) { return gfx_v8_0_hw_fini(ip_block); } static int gfx_v8_0_resume(struct amdgpu_ip_block *ip_block) { return gfx_v8_0_hw_init(ip_block); } static bool gfx_v8_0_check_soft_reset(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(mmGRBM_STATUS); if (tmp & (GRBM_STATUS__PA_BUSY_MASK | GRBM_STATUS__SC_BUSY_MASK | GRBM_STATUS__BCI_BUSY_MASK | GRBM_STATUS__SX_BUSY_MASK | GRBM_STATUS__TA_BUSY_MASK | GRBM_STATUS__VGT_BUSY_MASK | GRBM_STATUS__DB_BUSY_MASK | GRBM_STATUS__CB_BUSY_MASK | GRBM_STATUS__GDS_BUSY_MASK | GRBM_STATUS__SPI_BUSY_MASK | GRBM_STATUS__IA_BUSY_MASK | GRBM_STATUS__IA_BUSY_NO_DMA_MASK | GRBM_STATUS__CP_BUSY_MASK | GRBM_STATUS__CP_COHERENCY_BUSY_MASK)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1); } /* GRBM_STATUS2 */ tmp = RREG32(mmGRBM_STATUS2); if (REG_GET_FIELD(tmp, GRBM_STATUS2, RLC_BUSY)) grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_RLC, 1); if (REG_GET_FIELD(tmp, GRBM_STATUS2, CPF_BUSY) || REG_GET_FIELD(tmp, GRBM_STATUS2, CPC_BUSY) || REG_GET_FIELD(tmp, GRBM_STATUS2, CPG_BUSY)) { grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC, 1); grbm_soft_reset = REG_SET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG, 1); srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1); } /* SRBM_STATUS */ tmp = RREG32(mmSRBM_STATUS); if (REG_GET_FIELD(tmp, SRBM_STATUS, GRBM_RQ_PENDING)) srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_GRBM, 1); if (REG_GET_FIELD(tmp, SRBM_STATUS, SEM_BUSY)) srbm_soft_reset = REG_SET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SEM, 1); if (grbm_soft_reset || srbm_soft_reset) { adev->gfx.grbm_soft_reset = grbm_soft_reset; adev->gfx.srbm_soft_reset = srbm_soft_reset; return true; } else { adev->gfx.grbm_soft_reset = 0; adev->gfx.srbm_soft_reset = 0; return false; } } static int gfx_v8_0_pre_soft_reset(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; u32 grbm_soft_reset = 0; if ((!adev->gfx.grbm_soft_reset) && (!adev->gfx.srbm_soft_reset)) return 0; grbm_soft_reset = adev->gfx.grbm_soft_reset; /* stop the rlc */ adev->gfx.rlc.funcs->stop(adev); if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX)) /* Disable GFX parsing/prefetching */ gfx_v8_0_cp_gfx_enable(adev, false); if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG)) { int i; for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; mutex_lock(&adev->srbm_mutex); vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v8_0_deactivate_hqd(adev, 2); vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } /* Disable MEC parsing/prefetching */ gfx_v8_0_cp_compute_enable(adev, false); } return 0; } static int gfx_v8_0_soft_reset(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if ((!adev->gfx.grbm_soft_reset) && (!adev->gfx.srbm_soft_reset)) return 0; grbm_soft_reset = adev->gfx.grbm_soft_reset; srbm_soft_reset = adev->gfx.srbm_soft_reset; if (grbm_soft_reset || srbm_soft_reset) { tmp = RREG32(mmGMCON_DEBUG); tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_STALL, 1); tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_CLEAR, 1); WREG32(mmGMCON_DEBUG, tmp); udelay(50); } if (grbm_soft_reset) { tmp = RREG32(mmGRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(adev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmGRBM_SOFT_RESET, tmp); tmp = RREG32(mmGRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(mmGRBM_SOFT_RESET, tmp); tmp = RREG32(mmGRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); } if (grbm_soft_reset || srbm_soft_reset) { tmp = RREG32(mmGMCON_DEBUG); tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_STALL, 0); tmp = REG_SET_FIELD(tmp, GMCON_DEBUG, GFX_CLEAR, 0); WREG32(mmGMCON_DEBUG, tmp); } /* Wait a little for things to settle down */ udelay(50); return 0; } static int gfx_v8_0_post_soft_reset(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; u32 grbm_soft_reset = 0; if ((!adev->gfx.grbm_soft_reset) && (!adev->gfx.srbm_soft_reset)) return 0; grbm_soft_reset = adev->gfx.grbm_soft_reset; if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPF) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPC) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CPG)) { int i; for (i = 0; i < adev->gfx.num_compute_rings; i++) { struct amdgpu_ring *ring = &adev->gfx.compute_ring[i]; mutex_lock(&adev->srbm_mutex); vi_srbm_select(adev, ring->me, ring->pipe, ring->queue, 0); gfx_v8_0_deactivate_hqd(adev, 2); vi_srbm_select(adev, 0, 0, 0, 0); mutex_unlock(&adev->srbm_mutex); } gfx_v8_0_kiq_resume(adev); gfx_v8_0_kcq_resume(adev); } if (REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_CP) || REG_GET_FIELD(grbm_soft_reset, GRBM_SOFT_RESET, SOFT_RESET_GFX)) gfx_v8_0_cp_gfx_resume(adev); gfx_v8_0_cp_test_all_rings(adev); adev->gfx.rlc.funcs->start(adev); return 0; } /** * gfx_v8_0_get_gpu_clock_counter - return GPU clock counter snapshot * * @adev: amdgpu_device pointer * * Fetches a GPU clock counter snapshot. * Returns the 64 bit clock counter snapshot. */ static uint64_t gfx_v8_0_get_gpu_clock_counter(struct amdgpu_device *adev) { uint64_t clock; mutex_lock(&adev->gfx.gpu_clock_mutex); WREG32(mmRLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(mmRLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&adev->gfx.gpu_clock_mutex); return clock; } static void gfx_v8_0_ring_emit_gds_switch(struct amdgpu_ring *ring, uint32_t vmid, uint32_t gds_base, uint32_t gds_size, uint32_t gws_base, uint32_t gws_size, uint32_t oa_base, uint32_t oa_size) { /* GDS Base */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_base); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gds_base); /* GDS Size */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].mem_size); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gds_size); /* GWS */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].gws); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, gws_size << GDS_GWS_VMID0__SIZE__SHIFT | gws_base); /* OA */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0))); amdgpu_ring_write(ring, amdgpu_gds_reg_offset[vmid].oa); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, (1 << (oa_size + oa_base)) - (1 << oa_base)); } static uint32_t wave_read_ind(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t address) { WREG32(mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (address << SQ_IND_INDEX__INDEX__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK)); return RREG32(mmSQ_IND_DATA); } static void wave_read_regs(struct amdgpu_device *adev, uint32_t simd, uint32_t wave, uint32_t thread, uint32_t regno, uint32_t num, uint32_t *out) { WREG32(mmSQ_IND_INDEX, (wave << SQ_IND_INDEX__WAVE_ID__SHIFT) | (simd << SQ_IND_INDEX__SIMD_ID__SHIFT) | (regno << SQ_IND_INDEX__INDEX__SHIFT) | (thread << SQ_IND_INDEX__THREAD_ID__SHIFT) | (SQ_IND_INDEX__FORCE_READ_MASK) | (SQ_IND_INDEX__AUTO_INCR_MASK)); while (num--) *(out++) = RREG32(mmSQ_IND_DATA); } static void gfx_v8_0_read_wave_data(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t *dst, int *no_fields) { /* type 0 wave data */ dst[(*no_fields)++] = 0; dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_STATUS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_PC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_EXEC_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_HW_ID); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_INST_DW1); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_GPR_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_LDS_ALLOC); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TRAPSTS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_STS); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TBA_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_LO); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_TMA_HI); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_IB_DBG0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_M0); dst[(*no_fields)++] = wave_read_ind(adev, simd, wave, ixSQ_WAVE_MODE); } static void gfx_v8_0_read_wave_sgprs(struct amdgpu_device *adev, uint32_t xcc_id, uint32_t simd, uint32_t wave, uint32_t start, uint32_t size, uint32_t *dst) { wave_read_regs( adev, simd, wave, 0, start + SQIND_WAVE_SGPRS_OFFSET, size, dst); } static const struct amdgpu_gfx_funcs gfx_v8_0_gfx_funcs = { .get_gpu_clock_counter = &gfx_v8_0_get_gpu_clock_counter, .select_se_sh = &gfx_v8_0_select_se_sh, .read_wave_data = &gfx_v8_0_read_wave_data, .read_wave_sgprs = &gfx_v8_0_read_wave_sgprs, .select_me_pipe_q = &gfx_v8_0_select_me_pipe_q }; static int gfx_v8_0_early_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; adev->gfx.xcc_mask = 1; adev->gfx.num_gfx_rings = GFX8_NUM_GFX_RINGS; adev->gfx.num_compute_rings = min(amdgpu_gfx_get_num_kcq(adev), AMDGPU_MAX_COMPUTE_RINGS); adev->gfx.funcs = &gfx_v8_0_gfx_funcs; gfx_v8_0_set_ring_funcs(adev); gfx_v8_0_set_irq_funcs(adev); gfx_v8_0_set_gds_init(adev); gfx_v8_0_set_rlc_funcs(adev); return 0; } static int gfx_v8_0_late_init(struct amdgpu_ip_block *ip_block) { struct amdgpu_device *adev = ip_block->adev; int r; r = amdgpu_irq_get(adev, &adev->gfx.priv_reg_irq, 0); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.priv_inst_irq, 0); if (r) return r; /* requires IBs so do in late init after IB pool is initialized */ r = gfx_v8_0_do_edc_gpr_workarounds(adev); if (r) return r; r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); if (r) { DRM_ERROR("amdgpu_irq_get() failed to get IRQ for EDC, r: %d.\n", r); return r; } r = amdgpu_irq_get(adev, &adev->gfx.sq_irq, 0); if (r) { DRM_ERROR( "amdgpu_irq_get() failed to get IRQ for SQ, r: %d.\n", r); return r; } return 0; } static void gfx_v8_0_enable_gfx_static_mg_power_gating(struct amdgpu_device *adev, bool enable) { if ((adev->asic_type == CHIP_POLARIS11) || (adev->asic_type == CHIP_POLARIS12) || (adev->asic_type == CHIP_VEGAM)) /* Send msg to SMU via Powerplay */ amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, enable, 0); WREG32_FIELD(RLC_PG_CNTL, STATIC_PER_CU_PG_ENABLE, enable ? 1 : 0); } static void gfx_v8_0_enable_gfx_dynamic_mg_power_gating(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, DYN_PER_CU_PG_ENABLE, enable ? 1 : 0); } static void polaris11_enable_gfx_quick_mg_power_gating(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, QUICK_PG_ENABLE, enable ? 1 : 0); } static void cz_enable_gfx_cg_power_gating(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, GFX_POWER_GATING_ENABLE, enable ? 1 : 0); } static void cz_enable_gfx_pipeline_power_gating(struct amdgpu_device *adev, bool enable) { WREG32_FIELD(RLC_PG_CNTL, GFX_PIPELINE_PG_ENABLE, enable ? 1 : 0); /* Read any GFX register to wake up GFX. */ if (!enable) RREG32(mmDB_RENDER_CONTROL); } static void cz_update_gfx_cg_power_gating(struct amdgpu_device *adev, bool enable) { if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_PG) && enable) { cz_enable_gfx_cg_power_gating(adev, true); if (adev->pg_flags & AMD_PG_SUPPORT_GFX_PIPELINE) cz_enable_gfx_pipeline_power_gating(adev, true); } else { cz_enable_gfx_cg_power_gating(adev, false); cz_enable_gfx_pipeline_power_gating(adev, false); } } static int gfx_v8_0_set_powergating_state(struct amdgpu_ip_block *ip_block, enum amd_powergating_state state) { struct amdgpu_device *adev = ip_block->adev; bool enable = (state == AMD_PG_STATE_GATE); if (amdgpu_sriov_vf(adev)) return 0; if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_RLC_SMU_HS | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GFX_DMG)) amdgpu_gfx_rlc_enter_safe_mode(adev, 0); switch (adev->asic_type) { case CHIP_CARRIZO: case CHIP_STONEY: if (adev->pg_flags & AMD_PG_SUPPORT_RLC_SMU_HS) { cz_enable_sck_slow_down_on_power_up(adev, true); cz_enable_sck_slow_down_on_power_down(adev, true); } else { cz_enable_sck_slow_down_on_power_up(adev, false); cz_enable_sck_slow_down_on_power_down(adev, false); } if (adev->pg_flags & AMD_PG_SUPPORT_CP) cz_enable_cp_power_gating(adev, true); else cz_enable_cp_power_gating(adev, false); cz_update_gfx_cg_power_gating(adev, enable); if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG) && enable) gfx_v8_0_enable_gfx_static_mg_power_gating(adev, true); else gfx_v8_0_enable_gfx_static_mg_power_gating(adev, false); if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG) && enable) gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, true); else gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, false); break; case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_SMG) && enable) gfx_v8_0_enable_gfx_static_mg_power_gating(adev, true); else gfx_v8_0_enable_gfx_static_mg_power_gating(adev, false); if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_DMG) && enable) gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, true); else gfx_v8_0_enable_gfx_dynamic_mg_power_gating(adev, false); if ((adev->pg_flags & AMD_PG_SUPPORT_GFX_QUICK_MG) && enable) polaris11_enable_gfx_quick_mg_power_gating(adev, true); else polaris11_enable_gfx_quick_mg_power_gating(adev, false); break; default: break; } if (adev->pg_flags & (AMD_PG_SUPPORT_GFX_SMG | AMD_PG_SUPPORT_RLC_SMU_HS | AMD_PG_SUPPORT_CP | AMD_PG_SUPPORT_GFX_DMG)) amdgpu_gfx_rlc_exit_safe_mode(adev, 0); return 0; } static void gfx_v8_0_get_clockgating_state(void *handle, u64 *flags) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int data; if (amdgpu_sriov_vf(adev)) *flags = 0; /* AMD_CG_SUPPORT_GFX_MGCG */ data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); if (!(data & RLC_CGTT_MGCG_OVERRIDE__CPF_MASK)) *flags |= AMD_CG_SUPPORT_GFX_MGCG; /* AMD_CG_SUPPORT_GFX_CGLG */ data = RREG32(mmRLC_CGCG_CGLS_CTRL); if (data & RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGCG; /* AMD_CG_SUPPORT_GFX_CGLS */ if (data & RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CGLS; /* AMD_CG_SUPPORT_GFX_CGTS */ data = RREG32(mmCGTS_SM_CTRL_REG); if (!(data & CGTS_SM_CTRL_REG__OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_CGTS; /* AMD_CG_SUPPORT_GFX_CGTS_LS */ if (!(data & CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK)) *flags |= AMD_CG_SUPPORT_GFX_CGTS_LS; /* AMD_CG_SUPPORT_GFX_RLC_LS */ data = RREG32(mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_RLC_LS | AMD_CG_SUPPORT_GFX_MGLS; /* AMD_CG_SUPPORT_GFX_CP_LS */ data = RREG32(mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) *flags |= AMD_CG_SUPPORT_GFX_CP_LS | AMD_CG_SUPPORT_GFX_MGLS; } static void gfx_v8_0_send_serdes_cmd(struct amdgpu_device *adev, uint32_t reg_addr, uint32_t cmd) { uint32_t data; gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); WREG32(mmRLC_SERDES_WR_CU_MASTER_MASK, 0xffffffff); WREG32(mmRLC_SERDES_WR_NONCU_MASTER_MASK, 0xffffffff); data = RREG32(mmRLC_SERDES_WR_CTRL); if (adev->asic_type == CHIP_STONEY) data &= ~(RLC_SERDES_WR_CTRL__WRITE_COMMAND_MASK | RLC_SERDES_WR_CTRL__READ_COMMAND_MASK | RLC_SERDES_WR_CTRL__P1_SELECT_MASK | RLC_SERDES_WR_CTRL__P2_SELECT_MASK | RLC_SERDES_WR_CTRL__RDDATA_RESET_MASK | RLC_SERDES_WR_CTRL__POWER_DOWN_MASK | RLC_SERDES_WR_CTRL__POWER_UP_MASK | RLC_SERDES_WR_CTRL__SHORT_FORMAT_MASK | RLC_SERDES_WR_CTRL__SRBM_OVERRIDE_MASK); else data &= ~(RLC_SERDES_WR_CTRL__WRITE_COMMAND_MASK | RLC_SERDES_WR_CTRL__READ_COMMAND_MASK | RLC_SERDES_WR_CTRL__P1_SELECT_MASK | RLC_SERDES_WR_CTRL__P2_SELECT_MASK | RLC_SERDES_WR_CTRL__RDDATA_RESET_MASK | RLC_SERDES_WR_CTRL__POWER_DOWN_MASK | RLC_SERDES_WR_CTRL__POWER_UP_MASK | RLC_SERDES_WR_CTRL__SHORT_FORMAT_MASK | RLC_SERDES_WR_CTRL__BPM_DATA_MASK | RLC_SERDES_WR_CTRL__REG_ADDR_MASK | RLC_SERDES_WR_CTRL__SRBM_OVERRIDE_MASK); data |= (RLC_SERDES_WR_CTRL__RSVD_BPM_ADDR_MASK | (cmd << RLC_SERDES_WR_CTRL__BPM_DATA__SHIFT) | (reg_addr << RLC_SERDES_WR_CTRL__REG_ADDR__SHIFT) | (0xff << RLC_SERDES_WR_CTRL__BPM_ADDR__SHIFT)); WREG32(mmRLC_SERDES_WR_CTRL, data); } #define MSG_ENTER_RLC_SAFE_MODE 1 #define MSG_EXIT_RLC_SAFE_MODE 0 #define RLC_GPR_REG2__REQ_MASK 0x00000001 #define RLC_GPR_REG2__REQ__SHIFT 0 #define RLC_GPR_REG2__MESSAGE__SHIFT 0x00000001 #define RLC_GPR_REG2__MESSAGE_MASK 0x0000001e static bool gfx_v8_0_is_rlc_enabled(struct amdgpu_device *adev) { uint32_t rlc_setting; rlc_setting = RREG32(mmRLC_CNTL); if (!(rlc_setting & RLC_CNTL__RLC_ENABLE_F32_MASK)) return false; return true; } static void gfx_v8_0_set_safe_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; unsigned i; data = RREG32(mmRLC_CNTL); data |= RLC_SAFE_MODE__CMD_MASK; data &= ~RLC_SAFE_MODE__MESSAGE_MASK; data |= (1 << RLC_SAFE_MODE__MESSAGE__SHIFT); WREG32(mmRLC_SAFE_MODE, data); /* wait for RLC_SAFE_MODE */ for (i = 0; i < adev->usec_timeout; i++) { if ((RREG32(mmRLC_GPM_STAT) & (RLC_GPM_STAT__GFX_CLOCK_STATUS_MASK | RLC_GPM_STAT__GFX_POWER_STATUS_MASK)) == (RLC_GPM_STAT__GFX_CLOCK_STATUS_MASK | RLC_GPM_STAT__GFX_POWER_STATUS_MASK)) break; udelay(1); } for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(RREG32(mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } } static void gfx_v8_0_unset_safe_mode(struct amdgpu_device *adev, int xcc_id) { uint32_t data; unsigned i; data = RREG32(mmRLC_CNTL); data |= RLC_SAFE_MODE__CMD_MASK; data &= ~RLC_SAFE_MODE__MESSAGE_MASK; WREG32(mmRLC_SAFE_MODE, data); for (i = 0; i < adev->usec_timeout; i++) { if (!REG_GET_FIELD(RREG32(mmRLC_SAFE_MODE), RLC_SAFE_MODE, CMD)) break; udelay(1); } } static void gfx_v8_0_update_spm_vmid(struct amdgpu_device *adev, struct amdgpu_ring *ring, unsigned vmid) { u32 data; amdgpu_gfx_off_ctrl(adev, false); if (amdgpu_sriov_is_pp_one_vf(adev)) data = RREG32_NO_KIQ(mmRLC_SPM_VMID); else data = RREG32(mmRLC_SPM_VMID); data &= ~RLC_SPM_VMID__RLC_SPM_VMID_MASK; data |= (vmid & RLC_SPM_VMID__RLC_SPM_VMID_MASK) << RLC_SPM_VMID__RLC_SPM_VMID__SHIFT; if (amdgpu_sriov_is_pp_one_vf(adev)) WREG32_NO_KIQ(mmRLC_SPM_VMID, data); else WREG32(mmRLC_SPM_VMID, data); amdgpu_gfx_off_ctrl(adev, true); } static const struct amdgpu_rlc_funcs iceland_rlc_funcs = { .is_rlc_enabled = gfx_v8_0_is_rlc_enabled, .set_safe_mode = gfx_v8_0_set_safe_mode, .unset_safe_mode = gfx_v8_0_unset_safe_mode, .init = gfx_v8_0_rlc_init, .get_csb_size = gfx_v8_0_get_csb_size, .get_csb_buffer = gfx_v8_0_get_csb_buffer, .get_cp_table_num = gfx_v8_0_cp_jump_table_num, .resume = gfx_v8_0_rlc_resume, .stop = gfx_v8_0_rlc_stop, .reset = gfx_v8_0_rlc_reset, .start = gfx_v8_0_rlc_start, .update_spm_vmid = gfx_v8_0_update_spm_vmid }; static void gfx_v8_0_update_medium_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t temp, data; /* It is disabled by HW by default */ if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) /* 1 - RLC memory Light sleep */ WREG32_FIELD(RLC_MEM_SLP_CNTL, RLC_MEM_LS_EN, 1); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) WREG32_FIELD(CP_MEM_SLP_CNTL, CP_MEM_LS_EN, 1); } /* 3 - RLC_CGTT_MGCG_OVERRIDE */ temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); if (adev->flags & AMD_IS_APU) data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_MASK | RLC_CGTT_MGCG_OVERRIDE__RLC_MASK | RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK); else data &= ~(RLC_CGTT_MGCG_OVERRIDE__CPF_MASK | RLC_CGTT_MGCG_OVERRIDE__RLC_MASK | RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK); if (temp != data) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data); /* 4 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* 5 - clear mgcg override */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, CLE_BPM_SERDES_CMD); if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS) { /* 6 - Enable CGTS(Tree Shade) MGCG /MGLS */ temp = data = RREG32(mmCGTS_SM_CTRL_REG); data &= ~(CGTS_SM_CTRL_REG__SM_MODE_MASK); data |= (0x2 << CGTS_SM_CTRL_REG__SM_MODE__SHIFT); data |= CGTS_SM_CTRL_REG__SM_MODE_ENABLE_MASK; data &= ~CGTS_SM_CTRL_REG__OVERRIDE_MASK; if ((adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGTS_LS)) data &= ~CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK; data |= CGTS_SM_CTRL_REG__ON_MONITOR_ADD_EN_MASK; data |= (0x96 << CGTS_SM_CTRL_REG__ON_MONITOR_ADD__SHIFT); if (temp != data) WREG32(mmCGTS_SM_CTRL_REG, data); } udelay(50); /* 7 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); } else { /* 1 - MGCG_OVERRIDE[0] for CP and MGCG_OVERRIDE[1] for RLC */ temp = data = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data |= (RLC_CGTT_MGCG_OVERRIDE__CPF_MASK | RLC_CGTT_MGCG_OVERRIDE__RLC_MASK | RLC_CGTT_MGCG_OVERRIDE__MGCG_MASK | RLC_CGTT_MGCG_OVERRIDE__GRBM_MASK); if (temp != data) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data); /* 2 - disable MGLS in RLC */ data = RREG32(mmRLC_MEM_SLP_CNTL); if (data & RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK) { data &= ~RLC_MEM_SLP_CNTL__RLC_MEM_LS_EN_MASK; WREG32(mmRLC_MEM_SLP_CNTL, data); } /* 3 - disable MGLS in CP */ data = RREG32(mmCP_MEM_SLP_CNTL); if (data & CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK) { data &= ~CP_MEM_SLP_CNTL__CP_MEM_LS_EN_MASK; WREG32(mmCP_MEM_SLP_CNTL, data); } /* 4 - Disable CGTS(Tree Shade) MGCG and MGLS */ temp = data = RREG32(mmCGTS_SM_CTRL_REG); data |= (CGTS_SM_CTRL_REG__OVERRIDE_MASK | CGTS_SM_CTRL_REG__LS_OVERRIDE_MASK); if (temp != data) WREG32(mmCGTS_SM_CTRL_REG, data); /* 5 - wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* 6 - set mgcg override */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_MGCG_OVERRIDE, SET_BPM_SERDES_CMD); udelay(50); /* 7- wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); } } static void gfx_v8_0_update_coarse_grain_clock_gating(struct amdgpu_device *adev, bool enable) { uint32_t temp, temp1, data, data1; temp = data = RREG32(mmRLC_CGCG_CGLS_CTRL); if (enable && (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG)) { temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK; if (temp1 != data1) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1); /* : wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* 2 - clear cgcg override */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, CLE_BPM_SERDES_CMD); /* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* 3 - write cmd to set CGLS */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGLS_EN, SET_BPM_SERDES_CMD); /* 4 - enable cgcg */ data |= RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK; if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) { /* enable cgls*/ data |= RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data1 &= ~RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK; if (temp1 != data1) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1); } else { data &= ~RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK; } if (temp != data) WREG32(mmRLC_CGCG_CGLS_CTRL, data); /* 5 enable cntx_empty_int_enable/cntx_busy_int_enable/ * Cmp_busy/GFX_Idle interrupts */ gfx_v8_0_enable_gui_idle_interrupt(adev, true); } else { /* disable cntx_empty_int_enable & GFX Idle interrupt */ gfx_v8_0_enable_gui_idle_interrupt(adev, false); /* TEST CGCG */ temp1 = data1 = RREG32(mmRLC_CGTT_MGCG_OVERRIDE); data1 |= (RLC_CGTT_MGCG_OVERRIDE__CGCG_MASK | RLC_CGTT_MGCG_OVERRIDE__CGLS_MASK); if (temp1 != data1) WREG32(mmRLC_CGTT_MGCG_OVERRIDE, data1); /* read gfx register to wake up cgcg */ RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); RREG32(mmCB_CGTT_SCLK_CTRL); /* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* write cmd to Set CGCG Override */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGCG_OVERRIDE, SET_BPM_SERDES_CMD); /* wait for RLC_SERDES_CU_MASTER & RLC_SERDES_NONCU_MASTER idle */ gfx_v8_0_wait_for_rlc_serdes(adev); /* write cmd to Clear CGLS */ gfx_v8_0_send_serdes_cmd(adev, BPM_REG_CGLS_EN, CLE_BPM_SERDES_CMD); /* disable cgcg, cgls should be disabled too. */ data &= ~(RLC_CGCG_CGLS_CTRL__CGCG_EN_MASK | RLC_CGCG_CGLS_CTRL__CGLS_EN_MASK); if (temp != data) WREG32(mmRLC_CGCG_CGLS_CTRL, data); /* enable interrupts again for PG */ gfx_v8_0_enable_gui_idle_interrupt(adev, true); } gfx_v8_0_wait_for_rlc_serdes(adev); } static int gfx_v8_0_update_gfx_clock_gating(struct amdgpu_device *adev, bool enable) { amdgpu_gfx_rlc_enter_safe_mode(adev, 0); if (enable) { /* CGCG/CGLS should be enabled after MGCG/MGLS/TS(CG/LS) * === MGCG + MGLS + TS(CG/LS) === */ gfx_v8_0_update_medium_grain_clock_gating(adev, enable); gfx_v8_0_update_coarse_grain_clock_gating(adev, enable); } else { /* CGCG/CGLS should be disabled before MGCG/MGLS/TS(CG/LS) * === CGCG + CGLS === */ gfx_v8_0_update_coarse_grain_clock_gating(adev, enable); gfx_v8_0_update_medium_grain_clock_gating(adev, enable); } amdgpu_gfx_rlc_exit_safe_mode(adev, 0); return 0; } static int gfx_v8_0_tonga_update_gfx_clock_gating(struct amdgpu_device *adev, enum amd_clockgating_state state) { uint32_t msg_id, pp_state = 0; uint32_t pp_support_state = 0; if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) { pp_support_state = PP_STATE_SUPPORT_LS; pp_state = PP_STATE_LS; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) { pp_support_state |= PP_STATE_SUPPORT_CG; pp_state |= PP_STATE_CG; } if (state == AMD_CG_STATE_UNGATE) pp_state = 0; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_CG, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { pp_support_state = PP_STATE_SUPPORT_LS; pp_state = PP_STATE_LS; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) { pp_support_state |= PP_STATE_SUPPORT_CG; pp_state |= PP_STATE_CG; } if (state == AMD_CG_STATE_UNGATE) pp_state = 0; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_MG, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } return 0; } static int gfx_v8_0_polaris_update_gfx_clock_gating(struct amdgpu_device *adev, enum amd_clockgating_state state) { uint32_t msg_id, pp_state = 0; uint32_t pp_support_state = 0; if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_CGCG | AMD_CG_SUPPORT_GFX_CGLS)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGLS) { pp_support_state = PP_STATE_SUPPORT_LS; pp_state = PP_STATE_LS; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CGCG) { pp_support_state |= PP_STATE_SUPPORT_CG; pp_state |= PP_STATE_CG; } if (state == AMD_CG_STATE_UNGATE) pp_state = 0; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_CG, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_3D_CGCG | AMD_CG_SUPPORT_GFX_3D_CGLS)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGLS) { pp_support_state = PP_STATE_SUPPORT_LS; pp_state = PP_STATE_LS; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_3D_CGCG) { pp_support_state |= PP_STATE_SUPPORT_CG; pp_state |= PP_STATE_CG; } if (state == AMD_CG_STATE_UNGATE) pp_state = 0; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_3D, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } if (adev->cg_flags & (AMD_CG_SUPPORT_GFX_MGCG | AMD_CG_SUPPORT_GFX_MGLS)) { if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGLS) { pp_support_state = PP_STATE_SUPPORT_LS; pp_state = PP_STATE_LS; } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_MGCG) { pp_support_state |= PP_STATE_SUPPORT_CG; pp_state |= PP_STATE_CG; } if (state == AMD_CG_STATE_UNGATE) pp_state = 0; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_MG, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_RLC_LS) { pp_support_state = PP_STATE_SUPPORT_LS; if (state == AMD_CG_STATE_UNGATE) pp_state = 0; else pp_state = PP_STATE_LS; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_RLC, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } if (adev->cg_flags & AMD_CG_SUPPORT_GFX_CP_LS) { pp_support_state = PP_STATE_SUPPORT_LS; if (state == AMD_CG_STATE_UNGATE) pp_state = 0; else pp_state = PP_STATE_LS; msg_id = PP_CG_MSG_ID(PP_GROUP_GFX, PP_BLOCK_GFX_CP, pp_support_state, pp_state); amdgpu_dpm_set_clockgating_by_smu(adev, msg_id); } return 0; } static int gfx_v8_0_set_clockgating_state(struct amdgpu_ip_block *ip_block, enum amd_clockgating_state state) { struct amdgpu_device *adev = ip_block->adev; if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_FIJI: case CHIP_CARRIZO: case CHIP_STONEY: gfx_v8_0_update_gfx_clock_gating(adev, state == AMD_CG_STATE_GATE); break; case CHIP_TONGA: gfx_v8_0_tonga_update_gfx_clock_gating(adev, state); break; case CHIP_POLARIS10: case CHIP_POLARIS11: case CHIP_POLARIS12: case CHIP_VEGAM: gfx_v8_0_polaris_update_gfx_clock_gating(adev, state); break; default: break; } return 0; } static u64 gfx_v8_0_ring_get_rptr(struct amdgpu_ring *ring) { return *ring->rptr_cpu_addr; } static u64 gfx_v8_0_ring_get_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) /* XXX check if swapping is necessary on BE */ return *ring->wptr_cpu_addr; else return RREG32(mmCP_RB0_WPTR); } static void gfx_v8_0_ring_set_wptr_gfx(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; if (ring->use_doorbell) { /* XXX check if swapping is necessary on BE */ *ring->wptr_cpu_addr = lower_32_bits(ring->wptr); WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr)); } else { WREG32(mmCP_RB0_WPTR, lower_32_bits(ring->wptr)); (void)RREG32(mmCP_RB0_WPTR); } } static void gfx_v8_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) { u32 ref_and_mask, reg_mem_engine; if ((ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) || (ring->funcs->type == AMDGPU_RING_TYPE_KIQ)) { switch (ring->me) { case 1: ref_and_mask = GPU_HDP_FLUSH_DONE__CP2_MASK << ring->pipe; break; case 2: ref_and_mask = GPU_HDP_FLUSH_DONE__CP6_MASK << ring->pipe; break; default: return; } reg_mem_engine = 0; } else { ref_and_mask = GPU_HDP_FLUSH_DONE__CP0_MASK; reg_mem_engine = WAIT_REG_MEM_ENGINE(1); /* pfp */ } amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(1) | /* write, wait, write */ WAIT_REG_MEM_FUNCTION(3) | /* == */ reg_mem_engine)); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ); amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE); amdgpu_ring_write(ring, ref_and_mask); amdgpu_ring_write(ring, ref_and_mask); amdgpu_ring_write(ring, 0x20); /* poll interval */ } static void gfx_v8_0_ring_emit_vgt_flush(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0)); amdgpu_ring_write(ring, EVENT_TYPE(VS_PARTIAL_FLUSH) | EVENT_INDEX(4)); amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE, 0)); amdgpu_ring_write(ring, EVENT_TYPE(VGT_FLUSH) | EVENT_INDEX(0)); } static void gfx_v8_0_ring_emit_ib_gfx(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 header, control = 0; if (ib->flags & AMDGPU_IB_FLAG_CE) header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); else header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); control |= ib->length_dw | (vmid << 24); if (amdgpu_sriov_vf(ring->adev) && (ib->flags & AMDGPU_IB_FLAG_PREEMPT)) { control |= INDIRECT_BUFFER_PRE_ENB(1); if (!(ib->flags & AMDGPU_IB_FLAG_CE) && vmid) gfx_v8_0_ring_emit_de_meta(ring); } amdgpu_ring_write(ring, header); amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); amdgpu_ring_write(ring, control); } static void gfx_v8_0_ring_emit_ib_compute(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); u32 control = INDIRECT_BUFFER_VALID | ib->length_dw | (vmid << 24); /* Currently, there is a high possibility to get wave ID mismatch * between ME and GDS, leading to a hw deadlock, because ME generates * different wave IDs than the GDS expects. This situation happens * randomly when at least 5 compute pipes use GDS ordered append. * The wave IDs generated by ME are also wrong after suspend/resume. * Those are probably bugs somewhere else in the kernel driver. * * Writing GDS_COMPUTE_MAX_WAVE_ID resets wave ID counters in ME and * GDS to 0 for this ring (me/pipe). */ if (ib->flags & AMDGPU_IB_FLAG_RESET_GDS_MAX_WAVE_ID) { amdgpu_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); amdgpu_ring_write(ring, mmGDS_COMPUTE_MAX_WAVE_ID - PACKET3_SET_CONFIG_REG_START); amdgpu_ring_write(ring, ring->adev->gds.gds_compute_max_wave_id); } amdgpu_ring_write(ring, PACKET3(PACKET3_INDIRECT_BUFFER, 2)); amdgpu_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); amdgpu_ring_write(ring, control); } static void gfx_v8_0_ring_emit_fence_gfx(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; bool exec = flags & AMDGPU_FENCE_FLAG_EXEC; /* Workaround for cache flush problems. First send a dummy EOP * event down the pipe with seq one below. */ amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EOP_TC_WB_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(0)); amdgpu_ring_write(ring, lower_32_bits(seq - 1)); amdgpu_ring_write(ring, upper_32_bits(seq - 1)); /* Then send the real EOP event down the pipe: * EVENT_WRITE_EOP - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EOP_TC_WB_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5) | (exec ? EOP_EXEC : 0))); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); } static void gfx_v8_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_MEM_SPACE(1) | /* memory */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(usepfp))); /* pfp or me */ amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); amdgpu_ring_write(ring, seq); amdgpu_ring_write(ring, 0xffffffff); amdgpu_ring_write(ring, 4); /* poll interval */ } static void gfx_v8_0_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { int usepfp = (ring->funcs->type == AMDGPU_RING_TYPE_GFX); amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* wait for the invalidate to complete */ amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, (WAIT_REG_MEM_OPERATION(0) | /* wait */ WAIT_REG_MEM_FUNCTION(0) | /* always */ WAIT_REG_MEM_ENGINE(0))); /* me */ amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0); /* ref */ amdgpu_ring_write(ring, 0); /* mask */ amdgpu_ring_write(ring, 0x20); /* poll interval */ /* compute doesn't have PFP */ if (usepfp) { /* sync PFP to ME, otherwise we might get invalid PFP reads */ amdgpu_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); amdgpu_ring_write(ring, 0x0); } } static u64 gfx_v8_0_ring_get_wptr_compute(struct amdgpu_ring *ring) { return *ring->wptr_cpu_addr; } static void gfx_v8_0_ring_set_wptr_compute(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; /* XXX check if swapping is necessary on BE */ *ring->wptr_cpu_addr = lower_32_bits(ring->wptr); WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr)); } static void gfx_v8_0_ring_emit_fence_compute(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; bool int_sel = flags & AMDGPU_FENCE_FLAG_INT; /* RELEASE_MEM - flush caches, send int */ amdgpu_ring_write(ring, PACKET3(PACKET3_RELEASE_MEM, 5)); amdgpu_ring_write(ring, (EOP_TCL1_ACTION_EN | EOP_TC_ACTION_EN | EOP_TC_WB_ACTION_EN | EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5))); amdgpu_ring_write(ring, DATA_SEL(write64bit ? 2 : 1) | INT_SEL(int_sel ? 2 : 0)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); amdgpu_ring_write(ring, upper_32_bits(seq)); } static void gfx_v8_0_ring_emit_fence_kiq(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned int flags) { /* we only allocate 32bit for each seq wb address */ BUG_ON(flags & AMDGPU_FENCE_FLAG_64BIT); /* write fence seq to the "addr" */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(5) | WR_CONFIRM)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); amdgpu_ring_write(ring, lower_32_bits(seq)); if (flags & AMDGPU_FENCE_FLAG_INT) { /* set register to trigger INT */ amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) | WRITE_DATA_DST_SEL(0) | WR_CONFIRM)); amdgpu_ring_write(ring, mmCPC_INT_STATUS); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, 0x20000000); /* src_id is 178 */ } } static void gfx_v8_ring_emit_sb(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); amdgpu_ring_write(ring, 0); } static void gfx_v8_ring_emit_cntxcntl(struct amdgpu_ring *ring, uint32_t flags) { uint32_t dw2 = 0; if (amdgpu_sriov_vf(ring->adev)) gfx_v8_0_ring_emit_ce_meta(ring); dw2 |= 0x80000000; /* set load_enable otherwise this package is just NOPs */ if (flags & AMDGPU_HAVE_CTX_SWITCH) { gfx_v8_0_ring_emit_vgt_flush(ring); /* set load_global_config & load_global_uconfig */ dw2 |= 0x8001; /* set load_cs_sh_regs */ dw2 |= 0x01000000; /* set load_per_context_state & load_gfx_sh_regs for GFX */ dw2 |= 0x10002; /* set load_ce_ram if preamble presented */ if (AMDGPU_PREAMBLE_IB_PRESENT & flags) dw2 |= 0x10000000; } else { /* still load_ce_ram if this is the first time preamble presented * although there is no context switch happens. */ if (AMDGPU_PREAMBLE_IB_PRESENT_FIRST & flags) dw2 |= 0x10000000; } amdgpu_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1)); amdgpu_ring_write(ring, dw2); amdgpu_ring_write(ring, 0); } static unsigned gfx_v8_0_ring_emit_init_cond_exec(struct amdgpu_ring *ring, uint64_t addr) { unsigned ret; amdgpu_ring_write(ring, PACKET3(PACKET3_COND_EXEC, 3)); amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, upper_32_bits(addr)); /* discard following DWs if *cond_exec_gpu_addr==0 */ amdgpu_ring_write(ring, 0); ret = ring->wptr & ring->buf_mask; /* patch dummy value later */ amdgpu_ring_write(ring, 0); return ret; } static void gfx_v8_0_ring_emit_rreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t reg_val_offs) { struct amdgpu_device *adev = ring->adev; amdgpu_ring_write(ring, PACKET3(PACKET3_COPY_DATA, 4)); amdgpu_ring_write(ring, 0 | /* src: register*/ (5 << 8) | /* dst: memory */ (1 << 20)); /* write confirm */ amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, lower_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); amdgpu_ring_write(ring, upper_32_bits(adev->wb.gpu_addr + reg_val_offs * 4)); } static void gfx_v8_0_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { uint32_t cmd; switch (ring->funcs->type) { case AMDGPU_RING_TYPE_GFX: cmd = WRITE_DATA_ENGINE_SEL(1) | WR_CONFIRM; break; case AMDGPU_RING_TYPE_KIQ: cmd = 1 << 16; /* no inc addr */ break; default: cmd = WR_CONFIRM; break; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); amdgpu_ring_write(ring, cmd); amdgpu_ring_write(ring, reg); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, val); } static void gfx_v8_0_wait_reg_mem(struct amdgpu_ring *ring, int eng_sel, int mem_space, int opt, uint32_t addr0, uint32_t addr1, uint32_t ref, uint32_t mask, uint32_t inv) { amdgpu_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); amdgpu_ring_write(ring, /* memory (1) or register (0) */ (WAIT_REG_MEM_MEM_SPACE(mem_space) | WAIT_REG_MEM_OPERATION(opt) | /* wait */ WAIT_REG_MEM_FUNCTION(3) | /* equal */ WAIT_REG_MEM_ENGINE(eng_sel))); if (mem_space) BUG_ON(addr0 & 0x3); /* Dword align */ amdgpu_ring_write(ring, addr0); amdgpu_ring_write(ring, addr1); amdgpu_ring_write(ring, ref); amdgpu_ring_write(ring, mask); amdgpu_ring_write(ring, inv); /* poll interval */ } static void gfx_v8_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg, uint32_t val, uint32_t mask) { gfx_v8_0_wait_reg_mem(ring, 0, 0, 0, reg, 0, val, mask, 0x20); } static void gfx_v8_0_ring_soft_recovery(struct amdgpu_ring *ring, unsigned vmid) { struct amdgpu_device *adev = ring->adev; uint32_t value = 0; value = REG_SET_FIELD(value, SQ_CMD, CMD, 0x03); value = REG_SET_FIELD(value, SQ_CMD, MODE, 0x01); value = REG_SET_FIELD(value, SQ_CMD, CHECK_VMID, 1); value = REG_SET_FIELD(value, SQ_CMD, VM_ID, vmid); WREG32(mmSQ_CMD, value); } static void gfx_v8_0_set_gfx_eop_interrupt_state(struct amdgpu_device *adev, enum amdgpu_interrupt_state state) { WREG32_FIELD(CP_INT_CNTL_RING0, TIME_STAMP_INT_ENABLE, state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1); } static void gfx_v8_0_set_compute_eop_interrupt_state(struct amdgpu_device *adev, int me, int pipe, enum amdgpu_interrupt_state state) { u32 mec_int_cntl, mec_int_cntl_reg; /* * amdgpu controls only the first MEC. That's why this function only * handles the setting of interrupts for this specific MEC. All other * pipes' interrupts are set by amdkfd. */ if (me == 1) { switch (pipe) { case 0: mec_int_cntl_reg = mmCP_ME1_PIPE0_INT_CNTL; break; case 1: mec_int_cntl_reg = mmCP_ME1_PIPE1_INT_CNTL; break; case 2: mec_int_cntl_reg = mmCP_ME1_PIPE2_INT_CNTL; break; case 3: mec_int_cntl_reg = mmCP_ME1_PIPE3_INT_CNTL; break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } } else { DRM_DEBUG("invalid me %d\n", me); return; } switch (state) { case AMDGPU_IRQ_STATE_DISABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl &= ~CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK; WREG32(mec_int_cntl_reg, mec_int_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: mec_int_cntl = RREG32(mec_int_cntl_reg); mec_int_cntl |= CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK; WREG32(mec_int_cntl_reg, mec_int_cntl); break; default: break; } } static int gfx_v8_0_set_priv_reg_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { WREG32_FIELD(CP_INT_CNTL_RING0, PRIV_REG_INT_ENABLE, state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1); return 0; } static int gfx_v8_0_set_priv_inst_fault_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { WREG32_FIELD(CP_INT_CNTL_RING0, PRIV_INSTR_INT_ENABLE, state == AMDGPU_IRQ_STATE_DISABLE ? 0 : 1); return 0; } static int gfx_v8_0_set_eop_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { switch (type) { case AMDGPU_CP_IRQ_GFX_ME0_PIPE0_EOP: gfx_v8_0_set_gfx_eop_interrupt_state(adev, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE0_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE1_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE2_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC1_PIPE3_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 1, 3, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE0_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 0, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE1_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 1, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE2_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 2, state); break; case AMDGPU_CP_IRQ_COMPUTE_MEC2_PIPE3_EOP: gfx_v8_0_set_compute_eop_interrupt_state(adev, 2, 3, state); break; default: break; } return 0; } static int gfx_v8_0_set_cp_ecc_int_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned int type, enum amdgpu_interrupt_state state) { int enable_flag; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: enable_flag = 0; break; case AMDGPU_IRQ_STATE_ENABLE: enable_flag = 1; break; default: return -EINVAL; } WREG32_FIELD(CP_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_INT_CNTL_RING0, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_INT_CNTL_RING1, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_INT_CNTL_RING2, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CPC_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME1_PIPE0_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME1_PIPE1_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME1_PIPE2_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME1_PIPE3_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME2_PIPE0_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME2_PIPE1_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME2_PIPE2_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); WREG32_FIELD(CP_ME2_PIPE3_INT_CNTL, CP_ECC_ERROR_INT_ENABLE, enable_flag); return 0; } static int gfx_v8_0_set_sq_int_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned int type, enum amdgpu_interrupt_state state) { int enable_flag; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: enable_flag = 1; break; case AMDGPU_IRQ_STATE_ENABLE: enable_flag = 0; break; default: return -EINVAL; } WREG32_FIELD(SQ_INTERRUPT_MSG_CTRL, STALL, enable_flag); return 0; } static int gfx_v8_0_eop_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { int i; u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; DRM_DEBUG("IH: CP EOP\n"); me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: amdgpu_fence_process(&adev->gfx.gfx_ring[0]); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; /* Per-queue interrupt is supported for MEC starting from VI. * The interrupt can only be enabled/disabled per pipe instead of per queue. */ if ((ring->me == me_id) && (ring->pipe == pipe_id) && (ring->queue == queue_id)) amdgpu_fence_process(ring); } break; } return 0; } static void gfx_v8_0_fault(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { u8 me_id, pipe_id, queue_id; struct amdgpu_ring *ring; int i; me_id = (entry->ring_id & 0x0c) >> 2; pipe_id = (entry->ring_id & 0x03) >> 0; queue_id = (entry->ring_id & 0x70) >> 4; switch (me_id) { case 0: drm_sched_fault(&adev->gfx.gfx_ring[0].sched); break; case 1: case 2: for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i]; if (ring->me == me_id && ring->pipe == pipe_id && ring->queue == queue_id) drm_sched_fault(&ring->sched); } break; } } static int gfx_v8_0_priv_reg_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal register access in command stream\n"); gfx_v8_0_fault(adev, entry); return 0; } static int gfx_v8_0_priv_inst_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("Illegal instruction in command stream\n"); gfx_v8_0_fault(adev, entry); return 0; } static int gfx_v8_0_cp_ecc_error_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_ERROR("CP EDC/ECC error detected."); return 0; } static void gfx_v8_0_parse_sq_irq(struct amdgpu_device *adev, unsigned ih_data, bool from_wq) { u32 enc, se_id, sh_id, cu_id; char type[20]; int sq_edc_source = -1; enc = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_CMN, ENCODING); se_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_CMN, SE_ID); switch (enc) { case 0: DRM_INFO("SQ general purpose intr detected:" "se_id %d, immed_overflow %d, host_reg_overflow %d," "host_cmd_overflow %d, cmd_timestamp %d," "reg_timestamp %d, thread_trace_buff_full %d," "wlt %d, thread_trace %d.\n", se_id, REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, IMMED_OVERFLOW), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, HOST_REG_OVERFLOW), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, HOST_CMD_OVERFLOW), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, CMD_TIMESTAMP), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, REG_TIMESTAMP), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, THREAD_TRACE_BUF_FULL), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, WLT), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_AUTO, THREAD_TRACE) ); break; case 1: case 2: cu_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, CU_ID); sh_id = REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, SH_ID); /* * This function can be called either directly from ISR * or from BH in which case we can access SQ_EDC_INFO * instance */ if (from_wq) { mutex_lock(&adev->grbm_idx_mutex); gfx_v8_0_select_se_sh(adev, se_id, sh_id, cu_id, 0); sq_edc_source = REG_GET_FIELD(RREG32(mmSQ_EDC_INFO), SQ_EDC_INFO, SOURCE); gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); } if (enc == 1) sprintf(type, "instruction intr"); else sprintf(type, "EDC/ECC error"); DRM_INFO( "SQ %s detected: " "se_id %d, sh_id %d, cu_id %d, simd_id %d, wave_id %d, vm_id %d " "trap %s, sq_ed_info.source %s.\n", type, se_id, sh_id, cu_id, REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, SIMD_ID), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, WAVE_ID), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, VM_ID), REG_GET_FIELD(ih_data, SQ_INTERRUPT_WORD_WAVE, PRIV) ? "true" : "false", (sq_edc_source != -1) ? sq_edc_source_names[sq_edc_source] : "unavailable" ); break; default: DRM_ERROR("SQ invalid encoding type\n."); } } static void gfx_v8_0_sq_irq_work_func(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, gfx.sq_work.work); struct sq_work *sq_work = container_of(work, struct sq_work, work); gfx_v8_0_parse_sq_irq(adev, sq_work->ih_data, true); } static int gfx_v8_0_sq_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { unsigned ih_data = entry->src_data[0]; /* * Try to submit work so SQ_EDC_INFO can be accessed from * BH. If previous work submission hasn't finished yet * just print whatever info is possible directly from the ISR. */ if (work_pending(&adev->gfx.sq_work.work)) { gfx_v8_0_parse_sq_irq(adev, ih_data, false); } else { adev->gfx.sq_work.ih_data = ih_data; schedule_work(&adev->gfx.sq_work.work); } return 0; } static void gfx_v8_0_emit_mem_sync(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); amdgpu_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA | PACKET3_TC_WB_ACTION_ENA); /* CP_COHER_CNTL */ amdgpu_ring_write(ring, 0xffffffff); /* CP_COHER_SIZE */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */ amdgpu_ring_write(ring, 0x0000000A); /* poll interval */ } static void gfx_v8_0_emit_mem_sync_compute(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET3(PACKET3_ACQUIRE_MEM, 5)); amdgpu_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA | PACKET3_TC_WB_ACTION_ENA); /* CP_COHER_CNTL */ amdgpu_ring_write(ring, 0xffffffff); /* CP_COHER_SIZE */ amdgpu_ring_write(ring, 0xff); /* CP_COHER_SIZE_HI */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE */ amdgpu_ring_write(ring, 0); /* CP_COHER_BASE_HI */ amdgpu_ring_write(ring, 0x0000000A); /* poll interval */ } /* mmSPI_WCL_PIPE_PERCENT_CS[0-7]_DEFAULT values are same */ #define mmSPI_WCL_PIPE_PERCENT_CS_DEFAULT 0x0000007f static void gfx_v8_0_emit_wave_limit_cs(struct amdgpu_ring *ring, uint32_t pipe, bool enable) { uint32_t val; uint32_t wcl_cs_reg; val = enable ? 0x1 : mmSPI_WCL_PIPE_PERCENT_CS_DEFAULT; switch (pipe) { case 0: wcl_cs_reg = mmSPI_WCL_PIPE_PERCENT_CS0; break; case 1: wcl_cs_reg = mmSPI_WCL_PIPE_PERCENT_CS1; break; case 2: wcl_cs_reg = mmSPI_WCL_PIPE_PERCENT_CS2; break; case 3: wcl_cs_reg = mmSPI_WCL_PIPE_PERCENT_CS3; break; default: DRM_DEBUG("invalid pipe %d\n", pipe); return; } amdgpu_ring_emit_wreg(ring, wcl_cs_reg, val); } #define mmSPI_WCL_PIPE_PERCENT_GFX_DEFAULT 0x07ffffff static void gfx_v8_0_emit_wave_limit(struct amdgpu_ring *ring, bool enable) { struct amdgpu_device *adev = ring->adev; uint32_t val; int i; /* mmSPI_WCL_PIPE_PERCENT_GFX is 7 bit multiplier register to limit * number of gfx waves. Setting 5 bit will make sure gfx only gets * around 25% of gpu resources. */ val = enable ? 0x1f : mmSPI_WCL_PIPE_PERCENT_GFX_DEFAULT; amdgpu_ring_emit_wreg(ring, mmSPI_WCL_PIPE_PERCENT_GFX, val); /* Restrict waves for normal/low priority compute queues as well * to get best QoS for high priority compute jobs. * * amdgpu controls only 1st ME(0-3 CS pipes). */ for (i = 0; i < adev->gfx.mec.num_pipe_per_mec; i++) { if (i != ring->pipe) gfx_v8_0_emit_wave_limit_cs(ring, i, enable); } } static int gfx_v8_0_reset_kgq(struct amdgpu_ring *ring, unsigned int vmid) { struct amdgpu_device *adev = ring->adev; struct amdgpu_kiq *kiq = &adev->gfx.kiq[0]; struct amdgpu_ring *kiq_ring = &kiq->ring; unsigned long flags; u32 tmp; int r; if (amdgpu_sriov_vf(adev)) return -EINVAL; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; spin_lock_irqsave(&kiq->ring_lock, flags); if (amdgpu_ring_alloc(kiq_ring, 5)) { spin_unlock_irqrestore(&kiq->ring_lock, flags); return -ENOMEM; } tmp = REG_SET_FIELD(0, CP_VMID_RESET, RESET_REQUEST, 1 << vmid); gfx_v8_0_ring_emit_wreg(kiq_ring, mmCP_VMID_RESET, tmp); amdgpu_ring_commit(kiq_ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_ring_test_ring(kiq_ring); if (r) return r; if (amdgpu_ring_alloc(ring, 7 + 12 + 5)) return -ENOMEM; gfx_v8_0_ring_emit_fence_gfx(ring, ring->fence_drv.gpu_addr, ring->fence_drv.sync_seq, AMDGPU_FENCE_FLAG_EXEC); gfx_v8_0_ring_emit_reg_wait(ring, mmCP_VMID_RESET, 0, 0xffff); gfx_v8_0_ring_emit_wreg(ring, mmCP_VMID_RESET, 0); return amdgpu_ring_test_ring(ring); } static const struct amd_ip_funcs gfx_v8_0_ip_funcs = { .name = "gfx_v8_0", .early_init = gfx_v8_0_early_init, .late_init = gfx_v8_0_late_init, .sw_init = gfx_v8_0_sw_init, .sw_fini = gfx_v8_0_sw_fini, .hw_init = gfx_v8_0_hw_init, .hw_fini = gfx_v8_0_hw_fini, .suspend = gfx_v8_0_suspend, .resume = gfx_v8_0_resume, .is_idle = gfx_v8_0_is_idle, .wait_for_idle = gfx_v8_0_wait_for_idle, .check_soft_reset = gfx_v8_0_check_soft_reset, .pre_soft_reset = gfx_v8_0_pre_soft_reset, .soft_reset = gfx_v8_0_soft_reset, .post_soft_reset = gfx_v8_0_post_soft_reset, .set_clockgating_state = gfx_v8_0_set_clockgating_state, .set_powergating_state = gfx_v8_0_set_powergating_state, .get_clockgating_state = gfx_v8_0_get_clockgating_state, }; static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_gfx = { .type = AMDGPU_RING_TYPE_GFX, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = false, .get_rptr = gfx_v8_0_ring_get_rptr, .get_wptr = gfx_v8_0_ring_get_wptr_gfx, .set_wptr = gfx_v8_0_ring_set_wptr_gfx, .emit_frame_size = /* maximum 215dw if count 16 IBs in */ 5 + /* COND_EXEC */ 7 + /* PIPELINE_SYNC */ VI_FLUSH_GPU_TLB_NUM_WREG * 5 + 9 + /* VM_FLUSH */ 12 + /* FENCE for VM_FLUSH */ 20 + /* GDS switch */ 4 + /* double SWITCH_BUFFER, the first COND_EXEC jump to the place just prior to this double SWITCH_BUFFER */ 5 + /* COND_EXEC */ 7 + /* HDP_flush */ 4 + /* VGT_flush */ 14 + /* CE_META */ 31 + /* DE_META */ 3 + /* CNTX_CTRL */ 5 + /* HDP_INVL */ 12 + 12 + /* FENCE x2 */ 2 + /* SWITCH_BUFFER */ 5, /* SURFACE_SYNC */ .emit_ib_size = 4, /* gfx_v8_0_ring_emit_ib_gfx */ .emit_ib = gfx_v8_0_ring_emit_ib_gfx, .emit_fence = gfx_v8_0_ring_emit_fence_gfx, .emit_pipeline_sync = gfx_v8_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v8_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v8_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush, .test_ring = gfx_v8_0_ring_test_ring, .test_ib = gfx_v8_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_switch_buffer = gfx_v8_ring_emit_sb, .emit_cntxcntl = gfx_v8_ring_emit_cntxcntl, .init_cond_exec = gfx_v8_0_ring_emit_init_cond_exec, .emit_wreg = gfx_v8_0_ring_emit_wreg, .soft_recovery = gfx_v8_0_ring_soft_recovery, .emit_mem_sync = gfx_v8_0_emit_mem_sync, .reset = gfx_v8_0_reset_kgq, }; static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_compute = { .type = AMDGPU_RING_TYPE_COMPUTE, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = false, .get_rptr = gfx_v8_0_ring_get_rptr, .get_wptr = gfx_v8_0_ring_get_wptr_compute, .set_wptr = gfx_v8_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v8_0_ring_emit_gds_switch */ 7 + /* gfx_v8_0_ring_emit_hdp_flush */ 5 + /* hdp_invalidate */ 7 + /* gfx_v8_0_ring_emit_pipeline_sync */ VI_FLUSH_GPU_TLB_NUM_WREG * 5 + 7 + /* gfx_v8_0_ring_emit_vm_flush */ 7 + 7 + 7 + /* gfx_v8_0_ring_emit_fence_compute x3 for user fence, vm fence */ 7 + /* gfx_v8_0_emit_mem_sync_compute */ 5 + /* gfx_v8_0_emit_wave_limit for updating mmSPI_WCL_PIPE_PERCENT_GFX register */ 15, /* for updating 3 mmSPI_WCL_PIPE_PERCENT_CS registers */ .emit_ib_size = 7, /* gfx_v8_0_ring_emit_ib_compute */ .emit_ib = gfx_v8_0_ring_emit_ib_compute, .emit_fence = gfx_v8_0_ring_emit_fence_compute, .emit_pipeline_sync = gfx_v8_0_ring_emit_pipeline_sync, .emit_vm_flush = gfx_v8_0_ring_emit_vm_flush, .emit_gds_switch = gfx_v8_0_ring_emit_gds_switch, .emit_hdp_flush = gfx_v8_0_ring_emit_hdp_flush, .test_ring = gfx_v8_0_ring_test_ring, .test_ib = gfx_v8_0_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_wreg = gfx_v8_0_ring_emit_wreg, .soft_recovery = gfx_v8_0_ring_soft_recovery, .emit_mem_sync = gfx_v8_0_emit_mem_sync_compute, .emit_wave_limit = gfx_v8_0_emit_wave_limit, }; static const struct amdgpu_ring_funcs gfx_v8_0_ring_funcs_kiq = { .type = AMDGPU_RING_TYPE_KIQ, .align_mask = 0xff, .nop = PACKET3(PACKET3_NOP, 0x3FFF), .support_64bit_ptrs = false, .get_rptr = gfx_v8_0_ring_get_rptr, .get_wptr = gfx_v8_0_ring_get_wptr_compute, .set_wptr = gfx_v8_0_ring_set_wptr_compute, .emit_frame_size = 20 + /* gfx_v8_0_ring_emit_gds_switch */ 7 + /* gfx_v8_0_ring_emit_hdp_flush */ 5 + /* hdp_invalidate */ 7 + /* gfx_v8_0_ring_emit_pipeline_sync */ 17 + /* gfx_v8_0_ring_emit_vm_flush */ 7 + 7 + 7, /* gfx_v8_0_ring_emit_fence_kiq x3 for user fence, vm fence */ .emit_ib_size = 7, /* gfx_v8_0_ring_emit_ib_compute */ .emit_fence = gfx_v8_0_ring_emit_fence_kiq, .test_ring = gfx_v8_0_ring_test_ring, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .emit_rreg = gfx_v8_0_ring_emit_rreg, .emit_wreg = gfx_v8_0_ring_emit_wreg, }; static void gfx_v8_0_set_ring_funcs(struct amdgpu_device *adev) { int i; adev->gfx.kiq[0].ring.funcs = &gfx_v8_0_ring_funcs_kiq; for (i = 0; i < adev->gfx.num_gfx_rings; i++) adev->gfx.gfx_ring[i].funcs = &gfx_v8_0_ring_funcs_gfx; for (i = 0; i < adev->gfx.num_compute_rings; i++) adev->gfx.compute_ring[i].funcs = &gfx_v8_0_ring_funcs_compute; } static const struct amdgpu_irq_src_funcs gfx_v8_0_eop_irq_funcs = { .set = gfx_v8_0_set_eop_interrupt_state, .process = gfx_v8_0_eop_irq, }; static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_reg_irq_funcs = { .set = gfx_v8_0_set_priv_reg_fault_state, .process = gfx_v8_0_priv_reg_irq, }; static const struct amdgpu_irq_src_funcs gfx_v8_0_priv_inst_irq_funcs = { .set = gfx_v8_0_set_priv_inst_fault_state, .process = gfx_v8_0_priv_inst_irq, }; static const struct amdgpu_irq_src_funcs gfx_v8_0_cp_ecc_error_irq_funcs = { .set = gfx_v8_0_set_cp_ecc_int_state, .process = gfx_v8_0_cp_ecc_error_irq, }; static const struct amdgpu_irq_src_funcs gfx_v8_0_sq_irq_funcs = { .set = gfx_v8_0_set_sq_int_state, .process = gfx_v8_0_sq_irq, }; static void gfx_v8_0_set_irq_funcs(struct amdgpu_device *adev) { adev->gfx.eop_irq.num_types = AMDGPU_CP_IRQ_LAST; adev->gfx.eop_irq.funcs = &gfx_v8_0_eop_irq_funcs; adev->gfx.priv_reg_irq.num_types = 1; adev->gfx.priv_reg_irq.funcs = &gfx_v8_0_priv_reg_irq_funcs; adev->gfx.priv_inst_irq.num_types = 1; adev->gfx.priv_inst_irq.funcs = &gfx_v8_0_priv_inst_irq_funcs; adev->gfx.cp_ecc_error_irq.num_types = 1; adev->gfx.cp_ecc_error_irq.funcs = &gfx_v8_0_cp_ecc_error_irq_funcs; adev->gfx.sq_irq.num_types = 1; adev->gfx.sq_irq.funcs = &gfx_v8_0_sq_irq_funcs; } static void gfx_v8_0_set_rlc_funcs(struct amdgpu_device *adev) { adev->gfx.rlc.funcs = &iceland_rlc_funcs; } static void gfx_v8_0_set_gds_init(struct amdgpu_device *adev) { /* init asci gds info */ adev->gds.gds_size = RREG32(mmGDS_VMID0_SIZE); adev->gds.gws_size = 64; adev->gds.oa_size = 16; adev->gds.gds_compute_max_wave_id = RREG32(mmGDS_COMPUTE_MAX_WAVE_ID); } static void gfx_v8_0_set_user_cu_inactive_bitmap(struct amdgpu_device *adev, u32 bitmap) { u32 data; if (!bitmap) return; data = bitmap << GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS__SHIFT; data &= GC_USER_SHADER_ARRAY_CONFIG__INACTIVE_CUS_MASK; WREG32(mmGC_USER_SHADER_ARRAY_CONFIG, data); } static u32 gfx_v8_0_get_cu_active_bitmap(struct amdgpu_device *adev) { u32 data, mask; data = RREG32(mmCC_GC_SHADER_ARRAY_CONFIG) | RREG32(mmGC_USER_SHADER_ARRAY_CONFIG); mask = amdgpu_gfx_create_bitmask(adev->gfx.config.max_cu_per_sh); return ~REG_GET_FIELD(data, CC_GC_SHADER_ARRAY_CONFIG, INACTIVE_CUS) & mask; } static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev) { int i, j, k, counter, active_cu_number = 0; u32 mask, bitmap, ao_bitmap, ao_cu_mask = 0; struct amdgpu_cu_info *cu_info = &adev->gfx.cu_info; unsigned disable_masks[4 * 2]; u32 ao_cu_num; memset(cu_info, 0, sizeof(*cu_info)); if (adev->flags & AMD_IS_APU) ao_cu_num = 2; else ao_cu_num = adev->gfx.config.max_cu_per_sh; amdgpu_gfx_parse_disable_cu(disable_masks, 4, 2); mutex_lock(&adev->grbm_idx_mutex); for (i = 0; i < adev->gfx.config.max_shader_engines; i++) { for (j = 0; j < adev->gfx.config.max_sh_per_se; j++) { mask = 1; ao_bitmap = 0; counter = 0; gfx_v8_0_select_se_sh(adev, i, j, 0xffffffff, 0); if (i < 4 && j < 2) gfx_v8_0_set_user_cu_inactive_bitmap( adev, disable_masks[i * 2 + j]); bitmap = gfx_v8_0_get_cu_active_bitmap(adev); cu_info->bitmap[0][i][j] = bitmap; for (k = 0; k < adev->gfx.config.max_cu_per_sh; k ++) { if (bitmap & mask) { if (counter < ao_cu_num) ao_bitmap |= mask; counter ++; } mask <<= 1; } active_cu_number += counter; if (i < 2 && j < 2) ao_cu_mask |= (ao_bitmap << (i * 16 + j * 8)); cu_info->ao_cu_bitmap[i][j] = ao_bitmap; } } gfx_v8_0_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, 0); mutex_unlock(&adev->grbm_idx_mutex); cu_info->number = active_cu_number; cu_info->ao_cu_mask = ao_cu_mask; cu_info->simd_per_cu = NUM_SIMD_PER_CU; cu_info->max_waves_per_simd = 10; cu_info->max_scratch_slots_per_cu = 32; cu_info->wave_front_size = 64; cu_info->lds_size = 64; } const struct amdgpu_ip_block_version gfx_v8_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 8, .minor = 0, .rev = 0, .funcs = &gfx_v8_0_ip_funcs, }; const struct amdgpu_ip_block_version gfx_v8_1_ip_block = { .type = AMD_IP_BLOCK_TYPE_GFX, .major = 8, .minor = 1, .rev = 0, .funcs = &gfx_v8_0_ip_funcs, }; static void gfx_v8_0_ring_emit_ce_meta(struct amdgpu_ring *ring) { uint64_t ce_payload_addr; int cnt_ce; union { struct vi_ce_ib_state regular; struct vi_ce_ib_state_chained_ib chained; } ce_payload = {}; if (ring->adev->virt.chained_ib_support) { ce_payload_addr = amdgpu_csa_vaddr(ring->adev) + offsetof(struct vi_gfx_meta_data_chained_ib, ce_payload); cnt_ce = (sizeof(ce_payload.chained) >> 2) + 4 - 2; } else { ce_payload_addr = amdgpu_csa_vaddr(ring->adev) + offsetof(struct vi_gfx_meta_data, ce_payload); cnt_ce = (sizeof(ce_payload.regular) >> 2) + 4 - 2; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt_ce)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(2) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(ce_payload_addr)); amdgpu_ring_write(ring, upper_32_bits(ce_payload_addr)); amdgpu_ring_write_multiple(ring, (void *)&ce_payload, cnt_ce - 2); } static void gfx_v8_0_ring_emit_de_meta(struct amdgpu_ring *ring) { uint64_t de_payload_addr, gds_addr, csa_addr; int cnt_de; union { struct vi_de_ib_state regular; struct vi_de_ib_state_chained_ib chained; } de_payload = {}; csa_addr = amdgpu_csa_vaddr(ring->adev); gds_addr = csa_addr + 4096; if (ring->adev->virt.chained_ib_support) { de_payload.chained.gds_backup_addrlo = lower_32_bits(gds_addr); de_payload.chained.gds_backup_addrhi = upper_32_bits(gds_addr); de_payload_addr = csa_addr + offsetof(struct vi_gfx_meta_data_chained_ib, de_payload); cnt_de = (sizeof(de_payload.chained) >> 2) + 4 - 2; } else { de_payload.regular.gds_backup_addrlo = lower_32_bits(gds_addr); de_payload.regular.gds_backup_addrhi = upper_32_bits(gds_addr); de_payload_addr = csa_addr + offsetof(struct vi_gfx_meta_data, de_payload); cnt_de = (sizeof(de_payload.regular) >> 2) + 4 - 2; } amdgpu_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, cnt_de)); amdgpu_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(8) | WR_CONFIRM) | WRITE_DATA_CACHE_POLICY(0)); amdgpu_ring_write(ring, lower_32_bits(de_payload_addr)); amdgpu_ring_write(ring, upper_32_bits(de_payload_addr)); amdgpu_ring_write_multiple(ring, (void *)&de_payload, cnt_de - 2); }