/* * Copyright 2014 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_rlc.h" #include "amdgpu_ras.h" #include "amdgpu_reset.h" #include "amdgpu_xcp.h" #include "amdgpu_xgmi.h" /* delay 0.1 second to enable gfx off feature */ #define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100) #define GFX_OFF_NO_DELAY 0 /* * GPU GFX IP block helpers function. */ int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec, int pipe, int queue) { int bit = 0; bit += mec * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; bit += pipe * adev->gfx.mec.num_queue_per_pipe; bit += queue; return bit; } void amdgpu_queue_mask_bit_to_mec_queue(struct amdgpu_device *adev, int bit, int *mec, int *pipe, int *queue) { *queue = bit % adev->gfx.mec.num_queue_per_pipe; *pipe = (bit / adev->gfx.mec.num_queue_per_pipe) % adev->gfx.mec.num_pipe_per_mec; *mec = (bit / adev->gfx.mec.num_queue_per_pipe) / adev->gfx.mec.num_pipe_per_mec; } bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev, int xcc_id, int mec, int pipe, int queue) { return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue), adev->gfx.mec_bitmap[xcc_id].queue_bitmap); } int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev, int me, int pipe, int queue) { int bit = 0; bit += me * adev->gfx.me.num_pipe_per_me * adev->gfx.me.num_queue_per_pipe; bit += pipe * adev->gfx.me.num_queue_per_pipe; bit += queue; return bit; } void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit, int *me, int *pipe, int *queue) { *queue = bit % adev->gfx.me.num_queue_per_pipe; *pipe = (bit / adev->gfx.me.num_queue_per_pipe) % adev->gfx.me.num_pipe_per_me; *me = (bit / adev->gfx.me.num_queue_per_pipe) / adev->gfx.me.num_pipe_per_me; } bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev, int me, int pipe, int queue) { return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue), adev->gfx.me.queue_bitmap); } /** * amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter * * @mask: array in which the per-shader array disable masks will be stored * @max_se: number of SEs * @max_sh: number of SHs * * The bitmask of CUs to be disabled in the shader array determined by se and * sh is stored in mask[se * max_sh + sh]. */ void amdgpu_gfx_parse_disable_cu(unsigned int *mask, unsigned int max_se, unsigned int max_sh) { unsigned int se, sh, cu; const char *p; memset(mask, 0, sizeof(*mask) * max_se * max_sh); if (!amdgpu_disable_cu || !*amdgpu_disable_cu) return; p = amdgpu_disable_cu; for (;;) { char *next; int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu); if (ret < 3) { DRM_ERROR("amdgpu: could not parse disable_cu\n"); return; } if (se < max_se && sh < max_sh && cu < 16) { DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu); mask[se * max_sh + sh] |= 1u << cu; } else { DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n", se, sh, cu); } next = strchr(p, ','); if (!next) break; p = next + 1; } } static bool amdgpu_gfx_is_graphics_multipipe_capable(struct amdgpu_device *adev) { return amdgpu_async_gfx_ring && adev->gfx.me.num_pipe_per_me > 1; } static bool amdgpu_gfx_is_compute_multipipe_capable(struct amdgpu_device *adev) { if (amdgpu_compute_multipipe != -1) { DRM_INFO("amdgpu: forcing compute pipe policy %d\n", amdgpu_compute_multipipe); return amdgpu_compute_multipipe == 1; } if (amdgpu_ip_version(adev, GC_HWIP, 0) > IP_VERSION(9, 0, 0)) return true; /* FIXME: spreading the queues across pipes causes perf regressions * on POLARIS11 compute workloads */ if (adev->asic_type == CHIP_POLARIS11) return false; return adev->gfx.mec.num_mec > 1; } bool amdgpu_gfx_is_high_priority_graphics_queue(struct amdgpu_device *adev, struct amdgpu_ring *ring) { int queue = ring->queue; int pipe = ring->pipe; /* Policy: use pipe1 queue0 as high priority graphics queue if we * have more than one gfx pipe. */ if (amdgpu_gfx_is_graphics_multipipe_capable(adev) && adev->gfx.num_gfx_rings > 1 && pipe == 1 && queue == 0) { int me = ring->me; int bit; bit = amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue); if (ring == &adev->gfx.gfx_ring[bit]) return true; } return false; } bool amdgpu_gfx_is_high_priority_compute_queue(struct amdgpu_device *adev, struct amdgpu_ring *ring) { /* Policy: use 1st queue as high priority compute queue if we * have more than one compute queue. */ if (adev->gfx.num_compute_rings > 1 && ring == &adev->gfx.compute_ring[0]) return true; return false; } void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev) { int i, j, queue, pipe; bool multipipe_policy = amdgpu_gfx_is_compute_multipipe_capable(adev); int max_queues_per_mec = min(adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe, adev->gfx.num_compute_rings); int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; if (multipipe_policy) { /* policy: make queues evenly cross all pipes on MEC1 only * for multiple xcc, just use the original policy for simplicity */ for (j = 0; j < num_xcc; j++) { for (i = 0; i < max_queues_per_mec; i++) { pipe = i % adev->gfx.mec.num_pipe_per_mec; queue = (i / adev->gfx.mec.num_pipe_per_mec) % adev->gfx.mec.num_queue_per_pipe; set_bit(pipe * adev->gfx.mec.num_queue_per_pipe + queue, adev->gfx.mec_bitmap[j].queue_bitmap); } } } else { /* policy: amdgpu owns all queues in the given pipe */ for (j = 0; j < num_xcc; j++) { for (i = 0; i < max_queues_per_mec; ++i) set_bit(i, adev->gfx.mec_bitmap[j].queue_bitmap); } } for (j = 0; j < num_xcc; j++) { dev_dbg(adev->dev, "mec queue bitmap weight=%d\n", bitmap_weight(adev->gfx.mec_bitmap[j].queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES)); } } void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev) { int i, queue, pipe; bool multipipe_policy = amdgpu_gfx_is_graphics_multipipe_capable(adev); int max_queues_per_me = adev->gfx.me.num_pipe_per_me * adev->gfx.me.num_queue_per_pipe; if (multipipe_policy) { /* policy: amdgpu owns the first queue per pipe at this stage * will extend to mulitple queues per pipe later */ for (i = 0; i < max_queues_per_me; i++) { pipe = i % adev->gfx.me.num_pipe_per_me; queue = (i / adev->gfx.me.num_pipe_per_me) % adev->gfx.me.num_queue_per_pipe; set_bit(pipe * adev->gfx.me.num_queue_per_pipe + queue, adev->gfx.me.queue_bitmap); } } else { for (i = 0; i < max_queues_per_me; ++i) set_bit(i, adev->gfx.me.queue_bitmap); } /* update the number of active graphics rings */ adev->gfx.num_gfx_rings = bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES); } static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev, struct amdgpu_ring *ring, int xcc_id) { int queue_bit; int mec, pipe, queue; queue_bit = adev->gfx.mec.num_mec * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; while (--queue_bit >= 0) { if (test_bit(queue_bit, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) continue; amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); /* * 1. Using pipes 2/3 from MEC 2 seems cause problems. * 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN * only can be issued on queue 0. */ if ((mec == 1 && pipe > 1) || queue != 0) continue; ring->me = mec + 1; ring->pipe = pipe; ring->queue = queue; return 0; } dev_err(adev->dev, "Failed to find a queue for KIQ\n"); return -EINVAL; } int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_irq_src *irq = &kiq->irq; struct amdgpu_ring *ring = &kiq->ring; int r = 0; spin_lock_init(&kiq->ring_lock); ring->adev = NULL; ring->ring_obj = NULL; ring->use_doorbell = true; ring->xcc_id = xcc_id; ring->vm_hub = AMDGPU_GFXHUB(xcc_id); ring->doorbell_index = (adev->doorbell_index.kiq + xcc_id * adev->doorbell_index.xcc_doorbell_range) << 1; r = amdgpu_gfx_kiq_acquire(adev, ring, xcc_id); if (r) return r; ring->eop_gpu_addr = kiq->eop_gpu_addr; ring->no_scheduler = true; snprintf(ring->name, sizeof(ring->name), "kiq_%hhu.%hhu.%hhu.%hhu", (unsigned char)xcc_id, (unsigned char)ring->me, (unsigned char)ring->pipe, (unsigned char)ring->queue); r = amdgpu_ring_init(adev, ring, 1024, irq, AMDGPU_CP_KIQ_IRQ_DRIVER0, AMDGPU_RING_PRIO_DEFAULT, NULL); if (r) dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r); return r; } void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring) { amdgpu_ring_fini(ring); } void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL); } int amdgpu_gfx_kiq_init(struct amdgpu_device *adev, unsigned int hpd_size, int xcc_id) { int r; u32 *hpd; struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj, &kiq->eop_gpu_addr, (void **)&hpd); if (r) { dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r); return r; } memset(hpd, 0, hpd_size); r = amdgpu_bo_reserve(kiq->eop_obj, true); if (unlikely(r != 0)) dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r); amdgpu_bo_kunmap(kiq->eop_obj); amdgpu_bo_unreserve(kiq->eop_obj); return 0; } /* create MQD for each compute/gfx queue */ int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev, unsigned int mqd_size, int xcc_id) { int r, i, j; struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *ring = &kiq->ring; u32 domain = AMDGPU_GEM_DOMAIN_GTT; #if !defined(CONFIG_ARM) && !defined(CONFIG_ARM64) /* Only enable on gfx10 and 11 for now to avoid changing behavior on older chips */ if (amdgpu_ip_version(adev, GC_HWIP, 0) >= IP_VERSION(10, 0, 0)) domain |= AMDGPU_GEM_DOMAIN_VRAM; #endif /* create MQD for KIQ */ if (!adev->enable_mes_kiq && !ring->mqd_obj) { /* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must * otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD * deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for * KIQ MQD no matter SRIOV or Bare-metal */ r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r); return r; } /* prepare MQD backup */ kiq->mqd_backup = kmalloc(mqd_size, GFP_KERNEL); if (!kiq->mqd_backup) { dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); return -ENOMEM; } } if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { /* create MQD for each KGQ */ for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, domain, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); return r; } ring->mqd_size = mqd_size; /* prepare MQD backup */ adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL); if (!adev->gfx.me.mqd_backup[i]) { dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); return -ENOMEM; } } } } /* create MQD for each KCQ */ for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; ring = &adev->gfx.compute_ring[j]; if (!ring->mqd_obj) { r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE, domain, &ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); if (r) { dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r); return r; } ring->mqd_size = mqd_size; /* prepare MQD backup */ adev->gfx.mec.mqd_backup[j] = kmalloc(mqd_size, GFP_KERNEL); if (!adev->gfx.mec.mqd_backup[j]) { dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name); return -ENOMEM; } } } return 0; } void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_ring *ring = NULL; int i, j; struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) { ring = &adev->gfx.gfx_ring[i]; kfree(adev->gfx.me.mqd_backup[i]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } } for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; ring = &adev->gfx.compute_ring[j]; kfree(adev->gfx.mec.mqd_backup[j]); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } ring = &kiq->ring; kfree(kiq->mqd_backup); amdgpu_bo_free_kernel(&ring->mqd_obj, &ring->mqd_gpu_addr, &ring->mqd_ptr); } int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *kiq_ring = &kiq->ring; int i, r = 0; int j; if (adev->enable_mes) { for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; amdgpu_mes_unmap_legacy_queue(adev, &adev->gfx.compute_ring[j], RESET_QUEUES, 0, 0); } return 0; } if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; spin_lock(&kiq->ring_lock); if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * adev->gfx.num_compute_rings)) { spin_unlock(&kiq->ring_lock); return -ENOMEM; } for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[j], RESET_QUEUES, 0, 0); } /** * This is workaround: only skip kiq_ring test * during ras recovery in suspend stage for gfx9.4.3 */ if ((amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) || amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4)) && amdgpu_ras_in_recovery(adev)) { spin_unlock(&kiq->ring_lock); return 0; } if (kiq_ring->sched.ready && !adev->job_hang) r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); return r; } int amdgpu_gfx_disable_kgq(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *kiq_ring = &kiq->ring; int i, r = 0; int j; if (adev->enable_mes) { if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) { j = i + xcc_id * adev->gfx.num_gfx_rings; amdgpu_mes_unmap_legacy_queue(adev, &adev->gfx.gfx_ring[j], PREEMPT_QUEUES, 0, 0); } } return 0; } if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; spin_lock(&kiq->ring_lock); if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size * adev->gfx.num_gfx_rings)) { spin_unlock(&kiq->ring_lock); return -ENOMEM; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) { j = i + xcc_id * adev->gfx.num_gfx_rings; kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.gfx_ring[j], PREEMPT_QUEUES, 0, 0); } } if (adev->gfx.kiq[0].ring.sched.ready && !adev->job_hang) r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); return r; } int amdgpu_queue_mask_bit_to_set_resource_bit(struct amdgpu_device *adev, int queue_bit) { int mec, pipe, queue; int set_resource_bit = 0; amdgpu_queue_mask_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue); set_resource_bit = mec * 4 * 8 + pipe * 8 + queue; return set_resource_bit; } static int amdgpu_gfx_mes_enable_kcq(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *kiq_ring = &kiq->ring; uint64_t queue_mask = ~0ULL; int r, i, j; amdgpu_device_flush_hdp(adev, NULL); if (!adev->enable_uni_mes) { spin_lock(&kiq->ring_lock); r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->set_resources_size); if (r) { dev_err(adev->dev, "Failed to lock KIQ (%d).\n", r); spin_unlock(&kiq->ring_lock); return r; } kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); if (r) dev_err(adev->dev, "KIQ failed to set resources\n"); } for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; r = amdgpu_mes_map_legacy_queue(adev, &adev->gfx.compute_ring[j]); if (r) { dev_err(adev->dev, "failed to map compute queue\n"); return r; } } return 0; } int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *kiq_ring = &kiq->ring; uint64_t queue_mask = 0; int r, i, j; if (adev->mes.enable_legacy_queue_map) return amdgpu_gfx_mes_enable_kcq(adev, xcc_id); if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources) return -EINVAL; for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) { if (!test_bit(i, adev->gfx.mec_bitmap[xcc_id].queue_bitmap)) continue; /* This situation may be hit in the future if a new HW * generation exposes more than 64 queues. If so, the * definition of queue_mask needs updating */ if (WARN_ON(i > (sizeof(queue_mask)*8))) { DRM_ERROR("Invalid KCQ enabled: %d\n", i); break; } queue_mask |= (1ull << amdgpu_queue_mask_bit_to_set_resource_bit(adev, i)); } amdgpu_device_flush_hdp(adev, NULL); DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe, kiq_ring->queue); spin_lock(&kiq->ring_lock); r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * adev->gfx.num_compute_rings + kiq->pmf->set_resources_size); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); spin_unlock(&kiq->ring_lock); return r; } kiq->pmf->kiq_set_resources(kiq_ring, queue_mask); for (i = 0; i < adev->gfx.num_compute_rings; i++) { j = i + xcc_id * adev->gfx.num_compute_rings; kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[j]); } r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); if (r) DRM_ERROR("KCQ enable failed\n"); return r; } int amdgpu_gfx_enable_kgq(struct amdgpu_device *adev, int xcc_id) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *kiq_ring = &kiq->ring; int r, i, j; if (!kiq->pmf || !kiq->pmf->kiq_map_queues) return -EINVAL; amdgpu_device_flush_hdp(adev, NULL); if (adev->mes.enable_legacy_queue_map) { for (i = 0; i < adev->gfx.num_gfx_rings; i++) { j = i + xcc_id * adev->gfx.num_gfx_rings; r = amdgpu_mes_map_legacy_queue(adev, &adev->gfx.gfx_ring[j]); if (r) { DRM_ERROR("failed to map gfx queue\n"); return r; } } return 0; } spin_lock(&kiq->ring_lock); /* No need to map kcq on the slave */ if (amdgpu_gfx_is_master_xcc(adev, xcc_id)) { r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size * adev->gfx.num_gfx_rings); if (r) { DRM_ERROR("Failed to lock KIQ (%d).\n", r); spin_unlock(&kiq->ring_lock); return r; } for (i = 0; i < adev->gfx.num_gfx_rings; i++) { j = i + xcc_id * adev->gfx.num_gfx_rings; kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.gfx_ring[j]); } } r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); if (r) DRM_ERROR("KGQ enable failed\n"); return r; } /* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable * * @adev: amdgpu_device pointer * @bool enable true: enable gfx off feature, false: disable gfx off feature * * 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled. * 2. other client can send request to disable gfx off feature, the request should be honored. * 3. other client can cancel their request of disable gfx off feature * 4. other client should not send request to enable gfx off feature before disable gfx off feature. */ void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable) { unsigned long delay = GFX_OFF_DELAY_ENABLE; if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return; mutex_lock(&adev->gfx.gfx_off_mutex); if (enable) { /* If the count is already 0, it means there's an imbalance bug somewhere. * Note that the bug may be in a different caller than the one which triggers the * WARN_ON_ONCE. */ if (WARN_ON_ONCE(adev->gfx.gfx_off_req_count == 0)) goto unlock; adev->gfx.gfx_off_req_count--; if (adev->gfx.gfx_off_req_count == 0 && !adev->gfx.gfx_off_state) { /* If going to s2idle, no need to wait */ if (adev->in_s0ix) { if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, true)) adev->gfx.gfx_off_state = true; } else { schedule_delayed_work(&adev->gfx.gfx_off_delay_work, delay); } } } else { if (adev->gfx.gfx_off_req_count == 0) { cancel_delayed_work_sync(&adev->gfx.gfx_off_delay_work); if (adev->gfx.gfx_off_state && !amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false)) { adev->gfx.gfx_off_state = false; if (adev->gfx.funcs->init_spm_golden) { dev_dbg(adev->dev, "GFXOFF is disabled, re-init SPM golden settings\n"); amdgpu_gfx_init_spm_golden(adev); } } } adev->gfx.gfx_off_req_count++; } unlock: mutex_unlock(&adev->gfx.gfx_off_mutex); } int amdgpu_set_gfx_off_residency(struct amdgpu_device *adev, bool value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_set_residency_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_residency(struct amdgpu_device *adev, u32 *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_residency_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_entrycount(struct amdgpu_device *adev, u64 *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_entrycount_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_get_gfx_off_status(struct amdgpu_device *adev, uint32_t *value) { int r = 0; mutex_lock(&adev->gfx.gfx_off_mutex); r = amdgpu_dpm_get_status_gfxoff(adev, value); mutex_unlock(&adev->gfx.gfx_off_mutex); return r; } int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev, struct ras_common_if *ras_block) { int r; if (amdgpu_ras_is_supported(adev, ras_block->block)) { if (!amdgpu_persistent_edc_harvesting_supported(adev)) { r = amdgpu_ras_reset_error_status(adev, AMDGPU_RAS_BLOCK__GFX); if (r) return r; } r = amdgpu_ras_block_late_init(adev, ras_block); if (r) return r; if (adev->gfx.cp_ecc_error_irq.funcs) { r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0); if (r) goto late_fini; } } else { amdgpu_ras_feature_enable_on_boot(adev, ras_block, 0); } return 0; late_fini: amdgpu_ras_block_late_fini(adev, ras_block); return r; } int amdgpu_gfx_ras_sw_init(struct amdgpu_device *adev) { int err = 0; struct amdgpu_gfx_ras *ras = NULL; /* adev->gfx.ras is NULL, which means gfx does not * support ras function, then do nothing here. */ if (!adev->gfx.ras) return 0; ras = adev->gfx.ras; err = amdgpu_ras_register_ras_block(adev, &ras->ras_block); if (err) { dev_err(adev->dev, "Failed to register gfx ras block!\n"); return err; } strcpy(ras->ras_block.ras_comm.name, "gfx"); ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__GFX; ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE; adev->gfx.ras_if = &ras->ras_block.ras_comm; /* If not define special ras_late_init function, use gfx default ras_late_init */ if (!ras->ras_block.ras_late_init) ras->ras_block.ras_late_init = amdgpu_gfx_ras_late_init; /* If not defined special ras_cb function, use default ras_cb */ if (!ras->ras_block.ras_cb) ras->ras_block.ras_cb = amdgpu_gfx_process_ras_data_cb; return 0; } int amdgpu_gfx_poison_consumption_handler(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { if (adev->gfx.ras && adev->gfx.ras->poison_consumption_handler) return adev->gfx.ras->poison_consumption_handler(adev, entry); return 0; } int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev, void *err_data, struct amdgpu_iv_entry *entry) { /* TODO ue will trigger an interrupt. * * When “Full RAS” is enabled, the per-IP interrupt sources should * be disabled and the driver should only look for the aggregated * interrupt via sync flood */ if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) { kgd2kfd_set_sram_ecc_flag(adev->kfd.dev); if (adev->gfx.ras && adev->gfx.ras->ras_block.hw_ops && adev->gfx.ras->ras_block.hw_ops->query_ras_error_count) adev->gfx.ras->ras_block.hw_ops->query_ras_error_count(adev, err_data); amdgpu_ras_reset_gpu(adev); } return AMDGPU_RAS_SUCCESS; } int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct ras_common_if *ras_if = adev->gfx.ras_if; struct ras_dispatch_if ih_data = { .entry = entry, }; if (!ras_if) return 0; ih_data.head = *ras_if; DRM_ERROR("CP ECC ERROR IRQ\n"); amdgpu_ras_interrupt_dispatch(adev, &ih_data); return 0; } void amdgpu_gfx_ras_error_func(struct amdgpu_device *adev, void *ras_error_status, void (*func)(struct amdgpu_device *adev, void *ras_error_status, int xcc_id)) { int i; int num_xcc = adev->gfx.xcc_mask ? NUM_XCC(adev->gfx.xcc_mask) : 1; uint32_t xcc_mask = GENMASK(num_xcc - 1, 0); struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status; if (err_data) { err_data->ue_count = 0; err_data->ce_count = 0; } for_each_inst(i, xcc_mask) func(adev, ras_error_status, i); } uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg, uint32_t xcc_id) { signed long r, cnt = 0; unsigned long flags; uint32_t seq, reg_val_offs = 0, value = 0; struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *ring = &kiq->ring; if (amdgpu_device_skip_hw_access(adev)) return 0; if (adev->mes.ring[0].sched.ready) return amdgpu_mes_rreg(adev, reg); BUG_ON(!ring->funcs->emit_rreg); spin_lock_irqsave(&kiq->ring_lock, flags); if (amdgpu_device_wb_get(adev, ®_val_offs)) { pr_err("critical bug! too many kiq readers\n"); goto failed_unlock; } r = amdgpu_ring_alloc(ring, 32); if (r) goto failed_unlock; amdgpu_ring_emit_rreg(ring, reg, reg_val_offs); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) goto failed_undo; amdgpu_ring_commit(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); /* don't wait anymore for gpu reset case because this way may * block gpu_recover() routine forever, e.g. this virt_kiq_rreg * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will * never return if we keep waiting in virt_kiq_rreg, which cause * gpu_recover() hang there. * * also don't wait anymore for IRQ context * */ if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) goto failed_kiq_read; might_sleep(); while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); } if (cnt > MAX_KIQ_REG_TRY) goto failed_kiq_read; mb(); value = adev->wb.wb[reg_val_offs]; amdgpu_device_wb_free(adev, reg_val_offs); return value; failed_undo: amdgpu_ring_undo(ring); failed_unlock: spin_unlock_irqrestore(&kiq->ring_lock, flags); failed_kiq_read: if (reg_val_offs) amdgpu_device_wb_free(adev, reg_val_offs); dev_err(adev->dev, "failed to read reg:%x\n", reg); return ~0; } void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v, uint32_t xcc_id) { signed long r, cnt = 0; unsigned long flags; uint32_t seq; struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_id]; struct amdgpu_ring *ring = &kiq->ring; BUG_ON(!ring->funcs->emit_wreg); if (amdgpu_device_skip_hw_access(adev)) return; if (adev->mes.ring[0].sched.ready) { amdgpu_mes_wreg(adev, reg, v); return; } spin_lock_irqsave(&kiq->ring_lock, flags); r = amdgpu_ring_alloc(ring, 32); if (r) goto failed_unlock; amdgpu_ring_emit_wreg(ring, reg, v); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) goto failed_undo; amdgpu_ring_commit(ring); spin_unlock_irqrestore(&kiq->ring_lock, flags); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); /* don't wait anymore for gpu reset case because this way may * block gpu_recover() routine forever, e.g. this virt_kiq_rreg * is triggered in TTM and ttm_bo_lock_delayed_workqueue() will * never return if we keep waiting in virt_kiq_rreg, which cause * gpu_recover() hang there. * * also don't wait anymore for IRQ context * */ if (r < 1 && (amdgpu_in_reset(adev) || in_interrupt())) goto failed_kiq_write; might_sleep(); while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) { msleep(MAX_KIQ_REG_BAILOUT_INTERVAL); r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT); } if (cnt > MAX_KIQ_REG_TRY) goto failed_kiq_write; return; failed_undo: amdgpu_ring_undo(ring); failed_unlock: spin_unlock_irqrestore(&kiq->ring_lock, flags); failed_kiq_write: dev_err(adev->dev, "failed to write reg:%x\n", reg); } int amdgpu_gfx_get_num_kcq(struct amdgpu_device *adev) { if (amdgpu_num_kcq == -1) { return 8; } else if (amdgpu_num_kcq > 8 || amdgpu_num_kcq < 0) { dev_warn(adev->dev, "set kernel compute queue number to 8 due to invalid parameter provided by user\n"); return 8; } return amdgpu_num_kcq; } void amdgpu_gfx_cp_init_microcode(struct amdgpu_device *adev, uint32_t ucode_id) { const struct gfx_firmware_header_v1_0 *cp_hdr; const struct gfx_firmware_header_v2_0 *cp_hdr_v2_0; struct amdgpu_firmware_info *info = NULL; const struct firmware *ucode_fw; unsigned int fw_size; switch (ucode_id) { case AMDGPU_UCODE_ID_CP_PFP: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_PFP: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; adev->gfx.pfp_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.pfp_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_PFP_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_PFP_P1_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.pfp_fw->data; ucode_fw = adev->gfx.pfp_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; case AMDGPU_UCODE_ID_CP_ME: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_ME: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; adev->gfx.me_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.me_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_ME_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_ME_P1_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.me_fw->data; ucode_fw = adev->gfx.me_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; case AMDGPU_UCODE_ID_CP_CE: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.ce_fw->data; adev->gfx.ce_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.ce_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.ce_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_MEC1: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC1_JT: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec_fw->data; ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC2: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; adev->gfx.mec2_fw_version = le32_to_cpu(cp_hdr->header.ucode_version); adev->gfx.mec2_feature_version = le32_to_cpu(cp_hdr->ucode_feature_version); ucode_fw = adev->gfx.mec2_fw; fw_size = le32_to_cpu(cp_hdr->header.ucode_size_bytes) - le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_MEC2_JT: cp_hdr = (const struct gfx_firmware_header_v1_0 *) adev->gfx.mec2_fw->data; ucode_fw = adev->gfx.mec2_fw; fw_size = le32_to_cpu(cp_hdr->jt_size) * 4; break; case AMDGPU_UCODE_ID_CP_RS64_MEC: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; adev->gfx.mec_fw_version = le32_to_cpu(cp_hdr_v2_0->header.ucode_version); adev->gfx.mec_feature_version = le32_to_cpu(cp_hdr_v2_0->ucode_feature_version); ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->ucode_size_bytes); break; case AMDGPU_UCODE_ID_CP_RS64_MEC_P0_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P1_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P2_STACK: case AMDGPU_UCODE_ID_CP_RS64_MEC_P3_STACK: cp_hdr_v2_0 = (const struct gfx_firmware_header_v2_0 *) adev->gfx.mec_fw->data; ucode_fw = adev->gfx.mec_fw; fw_size = le32_to_cpu(cp_hdr_v2_0->data_size_bytes); break; default: dev_err(adev->dev, "Invalid ucode id %u\n", ucode_id); return; } if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { info = &adev->firmware.ucode[ucode_id]; info->ucode_id = ucode_id; info->fw = ucode_fw; adev->firmware.fw_size += ALIGN(fw_size, PAGE_SIZE); } } bool amdgpu_gfx_is_master_xcc(struct amdgpu_device *adev, int xcc_id) { return !(xcc_id % (adev->gfx.num_xcc_per_xcp ? adev->gfx.num_xcc_per_xcp : 1)); } static ssize_t amdgpu_gfx_get_current_compute_partition(struct device *dev, struct device_attribute *addr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int mode; mode = amdgpu_xcp_query_partition_mode(adev->xcp_mgr, AMDGPU_XCP_FL_NONE); return sysfs_emit(buf, "%s\n", amdgpu_gfx_compute_mode_desc(mode)); } static ssize_t amdgpu_gfx_set_compute_partition(struct device *dev, struct device_attribute *addr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amdgpu_gfx_partition mode; int ret = 0, num_xcc; num_xcc = NUM_XCC(adev->gfx.xcc_mask); if (num_xcc % 2 != 0) return -EINVAL; if (!strncasecmp("SPX", buf, strlen("SPX"))) { mode = AMDGPU_SPX_PARTITION_MODE; } else if (!strncasecmp("DPX", buf, strlen("DPX"))) { /* * DPX mode needs AIDs to be in multiple of 2. * Each AID connects 2 XCCs. */ if (num_xcc%4) return -EINVAL; mode = AMDGPU_DPX_PARTITION_MODE; } else if (!strncasecmp("TPX", buf, strlen("TPX"))) { if (num_xcc != 6) return -EINVAL; mode = AMDGPU_TPX_PARTITION_MODE; } else if (!strncasecmp("QPX", buf, strlen("QPX"))) { if (num_xcc != 8) return -EINVAL; mode = AMDGPU_QPX_PARTITION_MODE; } else if (!strncasecmp("CPX", buf, strlen("CPX"))) { mode = AMDGPU_CPX_PARTITION_MODE; } else { return -EINVAL; } ret = amdgpu_xcp_switch_partition_mode(adev->xcp_mgr, mode); if (ret) return ret; return count; } static ssize_t amdgpu_gfx_get_available_compute_partition(struct device *dev, struct device_attribute *addr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); char *supported_partition; /* TBD */ switch (NUM_XCC(adev->gfx.xcc_mask)) { case 8: supported_partition = "SPX, DPX, QPX, CPX"; break; case 6: supported_partition = "SPX, TPX, CPX"; break; case 4: supported_partition = "SPX, DPX, CPX"; break; /* this seems only existing in emulation phase */ case 2: supported_partition = "SPX, CPX"; break; default: supported_partition = "Not supported"; break; } return sysfs_emit(buf, "%s\n", supported_partition); } static int amdgpu_gfx_run_cleaner_shader_job(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; struct drm_gpu_scheduler *sched = &ring->sched; struct drm_sched_entity entity; struct dma_fence *f; struct amdgpu_job *job; struct amdgpu_ib *ib; int i, r; /* Initialize the scheduler entity */ r = drm_sched_entity_init(&entity, DRM_SCHED_PRIORITY_NORMAL, &sched, 1, NULL); if (r) { dev_err(adev->dev, "Failed setting up GFX kernel entity.\n"); goto err; } r = amdgpu_job_alloc_with_ib(ring->adev, &entity, NULL, 64, 0, &job); if (r) goto err; job->enforce_isolation = true; ib = &job->ibs[0]; for (i = 0; i <= ring->funcs->align_mask; ++i) ib->ptr[i] = ring->funcs->nop; ib->length_dw = ring->funcs->align_mask + 1; f = amdgpu_job_submit(job); r = dma_fence_wait(f, false); if (r) goto err; dma_fence_put(f); /* Clean up the scheduler entity */ drm_sched_entity_destroy(&entity); return 0; err: return r; } static int amdgpu_gfx_run_cleaner_shader(struct amdgpu_device *adev, int xcp_id) { int num_xcc = NUM_XCC(adev->gfx.xcc_mask); struct amdgpu_ring *ring; int num_xcc_to_clear; int i, r, xcc_id; if (adev->gfx.num_xcc_per_xcp) num_xcc_to_clear = adev->gfx.num_xcc_per_xcp; else num_xcc_to_clear = 1; for (xcc_id = 0; xcc_id < num_xcc; xcc_id++) { for (i = 0; i < adev->gfx.num_compute_rings; i++) { ring = &adev->gfx.compute_ring[i + xcc_id * adev->gfx.num_compute_rings]; if ((ring->xcp_id == xcp_id) && ring->sched.ready) { r = amdgpu_gfx_run_cleaner_shader_job(ring); if (r) return r; num_xcc_to_clear--; break; } } } if (num_xcc_to_clear) return -ENOENT; return 0; } static ssize_t amdgpu_gfx_set_run_cleaner_shader(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; if (value < 0) return -EINVAL; if (adev->xcp_mgr) { if (value >= adev->xcp_mgr->num_xcps) return -EINVAL; } else { if (value > 1) return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_gfx_run_cleaner_shader(adev, value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; return count; } static ssize_t amdgpu_gfx_get_enforce_isolation(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int i; ssize_t size = 0; if (adev->xcp_mgr) { for (i = 0; i < adev->xcp_mgr->num_xcps; i++) { size += sysfs_emit_at(buf, size, "%u", adev->enforce_isolation[i]); if (i < (adev->xcp_mgr->num_xcps - 1)) size += sysfs_emit_at(buf, size, " "); } buf[size++] = '\n'; } else { size = sysfs_emit_at(buf, 0, "%u\n", adev->enforce_isolation[0]); } return size; } static ssize_t amdgpu_gfx_set_enforce_isolation(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); long partition_values[MAX_XCP] = {0}; int ret, i, num_partitions; const char *input_buf = buf; for (i = 0; i < (adev->xcp_mgr ? adev->xcp_mgr->num_xcps : 1); i++) { ret = sscanf(input_buf, "%ld", &partition_values[i]); if (ret <= 0) break; /* Move the pointer to the next value in the string */ input_buf = strchr(input_buf, ' '); if (input_buf) { input_buf++; } else { i++; break; } } num_partitions = i; if (adev->xcp_mgr && num_partitions != adev->xcp_mgr->num_xcps) return -EINVAL; if (!adev->xcp_mgr && num_partitions != 1) return -EINVAL; for (i = 0; i < num_partitions; i++) { if (partition_values[i] != 0 && partition_values[i] != 1) return -EINVAL; } mutex_lock(&adev->enforce_isolation_mutex); for (i = 0; i < num_partitions; i++) { if (adev->enforce_isolation[i] && !partition_values[i]) { /* Going from enabled to disabled */ amdgpu_vmid_free_reserved(adev, AMDGPU_GFXHUB(i)); } else if (!adev->enforce_isolation[i] && partition_values[i]) { /* Going from disabled to enabled */ amdgpu_vmid_alloc_reserved(adev, AMDGPU_GFXHUB(i)); } adev->enforce_isolation[i] = partition_values[i]; } mutex_unlock(&adev->enforce_isolation_mutex); return count; } static DEVICE_ATTR(run_cleaner_shader, 0200, NULL, amdgpu_gfx_set_run_cleaner_shader); static DEVICE_ATTR(enforce_isolation, 0644, amdgpu_gfx_get_enforce_isolation, amdgpu_gfx_set_enforce_isolation); static DEVICE_ATTR(current_compute_partition, 0644, amdgpu_gfx_get_current_compute_partition, amdgpu_gfx_set_compute_partition); static DEVICE_ATTR(available_compute_partition, 0444, amdgpu_gfx_get_available_compute_partition, NULL); int amdgpu_gfx_sysfs_init(struct amdgpu_device *adev) { int r; r = device_create_file(adev->dev, &dev_attr_current_compute_partition); if (r) return r; r = device_create_file(adev->dev, &dev_attr_available_compute_partition); return r; } void amdgpu_gfx_sysfs_fini(struct amdgpu_device *adev) { device_remove_file(adev->dev, &dev_attr_current_compute_partition); device_remove_file(adev->dev, &dev_attr_available_compute_partition); } int amdgpu_gfx_sysfs_isolation_shader_init(struct amdgpu_device *adev) { int r; r = device_create_file(adev->dev, &dev_attr_enforce_isolation); if (r) return r; r = device_create_file(adev->dev, &dev_attr_run_cleaner_shader); if (r) return r; return 0; } void amdgpu_gfx_sysfs_isolation_shader_fini(struct amdgpu_device *adev) { device_remove_file(adev->dev, &dev_attr_enforce_isolation); device_remove_file(adev->dev, &dev_attr_run_cleaner_shader); } int amdgpu_gfx_cleaner_shader_sw_init(struct amdgpu_device *adev, unsigned int cleaner_shader_size) { if (!adev->gfx.enable_cleaner_shader) return -EOPNOTSUPP; return amdgpu_bo_create_kernel(adev, cleaner_shader_size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT, &adev->gfx.cleaner_shader_obj, &adev->gfx.cleaner_shader_gpu_addr, (void **)&adev->gfx.cleaner_shader_cpu_ptr); } void amdgpu_gfx_cleaner_shader_sw_fini(struct amdgpu_device *adev) { if (!adev->gfx.enable_cleaner_shader) return; amdgpu_bo_free_kernel(&adev->gfx.cleaner_shader_obj, &adev->gfx.cleaner_shader_gpu_addr, (void **)&adev->gfx.cleaner_shader_cpu_ptr); } void amdgpu_gfx_cleaner_shader_init(struct amdgpu_device *adev, unsigned int cleaner_shader_size, const void *cleaner_shader_ptr) { if (!adev->gfx.enable_cleaner_shader) return; if (adev->gfx.cleaner_shader_cpu_ptr && cleaner_shader_ptr) memcpy_toio(adev->gfx.cleaner_shader_cpu_ptr, cleaner_shader_ptr, cleaner_shader_size); } /** * amdgpu_gfx_kfd_sch_ctrl - Control the KFD scheduler from the KGD (Graphics Driver) * @adev: amdgpu_device pointer * @idx: Index of the scheduler to control * @enable: Whether to enable or disable the KFD scheduler * * This function is used to control the KFD (Kernel Fusion Driver) scheduler * from the KGD. It is part of the cleaner shader feature. This function plays * a key role in enforcing process isolation on the GPU. * * The function uses a reference count mechanism (kfd_sch_req_count) to keep * track of the number of requests to enable the KFD scheduler. When a request * to enable the KFD scheduler is made, the reference count is decremented. * When the reference count reaches zero, a delayed work is scheduled to * enforce isolation after a delay of GFX_SLICE_PERIOD. * * When a request to disable the KFD scheduler is made, the function first * checks if the reference count is zero. If it is, it cancels the delayed work * for enforcing isolation and checks if the KFD scheduler is active. If the * KFD scheduler is active, it sends a request to stop the KFD scheduler and * sets the KFD scheduler state to inactive. Then, it increments the reference * count. * * The function is synchronized using the kfd_sch_mutex to ensure that the KFD * scheduler state and reference count are updated atomically. * * Note: If the reference count is already zero when a request to enable the * KFD scheduler is made, it means there's an imbalance bug somewhere. The * function triggers a warning in this case. */ static void amdgpu_gfx_kfd_sch_ctrl(struct amdgpu_device *adev, u32 idx, bool enable) { mutex_lock(&adev->gfx.kfd_sch_mutex); if (enable) { /* If the count is already 0, it means there's an imbalance bug somewhere. * Note that the bug may be in a different caller than the one which triggers the * WARN_ON_ONCE. */ if (WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx] == 0)) { dev_err(adev->dev, "Attempted to enable KFD scheduler when reference count is already zero\n"); goto unlock; } adev->gfx.kfd_sch_req_count[idx]--; if (adev->gfx.kfd_sch_req_count[idx] == 0 && adev->gfx.kfd_sch_inactive[idx]) { schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, GFX_SLICE_PERIOD); } } else { if (adev->gfx.kfd_sch_req_count[idx] == 0) { cancel_delayed_work_sync(&adev->gfx.enforce_isolation[idx].work); if (!adev->gfx.kfd_sch_inactive[idx]) { amdgpu_amdkfd_stop_sched(adev, idx); adev->gfx.kfd_sch_inactive[idx] = true; } } adev->gfx.kfd_sch_req_count[idx]++; } unlock: mutex_unlock(&adev->gfx.kfd_sch_mutex); } /** * amdgpu_gfx_enforce_isolation_handler - work handler for enforcing shader isolation * * @work: work_struct. * * This function is the work handler for enforcing shader isolation on AMD GPUs. * It counts the number of emitted fences for each GFX and compute ring. If there * are any fences, it schedules the `enforce_isolation_work` to be run after a * delay of `GFX_SLICE_PERIOD`. If there are no fences, it signals the Kernel Fusion * Driver (KFD) to resume the runqueue. The function is synchronized using the * `enforce_isolation_mutex`. */ void amdgpu_gfx_enforce_isolation_handler(struct work_struct *work) { struct amdgpu_isolation_work *isolation_work = container_of(work, struct amdgpu_isolation_work, work.work); struct amdgpu_device *adev = isolation_work->adev; u32 i, idx, fences = 0; if (isolation_work->xcp_id == AMDGPU_XCP_NO_PARTITION) idx = 0; else idx = isolation_work->xcp_id; if (idx >= MAX_XCP) return; mutex_lock(&adev->enforce_isolation_mutex); for (i = 0; i < AMDGPU_MAX_GFX_RINGS; ++i) { if (isolation_work->xcp_id == adev->gfx.gfx_ring[i].xcp_id) fences += amdgpu_fence_count_emitted(&adev->gfx.gfx_ring[i]); } for (i = 0; i < (AMDGPU_MAX_COMPUTE_RINGS * AMDGPU_MAX_GC_INSTANCES); ++i) { if (isolation_work->xcp_id == adev->gfx.compute_ring[i].xcp_id) fences += amdgpu_fence_count_emitted(&adev->gfx.compute_ring[i]); } if (fences) { schedule_delayed_work(&adev->gfx.enforce_isolation[idx].work, GFX_SLICE_PERIOD); } else { /* Tell KFD to resume the runqueue */ if (adev->kfd.init_complete) { WARN_ON_ONCE(!adev->gfx.kfd_sch_inactive[idx]); WARN_ON_ONCE(adev->gfx.kfd_sch_req_count[idx]); amdgpu_amdkfd_start_sched(adev, idx); adev->gfx.kfd_sch_inactive[idx] = false; } } mutex_unlock(&adev->enforce_isolation_mutex); } void amdgpu_gfx_enforce_isolation_ring_begin_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 idx; if (!adev->gfx.enable_cleaner_shader) return; if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) idx = 0; else idx = ring->xcp_id; if (idx >= MAX_XCP) return; mutex_lock(&adev->enforce_isolation_mutex); if (adev->enforce_isolation[idx]) { if (adev->kfd.init_complete) amdgpu_gfx_kfd_sch_ctrl(adev, idx, false); } mutex_unlock(&adev->enforce_isolation_mutex); } void amdgpu_gfx_enforce_isolation_ring_end_use(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 idx; if (!adev->gfx.enable_cleaner_shader) return; if (ring->xcp_id == AMDGPU_XCP_NO_PARTITION) idx = 0; else idx = ring->xcp_id; if (idx >= MAX_XCP) return; mutex_lock(&adev->enforce_isolation_mutex); if (adev->enforce_isolation[idx]) { if (adev->kfd.init_complete) amdgpu_gfx_kfd_sch_ctrl(adev, idx, true); } mutex_unlock(&adev->enforce_isolation_mutex); }