// SPDX-License-Identifier: MIT /* * Copyright 2014-2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "amdgpu_object.h" #include "amdgpu_gem.h" #include "amdgpu_vm.h" #include "amdgpu_hmm.h" #include "amdgpu_amdkfd.h" #include "amdgpu_dma_buf.h" #include #include "amdgpu_xgmi.h" #include "kfd_priv.h" #include "kfd_smi_events.h" /* Userptr restore delay, just long enough to allow consecutive VM * changes to accumulate */ #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 #define AMDGPU_RESERVE_MEM_LIMIT (3UL << 29) /* * Align VRAM availability to 2MB to avoid fragmentation caused by 4K allocations in the tail 2MB * BO chunk */ #define VRAM_AVAILABLITY_ALIGN (1 << 21) /* Impose limit on how much memory KFD can use */ static struct { uint64_t max_system_mem_limit; uint64_t max_ttm_mem_limit; int64_t system_mem_used; int64_t ttm_mem_used; spinlock_t mem_limit_lock; } kfd_mem_limit; static const char * const domain_bit_to_string[] = { "CPU", "GTT", "VRAM", "GDS", "GWS", "OA" }; #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); static bool kfd_mem_is_attached(struct amdgpu_vm *avm, struct kgd_mem *mem) { struct kfd_mem_attachment *entry; list_for_each_entry(entry, &mem->attachments, list) if (entry->bo_va->base.vm == avm) return true; return false; } /** * reuse_dmamap() - Check whether adev can share the original * userptr BO * * If both adev and bo_adev are in direct mapping or * in the same iommu group, they can share the original BO. * * @adev: Device to which can or cannot share the original BO * @bo_adev: Device to which allocated BO belongs to * * Return: returns true if adev can share original userptr BO, * false otherwise. */ static bool reuse_dmamap(struct amdgpu_device *adev, struct amdgpu_device *bo_adev) { return (adev->ram_is_direct_mapped && bo_adev->ram_is_direct_mapped) || (adev->dev->iommu_group == bo_adev->dev->iommu_group); } /* Set memory usage limits. Current, limits are * System (TTM + userptr) memory - 15/16th System RAM * TTM memory - 3/8th System RAM */ void amdgpu_amdkfd_gpuvm_init_mem_limits(void) { struct sysinfo si; uint64_t mem; if (kfd_mem_limit.max_system_mem_limit) return; si_meminfo(&si); mem = si.totalram - si.totalhigh; mem *= si.mem_unit; spin_lock_init(&kfd_mem_limit.mem_limit_lock); kfd_mem_limit.max_system_mem_limit = mem - (mem >> 6); if (kfd_mem_limit.max_system_mem_limit < 2 * AMDGPU_RESERVE_MEM_LIMIT) kfd_mem_limit.max_system_mem_limit >>= 1; else kfd_mem_limit.max_system_mem_limit -= AMDGPU_RESERVE_MEM_LIMIT; kfd_mem_limit.max_ttm_mem_limit = ttm_tt_pages_limit() << PAGE_SHIFT; pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", (kfd_mem_limit.max_system_mem_limit >> 20), (kfd_mem_limit.max_ttm_mem_limit >> 20)); } void amdgpu_amdkfd_reserve_system_mem(uint64_t size) { kfd_mem_limit.system_mem_used += size; } /* Estimate page table size needed to represent a given memory size * * With 4KB pages, we need one 8 byte PTE for each 4KB of memory * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB * of memory (factor 256K, >> 18). ROCm user mode tries to optimize * for 2MB pages for TLB efficiency. However, small allocations and * fragmented system memory still need some 4KB pages. We choose a * compromise that should work in most cases without reserving too * much memory for page tables unnecessarily (factor 16K, >> 14). */ #define ESTIMATE_PT_SIZE(mem_size) max(((mem_size) >> 14), AMDGPU_VM_RESERVED_VRAM) /** * amdgpu_amdkfd_reserve_mem_limit() - Decrease available memory by size * of buffer. * * @adev: Device to which allocated BO belongs to * @size: Size of buffer, in bytes, encapsulated by B0. This should be * equivalent to amdgpu_bo_size(BO) * @alloc_flag: Flag used in allocating a BO as noted above * @xcp_id: xcp_id is used to get xcp from xcp manager, one xcp is * managed as one compute node in driver for app * * Return: * returns -ENOMEM in case of error, ZERO otherwise */ int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, uint64_t size, u32 alloc_flag, int8_t xcp_id) { uint64_t reserved_for_pt = ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); struct amdgpu_ras *con = amdgpu_ras_get_context(adev); uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); size_t system_mem_needed, ttm_mem_needed, vram_needed; int ret = 0; uint64_t vram_size = 0; system_mem_needed = 0; ttm_mem_needed = 0; vram_needed = 0; if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { system_mem_needed = size; ttm_mem_needed = size; } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { /* * Conservatively round up the allocation requirement to 2 MB * to avoid fragmentation caused by 4K allocations in the tail * 2M BO chunk. */ vram_needed = size; /* * For GFX 9.4.3, get the VRAM size from XCP structs */ if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) return -EINVAL; vram_size = KFD_XCP_MEMORY_SIZE(adev, xcp_id); if (adev->flags & AMD_IS_APU) { system_mem_needed = size; ttm_mem_needed = size; } } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { system_mem_needed = size; } else if (!(alloc_flag & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); return -ENOMEM; } spin_lock(&kfd_mem_limit.mem_limit_lock); if (kfd_mem_limit.system_mem_used + system_mem_needed > kfd_mem_limit.max_system_mem_limit) pr_debug("Set no_system_mem_limit=1 if using shared memory\n"); if ((kfd_mem_limit.system_mem_used + system_mem_needed > kfd_mem_limit.max_system_mem_limit && !no_system_mem_limit) || (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > kfd_mem_limit.max_ttm_mem_limit) || (adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] + vram_needed > vram_size - reserved_for_pt - reserved_for_ras - atomic64_read(&adev->vram_pin_size))) { ret = -ENOMEM; goto release; } /* Update memory accounting by decreasing available system * memory, TTM memory and GPU memory as computed above */ WARN_ONCE(vram_needed && !adev, "adev reference can't be null when vram is used"); if (adev && xcp_id >= 0) { adev->kfd.vram_used[xcp_id] += vram_needed; adev->kfd.vram_used_aligned[xcp_id] += (adev->flags & AMD_IS_APU) ? vram_needed : ALIGN(vram_needed, VRAM_AVAILABLITY_ALIGN); } kfd_mem_limit.system_mem_used += system_mem_needed; kfd_mem_limit.ttm_mem_used += ttm_mem_needed; release: spin_unlock(&kfd_mem_limit.mem_limit_lock); return ret; } void amdgpu_amdkfd_unreserve_mem_limit(struct amdgpu_device *adev, uint64_t size, u32 alloc_flag, int8_t xcp_id) { spin_lock(&kfd_mem_limit.mem_limit_lock); if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { kfd_mem_limit.system_mem_used -= size; kfd_mem_limit.ttm_mem_used -= size; } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { WARN_ONCE(!adev, "adev reference can't be null when alloc mem flags vram is set"); if (WARN_ONCE(xcp_id < 0, "invalid XCP ID %d", xcp_id)) goto release; if (adev) { adev->kfd.vram_used[xcp_id] -= size; if (adev->flags & AMD_IS_APU) { adev->kfd.vram_used_aligned[xcp_id] -= size; kfd_mem_limit.system_mem_used -= size; kfd_mem_limit.ttm_mem_used -= size; } else { adev->kfd.vram_used_aligned[xcp_id] -= ALIGN(size, VRAM_AVAILABLITY_ALIGN); } } } else if (alloc_flag & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { kfd_mem_limit.system_mem_used -= size; } else if (!(alloc_flag & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { pr_err("%s: Invalid BO type %#x\n", __func__, alloc_flag); goto release; } WARN_ONCE(adev && xcp_id >= 0 && adev->kfd.vram_used[xcp_id] < 0, "KFD VRAM memory accounting unbalanced for xcp: %d", xcp_id); WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, "KFD TTM memory accounting unbalanced"); WARN_ONCE(kfd_mem_limit.system_mem_used < 0, "KFD system memory accounting unbalanced"); release: spin_unlock(&kfd_mem_limit.mem_limit_lock); } void amdgpu_amdkfd_release_notify(struct amdgpu_bo *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); u32 alloc_flags = bo->kfd_bo->alloc_flags; u64 size = amdgpu_bo_size(bo); amdgpu_amdkfd_unreserve_mem_limit(adev, size, alloc_flags, bo->xcp_id); kfree(bo->kfd_bo); } /** * create_dmamap_sg_bo() - Creates a amdgpu_bo object to reflect information * about USERPTR or DOOREBELL or MMIO BO. * * @adev: Device for which dmamap BO is being created * @mem: BO of peer device that is being DMA mapped. Provides parameters * in building the dmamap BO * @bo_out: Output parameter updated with handle of dmamap BO */ static int create_dmamap_sg_bo(struct amdgpu_device *adev, struct kgd_mem *mem, struct amdgpu_bo **bo_out) { struct drm_gem_object *gem_obj; int ret; uint64_t flags = 0; ret = amdgpu_bo_reserve(mem->bo, false); if (ret) return ret; if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) flags |= mem->bo->flags & (AMDGPU_GEM_CREATE_COHERENT | AMDGPU_GEM_CREATE_UNCACHED); ret = amdgpu_gem_object_create(adev, mem->bo->tbo.base.size, 1, AMDGPU_GEM_DOMAIN_CPU, AMDGPU_GEM_CREATE_PREEMPTIBLE | flags, ttm_bo_type_sg, mem->bo->tbo.base.resv, &gem_obj, 0); amdgpu_bo_unreserve(mem->bo); if (ret) { pr_err("Error in creating DMA mappable SG BO on domain: %d\n", ret); return -EINVAL; } *bo_out = gem_to_amdgpu_bo(gem_obj); (*bo_out)->parent = amdgpu_bo_ref(mem->bo); return ret; } /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's * reservation object. * * @bo: [IN] Remove eviction fence(s) from this BO * @ef: [IN] This eviction fence is removed if it * is present in the shared list. * * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. */ static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, struct amdgpu_amdkfd_fence *ef) { struct dma_fence *replacement; if (!ef) return -EINVAL; /* TODO: Instead of block before we should use the fence of the page * table update and TLB flush here directly. */ replacement = dma_fence_get_stub(); dma_resv_replace_fences(bo->tbo.base.resv, ef->base.context, replacement, DMA_RESV_USAGE_BOOKKEEP); dma_fence_put(replacement); return 0; } int amdgpu_amdkfd_remove_fence_on_pt_pd_bos(struct amdgpu_bo *bo) { struct amdgpu_bo *root = bo; struct amdgpu_vm_bo_base *vm_bo; struct amdgpu_vm *vm; struct amdkfd_process_info *info; struct amdgpu_amdkfd_fence *ef; int ret; /* we can always get vm_bo from root PD bo.*/ while (root->parent) root = root->parent; vm_bo = root->vm_bo; if (!vm_bo) return 0; vm = vm_bo->vm; if (!vm) return 0; info = vm->process_info; if (!info || !info->eviction_fence) return 0; ef = container_of(dma_fence_get(&info->eviction_fence->base), struct amdgpu_amdkfd_fence, base); BUG_ON(!dma_resv_trylock(bo->tbo.base.resv)); ret = amdgpu_amdkfd_remove_eviction_fence(bo, ef); dma_resv_unlock(bo->tbo.base.resv); dma_fence_put(&ef->base); return ret; } static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, bool wait) { struct ttm_operation_ctx ctx = { false, false }; int ret; if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), "Called with userptr BO")) return -EINVAL; /* bo has been pinned, not need validate it */ if (bo->tbo.pin_count) return 0; amdgpu_bo_placement_from_domain(bo, domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) goto validate_fail; if (wait) amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); validate_fail: return ret; } int amdgpu_amdkfd_bo_validate_and_fence(struct amdgpu_bo *bo, uint32_t domain, struct dma_fence *fence) { int ret = amdgpu_bo_reserve(bo, false); if (ret) return ret; ret = amdgpu_amdkfd_bo_validate(bo, domain, true); if (ret) goto unreserve_out; ret = dma_resv_reserve_fences(bo->tbo.base.resv, 1); if (ret) goto unreserve_out; dma_resv_add_fence(bo->tbo.base.resv, fence, DMA_RESV_USAGE_BOOKKEEP); unreserve_out: amdgpu_bo_unreserve(bo); return ret; } static int amdgpu_amdkfd_validate_vm_bo(void *_unused, struct amdgpu_bo *bo) { return amdgpu_amdkfd_bo_validate(bo, bo->allowed_domains, false); } /* vm_validate_pt_pd_bos - Validate page table and directory BOs * * Page directories are not updated here because huge page handling * during page table updates can invalidate page directory entries * again. Page directories are only updated after updating page * tables. */ static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket) { struct amdgpu_bo *pd = vm->root.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); int ret; ret = amdgpu_vm_validate(adev, vm, ticket, amdgpu_amdkfd_validate_vm_bo, NULL); if (ret) { pr_err("failed to validate PT BOs\n"); return ret; } vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.bo); return 0; } static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) { struct amdgpu_bo *pd = vm->root.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); int ret; ret = amdgpu_vm_update_pdes(adev, vm, false); if (ret) return ret; return amdgpu_sync_fence(sync, vm->last_update); } static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) { uint32_t mapping_flags = AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_MTYPE_DEFAULT; if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE) mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; if (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE) mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; return amdgpu_gem_va_map_flags(adev, mapping_flags); } /** * create_sg_table() - Create an sg_table for a contiguous DMA addr range * @addr: The starting address to point to * @size: Size of memory area in bytes being pointed to * * Allocates an instance of sg_table and initializes it to point to memory * area specified by input parameters. The address used to build is assumed * to be DMA mapped, if needed. * * DOORBELL or MMIO BOs use only one scatterlist node in their sg_table * because they are physically contiguous. * * Return: Initialized instance of SG Table or NULL */ static struct sg_table *create_sg_table(uint64_t addr, uint32_t size) { struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); if (!sg) return NULL; if (sg_alloc_table(sg, 1, GFP_KERNEL)) { kfree(sg); return NULL; } sg_dma_address(sg->sgl) = addr; sg->sgl->length = size; #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->sgl->dma_length = size; #endif return sg; } static int kfd_mem_dmamap_userptr(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { enum dma_data_direction direction = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; struct ttm_operation_ctx ctx = {.interruptible = true}; struct amdgpu_bo *bo = attachment->bo_va->base.bo; struct amdgpu_device *adev = attachment->adev; struct ttm_tt *src_ttm = mem->bo->tbo.ttm; struct ttm_tt *ttm = bo->tbo.ttm; int ret; if (WARN_ON(ttm->num_pages != src_ttm->num_pages)) return -EINVAL; ttm->sg = kmalloc(sizeof(*ttm->sg), GFP_KERNEL); if (unlikely(!ttm->sg)) return -ENOMEM; /* Same sequence as in amdgpu_ttm_tt_pin_userptr */ ret = sg_alloc_table_from_pages(ttm->sg, src_ttm->pages, ttm->num_pages, 0, (u64)ttm->num_pages << PAGE_SHIFT, GFP_KERNEL); if (unlikely(ret)) goto free_sg; ret = dma_map_sgtable(adev->dev, ttm->sg, direction, 0); if (unlikely(ret)) goto release_sg; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) goto unmap_sg; return 0; unmap_sg: dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); release_sg: pr_err("DMA map userptr failed: %d\n", ret); sg_free_table(ttm->sg); free_sg: kfree(ttm->sg); ttm->sg = NULL; return ret; } static int kfd_mem_dmamap_dmabuf(struct kfd_mem_attachment *attachment) { struct ttm_operation_ctx ctx = {.interruptible = true}; struct amdgpu_bo *bo = attachment->bo_va->base.bo; int ret; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) return ret; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); } /** * kfd_mem_dmamap_sg_bo() - Create DMA mapped sg_table to access DOORBELL or MMIO BO * @mem: SG BO of the DOORBELL or MMIO resource on the owning device * @attachment: Virtual address attachment of the BO on accessing device * * An access request from the device that owns DOORBELL does not require DMA mapping. * This is because the request doesn't go through PCIe root complex i.e. it instead * loops back. The need to DMA map arises only when accessing peer device's DOORBELL * * In contrast, all access requests for MMIO need to be DMA mapped without regard to * device ownership. This is because access requests for MMIO go through PCIe root * complex. * * This is accomplished in two steps: * - Obtain DMA mapped address of DOORBELL or MMIO memory that could be used * in updating requesting device's page table * - Signal TTM to mark memory pointed to by requesting device's BO as GPU * accessible. This allows an update of requesting device's page table * with entries associated with DOOREBELL or MMIO memory * * This method is invoked in the following contexts: * - Mapping of DOORBELL or MMIO BO of same or peer device * - Validating an evicted DOOREBELL or MMIO BO on device seeking access * * Return: ZERO if successful, NON-ZERO otherwise */ static int kfd_mem_dmamap_sg_bo(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { struct ttm_operation_ctx ctx = {.interruptible = true}; struct amdgpu_bo *bo = attachment->bo_va->base.bo; struct amdgpu_device *adev = attachment->adev; struct ttm_tt *ttm = bo->tbo.ttm; enum dma_data_direction dir; dma_addr_t dma_addr; bool mmio; int ret; /* Expect SG Table of dmapmap BO to be NULL */ mmio = (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP); if (unlikely(ttm->sg)) { pr_err("SG Table of %d BO for peer device is UNEXPECTEDLY NON-NULL", mmio); return -EINVAL; } dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; dma_addr = mem->bo->tbo.sg->sgl->dma_address; pr_debug("%d BO size: %d\n", mmio, mem->bo->tbo.sg->sgl->length); pr_debug("%d BO address before DMA mapping: %llx\n", mmio, dma_addr); dma_addr = dma_map_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); ret = dma_mapping_error(adev->dev, dma_addr); if (unlikely(ret)) return ret; pr_debug("%d BO address after DMA mapping: %llx\n", mmio, dma_addr); ttm->sg = create_sg_table(dma_addr, mem->bo->tbo.sg->sgl->length); if (unlikely(!ttm->sg)) { ret = -ENOMEM; goto unmap_sg; } amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (unlikely(ret)) goto free_sg; return ret; free_sg: sg_free_table(ttm->sg); kfree(ttm->sg); ttm->sg = NULL; unmap_sg: dma_unmap_resource(adev->dev, dma_addr, mem->bo->tbo.sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); return ret; } static int kfd_mem_dmamap_attachment(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { switch (attachment->type) { case KFD_MEM_ATT_SHARED: return 0; case KFD_MEM_ATT_USERPTR: return kfd_mem_dmamap_userptr(mem, attachment); case KFD_MEM_ATT_DMABUF: return kfd_mem_dmamap_dmabuf(attachment); case KFD_MEM_ATT_SG: return kfd_mem_dmamap_sg_bo(mem, attachment); default: WARN_ON_ONCE(1); } return -EINVAL; } static void kfd_mem_dmaunmap_userptr(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { enum dma_data_direction direction = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; struct ttm_operation_ctx ctx = {.interruptible = false}; struct amdgpu_bo *bo = attachment->bo_va->base.bo; struct amdgpu_device *adev = attachment->adev; struct ttm_tt *ttm = bo->tbo.ttm; if (unlikely(!ttm->sg)) return; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0); sg_free_table(ttm->sg); kfree(ttm->sg); ttm->sg = NULL; } static void kfd_mem_dmaunmap_dmabuf(struct kfd_mem_attachment *attachment) { /* This is a no-op. We don't want to trigger eviction fences when * unmapping DMABufs. Therefore the invalidation (moving to system * domain) is done in kfd_mem_dmamap_dmabuf. */ } /** * kfd_mem_dmaunmap_sg_bo() - Free DMA mapped sg_table of DOORBELL or MMIO BO * @mem: SG BO of the DOORBELL or MMIO resource on the owning device * @attachment: Virtual address attachment of the BO on accessing device * * The method performs following steps: * - Signal TTM to mark memory pointed to by BO as GPU inaccessible * - Free SG Table that is used to encapsulate DMA mapped memory of * peer device's DOORBELL or MMIO memory * * This method is invoked in the following contexts: * UNMapping of DOORBELL or MMIO BO on a device having access to its memory * Eviction of DOOREBELL or MMIO BO on device having access to its memory * * Return: void */ static void kfd_mem_dmaunmap_sg_bo(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { struct ttm_operation_ctx ctx = {.interruptible = true}; struct amdgpu_bo *bo = attachment->bo_va->base.bo; struct amdgpu_device *adev = attachment->adev; struct ttm_tt *ttm = bo->tbo.ttm; enum dma_data_direction dir; if (unlikely(!ttm->sg)) { pr_debug("SG Table of BO is NULL"); return; } amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); dir = mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE; dma_unmap_resource(adev->dev, ttm->sg->sgl->dma_address, ttm->sg->sgl->length, dir, DMA_ATTR_SKIP_CPU_SYNC); sg_free_table(ttm->sg); kfree(ttm->sg); ttm->sg = NULL; bo->tbo.sg = NULL; } static void kfd_mem_dmaunmap_attachment(struct kgd_mem *mem, struct kfd_mem_attachment *attachment) { switch (attachment->type) { case KFD_MEM_ATT_SHARED: break; case KFD_MEM_ATT_USERPTR: kfd_mem_dmaunmap_userptr(mem, attachment); break; case KFD_MEM_ATT_DMABUF: kfd_mem_dmaunmap_dmabuf(attachment); break; case KFD_MEM_ATT_SG: kfd_mem_dmaunmap_sg_bo(mem, attachment); break; default: WARN_ON_ONCE(1); } } static int kfd_mem_export_dmabuf(struct kgd_mem *mem) { if (!mem->dmabuf) { struct amdgpu_device *bo_adev; struct dma_buf *dmabuf; bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); dmabuf = drm_gem_prime_handle_to_dmabuf(&bo_adev->ddev, bo_adev->kfd.client.file, mem->gem_handle, mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0); if (IS_ERR(dmabuf)) return PTR_ERR(dmabuf); mem->dmabuf = dmabuf; } return 0; } static int kfd_mem_attach_dmabuf(struct amdgpu_device *adev, struct kgd_mem *mem, struct amdgpu_bo **bo) { struct drm_gem_object *gobj; int ret; ret = kfd_mem_export_dmabuf(mem); if (ret) return ret; gobj = amdgpu_gem_prime_import(adev_to_drm(adev), mem->dmabuf); if (IS_ERR(gobj)) return PTR_ERR(gobj); *bo = gem_to_amdgpu_bo(gobj); (*bo)->flags |= AMDGPU_GEM_CREATE_PREEMPTIBLE; return 0; } /* kfd_mem_attach - Add a BO to a VM * * Everything that needs to bo done only once when a BO is first added * to a VM. It can later be mapped and unmapped many times without * repeating these steps. * * 0. Create BO for DMA mapping, if needed * 1. Allocate and initialize BO VA entry data structure * 2. Add BO to the VM * 3. Determine ASIC-specific PTE flags * 4. Alloc page tables and directories if needed * 4a. Validate new page tables and directories */ static int kfd_mem_attach(struct amdgpu_device *adev, struct kgd_mem *mem, struct amdgpu_vm *vm, bool is_aql) { struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); unsigned long bo_size = mem->bo->tbo.base.size; uint64_t va = mem->va; struct kfd_mem_attachment *attachment[2] = {NULL, NULL}; struct amdgpu_bo *bo[2] = {NULL, NULL}; struct amdgpu_bo_va *bo_va; bool same_hive = false; int i, ret; if (!va) { pr_err("Invalid VA when adding BO to VM\n"); return -EINVAL; } /* Determine access to VRAM, MMIO and DOORBELL BOs of peer devices * * The access path of MMIO and DOORBELL BOs of is always over PCIe. * In contrast the access path of VRAM BOs depens upon the type of * link that connects the peer device. Access over PCIe is allowed * if peer device has large BAR. In contrast, access over xGMI is * allowed for both small and large BAR configurations of peer device */ if ((adev != bo_adev && !(adev->flags & AMD_IS_APU)) && ((mem->domain == AMDGPU_GEM_DOMAIN_VRAM) || (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) || (mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP))) { if (mem->domain == AMDGPU_GEM_DOMAIN_VRAM) same_hive = amdgpu_xgmi_same_hive(adev, bo_adev); if (!same_hive && !amdgpu_device_is_peer_accessible(bo_adev, adev)) return -EINVAL; } for (i = 0; i <= is_aql; i++) { attachment[i] = kzalloc(sizeof(*attachment[i]), GFP_KERNEL); if (unlikely(!attachment[i])) { ret = -ENOMEM; goto unwind; } pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, va + bo_size, vm); if ((adev == bo_adev && !(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) || (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && reuse_dmamap(adev, bo_adev)) || (mem->domain == AMDGPU_GEM_DOMAIN_GTT && reuse_dmamap(adev, bo_adev)) || same_hive) { /* Mappings on the local GPU, or VRAM mappings in the * local hive, or userptr, or GTT mapping can reuse dma map * address space share the original BO */ attachment[i]->type = KFD_MEM_ATT_SHARED; bo[i] = mem->bo; drm_gem_object_get(&bo[i]->tbo.base); } else if (i > 0) { /* Multiple mappings on the same GPU share the BO */ attachment[i]->type = KFD_MEM_ATT_SHARED; bo[i] = bo[0]; drm_gem_object_get(&bo[i]->tbo.base); } else if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { /* Create an SG BO to DMA-map userptrs on other GPUs */ attachment[i]->type = KFD_MEM_ATT_USERPTR; ret = create_dmamap_sg_bo(adev, mem, &bo[i]); if (ret) goto unwind; /* Handle DOORBELL BOs of peer devices and MMIO BOs of local and peer devices */ } else if (mem->bo->tbo.type == ttm_bo_type_sg) { WARN_ONCE(!(mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL || mem->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP), "Handing invalid SG BO in ATTACH request"); attachment[i]->type = KFD_MEM_ATT_SG; ret = create_dmamap_sg_bo(adev, mem, &bo[i]); if (ret) goto unwind; /* Enable acces to GTT and VRAM BOs of peer devices */ } else if (mem->domain == AMDGPU_GEM_DOMAIN_GTT || mem->domain == AMDGPU_GEM_DOMAIN_VRAM) { attachment[i]->type = KFD_MEM_ATT_DMABUF; ret = kfd_mem_attach_dmabuf(adev, mem, &bo[i]); if (ret) goto unwind; pr_debug("Employ DMABUF mechanism to enable peer GPU access\n"); } else { WARN_ONCE(true, "Handling invalid ATTACH request"); ret = -EINVAL; goto unwind; } /* Add BO to VM internal data structures */ ret = amdgpu_bo_reserve(bo[i], false); if (ret) { pr_debug("Unable to reserve BO during memory attach"); goto unwind; } bo_va = amdgpu_vm_bo_find(vm, bo[i]); if (!bo_va) bo_va = amdgpu_vm_bo_add(adev, vm, bo[i]); else ++bo_va->ref_count; attachment[i]->bo_va = bo_va; amdgpu_bo_unreserve(bo[i]); if (unlikely(!attachment[i]->bo_va)) { ret = -ENOMEM; pr_err("Failed to add BO object to VM. ret == %d\n", ret); goto unwind; } attachment[i]->va = va; attachment[i]->pte_flags = get_pte_flags(adev, mem); attachment[i]->adev = adev; list_add(&attachment[i]->list, &mem->attachments); va += bo_size; } return 0; unwind: for (; i >= 0; i--) { if (!attachment[i]) continue; if (attachment[i]->bo_va) { amdgpu_bo_reserve(bo[i], true); if (--attachment[i]->bo_va->ref_count == 0) amdgpu_vm_bo_del(adev, attachment[i]->bo_va); amdgpu_bo_unreserve(bo[i]); list_del(&attachment[i]->list); } if (bo[i]) drm_gem_object_put(&bo[i]->tbo.base); kfree(attachment[i]); } return ret; } static void kfd_mem_detach(struct kfd_mem_attachment *attachment) { struct amdgpu_bo *bo = attachment->bo_va->base.bo; pr_debug("\t remove VA 0x%llx in entry %p\n", attachment->va, attachment); if (--attachment->bo_va->ref_count == 0) amdgpu_vm_bo_del(attachment->adev, attachment->bo_va); drm_gem_object_put(&bo->tbo.base); list_del(&attachment->list); kfree(attachment); } static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, struct amdkfd_process_info *process_info, bool userptr) { mutex_lock(&process_info->lock); if (userptr) list_add_tail(&mem->validate_list, &process_info->userptr_valid_list); else list_add_tail(&mem->validate_list, &process_info->kfd_bo_list); mutex_unlock(&process_info->lock); } static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, struct amdkfd_process_info *process_info) { mutex_lock(&process_info->lock); list_del(&mem->validate_list); mutex_unlock(&process_info->lock); } /* Initializes user pages. It registers the MMU notifier and validates * the userptr BO in the GTT domain. * * The BO must already be on the userptr_valid_list. Otherwise an * eviction and restore may happen that leaves the new BO unmapped * with the user mode queues running. * * Takes the process_info->lock to protect against concurrent restore * workers. * * Returns 0 for success, negative errno for errors. */ static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr, bool criu_resume) { struct amdkfd_process_info *process_info = mem->process_info; struct amdgpu_bo *bo = mem->bo; struct ttm_operation_ctx ctx = { true, false }; struct hmm_range *range; int ret = 0; mutex_lock(&process_info->lock); ret = amdgpu_ttm_tt_set_userptr(&bo->tbo, user_addr, 0); if (ret) { pr_err("%s: Failed to set userptr: %d\n", __func__, ret); goto out; } ret = amdgpu_hmm_register(bo, user_addr); if (ret) { pr_err("%s: Failed to register MMU notifier: %d\n", __func__, ret); goto out; } if (criu_resume) { /* * During a CRIU restore operation, the userptr buffer objects * will be validated in the restore_userptr_work worker at a * later stage when it is scheduled by another ioctl called by * CRIU master process for the target pid for restore. */ mutex_lock(&process_info->notifier_lock); mem->invalid++; mutex_unlock(&process_info->notifier_lock); mutex_unlock(&process_info->lock); return 0; } ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &range); if (ret) { if (ret == -EAGAIN) pr_debug("Failed to get user pages, try again\n"); else pr_err("%s: Failed to get user pages: %d\n", __func__, ret); goto unregister_out; } ret = amdgpu_bo_reserve(bo, true); if (ret) { pr_err("%s: Failed to reserve BO\n", __func__); goto release_out; } amdgpu_bo_placement_from_domain(bo, mem->domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) pr_err("%s: failed to validate BO\n", __func__); amdgpu_bo_unreserve(bo); release_out: amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm, range); unregister_out: if (ret) amdgpu_hmm_unregister(bo); out: mutex_unlock(&process_info->lock); return ret; } /* Reserving a BO and its page table BOs must happen atomically to * avoid deadlocks. Some operations update multiple VMs at once. Track * all the reservation info in a context structure. Optionally a sync * object can track VM updates. */ struct bo_vm_reservation_context { /* DRM execution context for the reservation */ struct drm_exec exec; /* Number of VMs reserved */ unsigned int n_vms; /* Pointer to sync object */ struct amdgpu_sync *sync; }; enum bo_vm_match { BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ BO_VM_MAPPED, /* Match VMs where a BO is mapped */ BO_VM_ALL, /* Match all VMs a BO was added to */ }; /** * reserve_bo_and_vm - reserve a BO and a VM unconditionally. * @mem: KFD BO structure. * @vm: the VM to reserve. * @ctx: the struct that will be used in unreserve_bo_and_vms(). */ static int reserve_bo_and_vm(struct kgd_mem *mem, struct amdgpu_vm *vm, struct bo_vm_reservation_context *ctx) { struct amdgpu_bo *bo = mem->bo; int ret; WARN_ON(!vm); ctx->n_vms = 1; ctx->sync = &mem->sync; drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); drm_exec_until_all_locked(&ctx->exec) { ret = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); drm_exec_retry_on_contention(&ctx->exec); if (unlikely(ret)) goto error; ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); drm_exec_retry_on_contention(&ctx->exec); if (unlikely(ret)) goto error; } return 0; error: pr_err("Failed to reserve buffers in ttm.\n"); drm_exec_fini(&ctx->exec); return ret; } /** * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally * @mem: KFD BO structure. * @vm: the VM to reserve. If NULL, then all VMs associated with the BO * is used. Otherwise, a single VM associated with the BO. * @map_type: the mapping status that will be used to filter the VMs. * @ctx: the struct that will be used in unreserve_bo_and_vms(). * * Returns 0 for success, negative for failure. */ static int reserve_bo_and_cond_vms(struct kgd_mem *mem, struct amdgpu_vm *vm, enum bo_vm_match map_type, struct bo_vm_reservation_context *ctx) { struct kfd_mem_attachment *entry; struct amdgpu_bo *bo = mem->bo; int ret; ctx->sync = &mem->sync; drm_exec_init(&ctx->exec, DRM_EXEC_INTERRUPTIBLE_WAIT | DRM_EXEC_IGNORE_DUPLICATES, 0); drm_exec_until_all_locked(&ctx->exec) { ctx->n_vms = 0; list_for_each_entry(entry, &mem->attachments, list) { if ((vm && vm != entry->bo_va->base.vm) || (entry->is_mapped != map_type && map_type != BO_VM_ALL)) continue; ret = amdgpu_vm_lock_pd(entry->bo_va->base.vm, &ctx->exec, 2); drm_exec_retry_on_contention(&ctx->exec); if (unlikely(ret)) goto error; ++ctx->n_vms; } ret = drm_exec_prepare_obj(&ctx->exec, &bo->tbo.base, 1); drm_exec_retry_on_contention(&ctx->exec); if (unlikely(ret)) goto error; } return 0; error: pr_err("Failed to reserve buffers in ttm.\n"); drm_exec_fini(&ctx->exec); return ret; } /** * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context * @ctx: Reservation context to unreserve * @wait: Optionally wait for a sync object representing pending VM updates * @intr: Whether the wait is interruptible * * Also frees any resources allocated in * reserve_bo_and_(cond_)vm(s). Returns the status from * amdgpu_sync_wait. */ static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, bool wait, bool intr) { int ret = 0; if (wait) ret = amdgpu_sync_wait(ctx->sync, intr); drm_exec_fini(&ctx->exec); ctx->sync = NULL; return ret; } static int unmap_bo_from_gpuvm(struct kgd_mem *mem, struct kfd_mem_attachment *entry, struct amdgpu_sync *sync) { struct amdgpu_bo_va *bo_va = entry->bo_va; struct amdgpu_device *adev = entry->adev; struct amdgpu_vm *vm = bo_va->base.vm; if (bo_va->queue_refcount) { pr_debug("bo_va->queue_refcount %d\n", bo_va->queue_refcount); return -EBUSY; } amdgpu_vm_bo_unmap(adev, bo_va, entry->va); amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); amdgpu_sync_fence(sync, bo_va->last_pt_update); return 0; } static int update_gpuvm_pte(struct kgd_mem *mem, struct kfd_mem_attachment *entry, struct amdgpu_sync *sync) { struct amdgpu_bo_va *bo_va = entry->bo_va; struct amdgpu_device *adev = entry->adev; int ret; ret = kfd_mem_dmamap_attachment(mem, entry); if (ret) return ret; /* Update the page tables */ ret = amdgpu_vm_bo_update(adev, bo_va, false); if (ret) { pr_err("amdgpu_vm_bo_update failed\n"); return ret; } return amdgpu_sync_fence(sync, bo_va->last_pt_update); } static int map_bo_to_gpuvm(struct kgd_mem *mem, struct kfd_mem_attachment *entry, struct amdgpu_sync *sync, bool no_update_pte) { int ret; /* Set virtual address for the allocation */ ret = amdgpu_vm_bo_map(entry->adev, entry->bo_va, entry->va, 0, amdgpu_bo_size(entry->bo_va->base.bo), entry->pte_flags); if (ret) { pr_err("Failed to map VA 0x%llx in vm. ret %d\n", entry->va, ret); return ret; } if (no_update_pte) return 0; ret = update_gpuvm_pte(mem, entry, sync); if (ret) { pr_err("update_gpuvm_pte() failed\n"); goto update_gpuvm_pte_failed; } return 0; update_gpuvm_pte_failed: unmap_bo_from_gpuvm(mem, entry, sync); kfd_mem_dmaunmap_attachment(mem, entry); return ret; } static int process_validate_vms(struct amdkfd_process_info *process_info, struct ww_acquire_ctx *ticket) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = vm_validate_pt_pd_bos(peer_vm, ticket); if (ret) return ret; } return 0; } static int process_sync_pds_resv(struct amdkfd_process_info *process_info, struct amdgpu_sync *sync) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { struct amdgpu_bo *pd = peer_vm->root.bo; ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, AMDGPU_SYNC_NE_OWNER, AMDGPU_FENCE_OWNER_KFD); if (ret) return ret; } return 0; } static int process_update_pds(struct amdkfd_process_info *process_info, struct amdgpu_sync *sync) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = vm_update_pds(peer_vm, sync); if (ret) return ret; } return 0; } static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, struct dma_fence **ef) { struct amdkfd_process_info *info = NULL; int ret; if (!*process_info) { info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; mutex_init(&info->lock); mutex_init(&info->notifier_lock); INIT_LIST_HEAD(&info->vm_list_head); INIT_LIST_HEAD(&info->kfd_bo_list); INIT_LIST_HEAD(&info->userptr_valid_list); INIT_LIST_HEAD(&info->userptr_inval_list); info->eviction_fence = amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), current->mm, NULL); if (!info->eviction_fence) { pr_err("Failed to create eviction fence\n"); ret = -ENOMEM; goto create_evict_fence_fail; } info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); INIT_DELAYED_WORK(&info->restore_userptr_work, amdgpu_amdkfd_restore_userptr_worker); *process_info = info; } vm->process_info = *process_info; /* Validate page directory and attach eviction fence */ ret = amdgpu_bo_reserve(vm->root.bo, true); if (ret) goto reserve_pd_fail; ret = vm_validate_pt_pd_bos(vm, NULL); if (ret) { pr_err("validate_pt_pd_bos() failed\n"); goto validate_pd_fail; } ret = amdgpu_bo_sync_wait(vm->root.bo, AMDGPU_FENCE_OWNER_KFD, false); if (ret) goto wait_pd_fail; ret = dma_resv_reserve_fences(vm->root.bo->tbo.base.resv, 1); if (ret) goto reserve_shared_fail; dma_resv_add_fence(vm->root.bo->tbo.base.resv, &vm->process_info->eviction_fence->base, DMA_RESV_USAGE_BOOKKEEP); amdgpu_bo_unreserve(vm->root.bo); /* Update process info */ mutex_lock(&vm->process_info->lock); list_add_tail(&vm->vm_list_node, &(vm->process_info->vm_list_head)); vm->process_info->n_vms++; if (ef) *ef = dma_fence_get(&vm->process_info->eviction_fence->base); mutex_unlock(&vm->process_info->lock); return 0; reserve_shared_fail: wait_pd_fail: validate_pd_fail: amdgpu_bo_unreserve(vm->root.bo); reserve_pd_fail: vm->process_info = NULL; if (info) { dma_fence_put(&info->eviction_fence->base); *process_info = NULL; put_pid(info->pid); create_evict_fence_fail: mutex_destroy(&info->lock); mutex_destroy(&info->notifier_lock); kfree(info); } return ret; } /** * amdgpu_amdkfd_gpuvm_pin_bo() - Pins a BO using following criteria * @bo: Handle of buffer object being pinned * @domain: Domain into which BO should be pinned * * - USERPTR BOs are UNPINNABLE and will return error * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their * PIN count incremented. It is valid to PIN a BO multiple times * * Return: ZERO if successful in pinning, Non-Zero in case of error. */ static int amdgpu_amdkfd_gpuvm_pin_bo(struct amdgpu_bo *bo, u32 domain) { int ret = 0; ret = amdgpu_bo_reserve(bo, false); if (unlikely(ret)) return ret; if (bo->flags & AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS) { /* * If bo is not contiguous on VRAM, move to system memory first to ensure * we can get contiguous VRAM space after evicting other BOs. */ if (!(bo->tbo.resource->placement & TTM_PL_FLAG_CONTIGUOUS)) { struct ttm_operation_ctx ctx = { true, false }; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_GTT); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (unlikely(ret)) { pr_debug("validate bo 0x%p to GTT failed %d\n", &bo->tbo, ret); goto out; } } } ret = amdgpu_bo_pin(bo, domain); if (ret) pr_err("Error in Pinning BO to domain: %d\n", domain); amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); out: amdgpu_bo_unreserve(bo); return ret; } /** * amdgpu_amdkfd_gpuvm_unpin_bo() - Unpins BO using following criteria * @bo: Handle of buffer object being unpinned * * - Is a illegal request for USERPTR BOs and is ignored * - All other BO types (GTT, VRAM, MMIO and DOORBELL) will have their * PIN count decremented. Calls to UNPIN must balance calls to PIN */ static void amdgpu_amdkfd_gpuvm_unpin_bo(struct amdgpu_bo *bo) { int ret = 0; ret = amdgpu_bo_reserve(bo, false); if (unlikely(ret)) return; amdgpu_bo_unpin(bo); amdgpu_bo_unreserve(bo); } int amdgpu_amdkfd_gpuvm_set_vm_pasid(struct amdgpu_device *adev, struct amdgpu_vm *avm, u32 pasid) { int ret; /* Free the original amdgpu allocated pasid, * will be replaced with kfd allocated pasid. */ if (avm->pasid) { amdgpu_pasid_free(avm->pasid); amdgpu_vm_set_pasid(adev, avm, 0); } ret = amdgpu_vm_set_pasid(adev, avm, pasid); if (ret) return ret; return 0; } int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct amdgpu_device *adev, struct amdgpu_vm *avm, void **process_info, struct dma_fence **ef) { int ret; /* Already a compute VM? */ if (avm->process_info) return -EINVAL; /* Convert VM into a compute VM */ ret = amdgpu_vm_make_compute(adev, avm); if (ret) return ret; /* Initialize KFD part of the VM and process info */ ret = init_kfd_vm(avm, process_info, ef); if (ret) return ret; amdgpu_vm_set_task_info(avm); return 0; } void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdkfd_process_info *process_info = vm->process_info; if (!process_info) return; /* Update process info */ mutex_lock(&process_info->lock); process_info->n_vms--; list_del(&vm->vm_list_node); mutex_unlock(&process_info->lock); vm->process_info = NULL; /* Release per-process resources when last compute VM is destroyed */ if (!process_info->n_vms) { WARN_ON(!list_empty(&process_info->kfd_bo_list)); WARN_ON(!list_empty(&process_info->userptr_valid_list)); WARN_ON(!list_empty(&process_info->userptr_inval_list)); dma_fence_put(&process_info->eviction_fence->base); cancel_delayed_work_sync(&process_info->restore_userptr_work); put_pid(process_info->pid); mutex_destroy(&process_info->lock); mutex_destroy(&process_info->notifier_lock); kfree(process_info); } } void amdgpu_amdkfd_gpuvm_release_process_vm(struct amdgpu_device *adev, void *drm_priv) { struct amdgpu_vm *avm; if (WARN_ON(!adev || !drm_priv)) return; avm = drm_priv_to_vm(drm_priv); pr_debug("Releasing process vm %p\n", avm); /* The original pasid of amdgpu vm has already been * released during making a amdgpu vm to a compute vm * The current pasid is managed by kfd and will be * released on kfd process destroy. Set amdgpu pasid * to 0 to avoid duplicate release. */ amdgpu_vm_release_compute(adev, avm); } uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *drm_priv) { struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); struct amdgpu_bo *pd = avm->root.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); if (adev->asic_type < CHIP_VEGA10) return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; return avm->pd_phys_addr; } void amdgpu_amdkfd_block_mmu_notifications(void *p) { struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; mutex_lock(&pinfo->lock); WRITE_ONCE(pinfo->block_mmu_notifications, true); mutex_unlock(&pinfo->lock); } int amdgpu_amdkfd_criu_resume(void *p) { int ret = 0; struct amdkfd_process_info *pinfo = (struct amdkfd_process_info *)p; mutex_lock(&pinfo->lock); pr_debug("scheduling work\n"); mutex_lock(&pinfo->notifier_lock); pinfo->evicted_bos++; mutex_unlock(&pinfo->notifier_lock); if (!READ_ONCE(pinfo->block_mmu_notifications)) { ret = -EINVAL; goto out_unlock; } WRITE_ONCE(pinfo->block_mmu_notifications, false); queue_delayed_work(system_freezable_wq, &pinfo->restore_userptr_work, 0); out_unlock: mutex_unlock(&pinfo->lock); return ret; } size_t amdgpu_amdkfd_get_available_memory(struct amdgpu_device *adev, uint8_t xcp_id) { uint64_t reserved_for_pt = ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); struct amdgpu_ras *con = amdgpu_ras_get_context(adev); uint64_t reserved_for_ras = (con ? con->reserved_pages_in_bytes : 0); ssize_t available; uint64_t vram_available, system_mem_available, ttm_mem_available; spin_lock(&kfd_mem_limit.mem_limit_lock); vram_available = KFD_XCP_MEMORY_SIZE(adev, xcp_id) - adev->kfd.vram_used_aligned[xcp_id] - atomic64_read(&adev->vram_pin_size) - reserved_for_pt - reserved_for_ras; if (adev->flags & AMD_IS_APU) { system_mem_available = no_system_mem_limit ? kfd_mem_limit.max_system_mem_limit : kfd_mem_limit.max_system_mem_limit - kfd_mem_limit.system_mem_used; ttm_mem_available = kfd_mem_limit.max_ttm_mem_limit - kfd_mem_limit.ttm_mem_used; available = min3(system_mem_available, ttm_mem_available, vram_available); available = ALIGN_DOWN(available, PAGE_SIZE); } else { available = ALIGN_DOWN(vram_available, VRAM_AVAILABLITY_ALIGN); } spin_unlock(&kfd_mem_limit.mem_limit_lock); if (available < 0) available = 0; return available; } int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( struct amdgpu_device *adev, uint64_t va, uint64_t size, void *drm_priv, struct kgd_mem **mem, uint64_t *offset, uint32_t flags, bool criu_resume) { struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); struct amdgpu_fpriv *fpriv = container_of(avm, struct amdgpu_fpriv, vm); enum ttm_bo_type bo_type = ttm_bo_type_device; struct sg_table *sg = NULL; uint64_t user_addr = 0; struct amdgpu_bo *bo; struct drm_gem_object *gobj = NULL; u32 domain, alloc_domain; uint64_t aligned_size; int8_t xcp_id = -1; u64 alloc_flags; int ret; /* * Check on which domain to allocate BO */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) { domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; if (adev->flags & AMD_IS_APU) { domain = AMDGPU_GEM_DOMAIN_GTT; alloc_domain = AMDGPU_GEM_DOMAIN_GTT; alloc_flags = 0; } else { alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; alloc_flags |= (flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) ? AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : 0; /* For contiguous VRAM allocation */ if (flags & KFD_IOC_ALLOC_MEM_FLAGS_CONTIGUOUS) alloc_flags |= AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; } xcp_id = fpriv->xcp_id == AMDGPU_XCP_NO_PARTITION ? 0 : fpriv->xcp_id; } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) { domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; alloc_flags = 0; } else { domain = AMDGPU_GEM_DOMAIN_GTT; alloc_domain = AMDGPU_GEM_DOMAIN_CPU; alloc_flags = AMDGPU_GEM_CREATE_PREEMPTIBLE; if (flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) { if (!offset || !*offset) return -EINVAL; user_addr = untagged_addr(*offset); } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { bo_type = ttm_bo_type_sg; if (size > UINT_MAX) return -EINVAL; sg = create_sg_table(*offset, size); if (!sg) return -ENOMEM; } else { return -EINVAL; } } if (flags & KFD_IOC_ALLOC_MEM_FLAGS_COHERENT) alloc_flags |= AMDGPU_GEM_CREATE_COHERENT; if (flags & KFD_IOC_ALLOC_MEM_FLAGS_EXT_COHERENT) alloc_flags |= AMDGPU_GEM_CREATE_EXT_COHERENT; if (flags & KFD_IOC_ALLOC_MEM_FLAGS_UNCACHED) alloc_flags |= AMDGPU_GEM_CREATE_UNCACHED; *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) { ret = -ENOMEM; goto err; } INIT_LIST_HEAD(&(*mem)->attachments); mutex_init(&(*mem)->lock); (*mem)->aql_queue = !!(flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); /* Workaround for AQL queue wraparound bug. Map the same * memory twice. That means we only actually allocate half * the memory. */ if ((*mem)->aql_queue) size >>= 1; aligned_size = PAGE_ALIGN(size); (*mem)->alloc_flags = flags; amdgpu_sync_create(&(*mem)->sync); ret = amdgpu_amdkfd_reserve_mem_limit(adev, aligned_size, flags, xcp_id); if (ret) { pr_debug("Insufficient memory\n"); goto err_reserve_limit; } pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s xcp_id %d\n", va, (*mem)->aql_queue ? size << 1 : size, domain_string(alloc_domain), xcp_id); ret = amdgpu_gem_object_create(adev, aligned_size, 1, alloc_domain, alloc_flags, bo_type, NULL, &gobj, xcp_id + 1); if (ret) { pr_debug("Failed to create BO on domain %s. ret %d\n", domain_string(alloc_domain), ret); goto err_bo_create; } ret = drm_vma_node_allow(&gobj->vma_node, drm_priv); if (ret) { pr_debug("Failed to allow vma node access. ret %d\n", ret); goto err_node_allow; } ret = drm_gem_handle_create(adev->kfd.client.file, gobj, &(*mem)->gem_handle); if (ret) goto err_gem_handle_create; bo = gem_to_amdgpu_bo(gobj); if (bo_type == ttm_bo_type_sg) { bo->tbo.sg = sg; bo->tbo.ttm->sg = sg; } bo->kfd_bo = *mem; (*mem)->bo = bo; if (user_addr) bo->flags |= AMDGPU_AMDKFD_CREATE_USERPTR_BO; (*mem)->va = va; (*mem)->domain = domain; (*mem)->mapped_to_gpu_memory = 0; (*mem)->process_info = avm->process_info; add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); if (user_addr) { pr_debug("creating userptr BO for user_addr = %llx\n", user_addr); ret = init_user_pages(*mem, user_addr, criu_resume); if (ret) goto allocate_init_user_pages_failed; } else if (flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { ret = amdgpu_amdkfd_gpuvm_pin_bo(bo, AMDGPU_GEM_DOMAIN_GTT); if (ret) { pr_err("Pinning MMIO/DOORBELL BO during ALLOC FAILED\n"); goto err_pin_bo; } bo->allowed_domains = AMDGPU_GEM_DOMAIN_GTT; bo->preferred_domains = AMDGPU_GEM_DOMAIN_GTT; } else { mutex_lock(&avm->process_info->lock); if (avm->process_info->eviction_fence && !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) ret = amdgpu_amdkfd_bo_validate_and_fence(bo, domain, &avm->process_info->eviction_fence->base); mutex_unlock(&avm->process_info->lock); if (ret) goto err_validate_bo; } if (offset) *offset = amdgpu_bo_mmap_offset(bo); return 0; allocate_init_user_pages_failed: err_pin_bo: err_validate_bo: remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); drm_gem_handle_delete(adev->kfd.client.file, (*mem)->gem_handle); err_gem_handle_create: drm_vma_node_revoke(&gobj->vma_node, drm_priv); err_node_allow: /* Don't unreserve system mem limit twice */ goto err_reserve_limit; err_bo_create: amdgpu_amdkfd_unreserve_mem_limit(adev, aligned_size, flags, xcp_id); err_reserve_limit: amdgpu_sync_free(&(*mem)->sync); mutex_destroy(&(*mem)->lock); if (gobj) drm_gem_object_put(gobj); else kfree(*mem); err: if (sg) { sg_free_table(sg); kfree(sg); } return ret; } int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv, uint64_t *size) { struct amdkfd_process_info *process_info = mem->process_info; unsigned long bo_size = mem->bo->tbo.base.size; bool use_release_notifier = (mem->bo->kfd_bo == mem); struct kfd_mem_attachment *entry, *tmp; struct bo_vm_reservation_context ctx; unsigned int mapped_to_gpu_memory; int ret; bool is_imported = false; mutex_lock(&mem->lock); /* Unpin MMIO/DOORBELL BO's that were pinned during allocation */ if (mem->alloc_flags & (KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL | KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)) { amdgpu_amdkfd_gpuvm_unpin_bo(mem->bo); } mapped_to_gpu_memory = mem->mapped_to_gpu_memory; is_imported = mem->is_imported; mutex_unlock(&mem->lock); /* lock is not needed after this, since mem is unused and will * be freed anyway */ if (mapped_to_gpu_memory > 0) { pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", mem->va, bo_size); return -EBUSY; } /* Make sure restore workers don't access the BO any more */ mutex_lock(&process_info->lock); list_del(&mem->validate_list); mutex_unlock(&process_info->lock); /* Cleanup user pages and MMU notifiers */ if (amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm)) { amdgpu_hmm_unregister(mem->bo); mutex_lock(&process_info->notifier_lock); amdgpu_ttm_tt_discard_user_pages(mem->bo->tbo.ttm, mem->range); mutex_unlock(&process_info->notifier_lock); } ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); if (unlikely(ret)) return ret; amdgpu_amdkfd_remove_eviction_fence(mem->bo, process_info->eviction_fence); pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue)); /* Remove from VM internal data structures */ list_for_each_entry_safe(entry, tmp, &mem->attachments, list) { kfd_mem_dmaunmap_attachment(mem, entry); kfd_mem_detach(entry); } ret = unreserve_bo_and_vms(&ctx, false, false); /* Free the sync object */ amdgpu_sync_free(&mem->sync); /* If the SG is not NULL, it's one we created for a doorbell or mmio * remap BO. We need to free it. */ if (mem->bo->tbo.sg) { sg_free_table(mem->bo->tbo.sg); kfree(mem->bo->tbo.sg); } /* Update the size of the BO being freed if it was allocated from * VRAM and is not imported. For APP APU VRAM allocations are done * in GTT domain */ if (size) { if (!is_imported && (mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_VRAM || ((adev->flags & AMD_IS_APU) && mem->bo->preferred_domains == AMDGPU_GEM_DOMAIN_GTT))) *size = bo_size; else *size = 0; } /* Free the BO*/ drm_vma_node_revoke(&mem->bo->tbo.base.vma_node, drm_priv); drm_gem_handle_delete(adev->kfd.client.file, mem->gem_handle); if (mem->dmabuf) { dma_buf_put(mem->dmabuf); mem->dmabuf = NULL; } mutex_destroy(&mem->lock); /* If this releases the last reference, it will end up calling * amdgpu_amdkfd_release_notify and kfree the mem struct. That's why * this needs to be the last call here. */ drm_gem_object_put(&mem->bo->tbo.base); /* * For kgd_mem allocated in amdgpu_amdkfd_gpuvm_import_dmabuf(), * explicitly free it here. */ if (!use_release_notifier) kfree(mem); return ret; } int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) { struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); int ret; struct amdgpu_bo *bo; uint32_t domain; struct kfd_mem_attachment *entry; struct bo_vm_reservation_context ctx; unsigned long bo_size; bool is_invalid_userptr = false; bo = mem->bo; if (!bo) { pr_err("Invalid BO when mapping memory to GPU\n"); return -EINVAL; } /* Make sure restore is not running concurrently. Since we * don't map invalid userptr BOs, we rely on the next restore * worker to do the mapping */ mutex_lock(&mem->process_info->lock); /* Lock notifier lock. If we find an invalid userptr BO, we can be * sure that the MMU notifier is no longer running * concurrently and the queues are actually stopped */ if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { mutex_lock(&mem->process_info->notifier_lock); is_invalid_userptr = !!mem->invalid; mutex_unlock(&mem->process_info->notifier_lock); } mutex_lock(&mem->lock); domain = mem->domain; bo_size = bo->tbo.base.size; pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue), avm, domain_string(domain)); if (!kfd_mem_is_attached(avm, mem)) { ret = kfd_mem_attach(adev, mem, avm, mem->aql_queue); if (ret) goto out; } ret = reserve_bo_and_vm(mem, avm, &ctx); if (unlikely(ret)) goto out; /* Userptr can be marked as "not invalid", but not actually be * validated yet (still in the system domain). In that case * the queues are still stopped and we can leave mapping for * the next restore worker */ if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && bo->tbo.resource->mem_type == TTM_PL_SYSTEM) is_invalid_userptr = true; ret = vm_validate_pt_pd_bos(avm, NULL); if (unlikely(ret)) goto out_unreserve; list_for_each_entry(entry, &mem->attachments, list) { if (entry->bo_va->base.vm != avm || entry->is_mapped) continue; pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", entry->va, entry->va + bo_size, entry); ret = map_bo_to_gpuvm(mem, entry, ctx.sync, is_invalid_userptr); if (ret) { pr_err("Failed to map bo to gpuvm\n"); goto out_unreserve; } ret = vm_update_pds(avm, ctx.sync); if (ret) { pr_err("Failed to update page directories\n"); goto out_unreserve; } entry->is_mapped = true; mem->mapped_to_gpu_memory++; pr_debug("\t INC mapping count %d\n", mem->mapped_to_gpu_memory); } ret = unreserve_bo_and_vms(&ctx, false, false); goto out; out_unreserve: unreserve_bo_and_vms(&ctx, false, false); out: mutex_unlock(&mem->process_info->lock); mutex_unlock(&mem->lock); return ret; } int amdgpu_amdkfd_gpuvm_dmaunmap_mem(struct kgd_mem *mem, void *drm_priv) { struct kfd_mem_attachment *entry; struct amdgpu_vm *vm; int ret; vm = drm_priv_to_vm(drm_priv); mutex_lock(&mem->lock); ret = amdgpu_bo_reserve(mem->bo, true); if (ret) goto out; list_for_each_entry(entry, &mem->attachments, list) { if (entry->bo_va->base.vm != vm) continue; if (entry->bo_va->base.bo->tbo.ttm && !entry->bo_va->base.bo->tbo.ttm->sg) continue; kfd_mem_dmaunmap_attachment(mem, entry); } amdgpu_bo_unreserve(mem->bo); out: mutex_unlock(&mem->lock); return ret; } int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( struct amdgpu_device *adev, struct kgd_mem *mem, void *drm_priv) { struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); unsigned long bo_size = mem->bo->tbo.base.size; struct kfd_mem_attachment *entry; struct bo_vm_reservation_context ctx; int ret; mutex_lock(&mem->lock); ret = reserve_bo_and_cond_vms(mem, avm, BO_VM_MAPPED, &ctx); if (unlikely(ret)) goto out; /* If no VMs were reserved, it means the BO wasn't actually mapped */ if (ctx.n_vms == 0) { ret = -EINVAL; goto unreserve_out; } ret = vm_validate_pt_pd_bos(avm, NULL); if (unlikely(ret)) goto unreserve_out; pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue), avm); list_for_each_entry(entry, &mem->attachments, list) { if (entry->bo_va->base.vm != avm || !entry->is_mapped) continue; pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", entry->va, entry->va + bo_size, entry); ret = unmap_bo_from_gpuvm(mem, entry, ctx.sync); if (ret) goto unreserve_out; entry->is_mapped = false; mem->mapped_to_gpu_memory--; pr_debug("\t DEC mapping count %d\n", mem->mapped_to_gpu_memory); } unreserve_out: unreserve_bo_and_vms(&ctx, false, false); out: mutex_unlock(&mem->lock); return ret; } int amdgpu_amdkfd_gpuvm_sync_memory( struct amdgpu_device *adev, struct kgd_mem *mem, bool intr) { struct amdgpu_sync sync; int ret; amdgpu_sync_create(&sync); mutex_lock(&mem->lock); amdgpu_sync_clone(&mem->sync, &sync); mutex_unlock(&mem->lock); ret = amdgpu_sync_wait(&sync, intr); amdgpu_sync_free(&sync); return ret; } /** * amdgpu_amdkfd_map_gtt_bo_to_gart - Map BO to GART and increment reference count * @bo: Buffer object to be mapped * @bo_gart: Return bo reference * * Before return, bo reference count is incremented. To release the reference and unpin/ * unmap the BO, call amdgpu_amdkfd_free_gtt_mem. */ int amdgpu_amdkfd_map_gtt_bo_to_gart(struct amdgpu_bo *bo, struct amdgpu_bo **bo_gart) { int ret; ret = amdgpu_bo_reserve(bo, true); if (ret) { pr_err("Failed to reserve bo. ret %d\n", ret); goto err_reserve_bo_failed; } ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); if (ret) { pr_err("Failed to pin bo. ret %d\n", ret); goto err_pin_bo_failed; } ret = amdgpu_ttm_alloc_gart(&bo->tbo); if (ret) { pr_err("Failed to bind bo to GART. ret %d\n", ret); goto err_map_bo_gart_failed; } amdgpu_amdkfd_remove_eviction_fence( bo, bo->vm_bo->vm->process_info->eviction_fence); amdgpu_bo_unreserve(bo); *bo_gart = amdgpu_bo_ref(bo); return 0; err_map_bo_gart_failed: amdgpu_bo_unpin(bo); err_pin_bo_failed: amdgpu_bo_unreserve(bo); err_reserve_bo_failed: return ret; } /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Map a GTT BO for kernel CPU access * * @mem: Buffer object to be mapped for CPU access * @kptr[out]: pointer in kernel CPU address space * @size[out]: size of the buffer * * Pins the BO and maps it for kernel CPU access. The eviction fence is removed * from the BO, since pinned BOs cannot be evicted. The bo must remain on the * validate_list, so the GPU mapping can be restored after a page table was * evicted. * * Return: 0 on success, error code on failure */ int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_mem *mem, void **kptr, uint64_t *size) { int ret; struct amdgpu_bo *bo = mem->bo; if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { pr_err("userptr can't be mapped to kernel\n"); return -EINVAL; } mutex_lock(&mem->process_info->lock); ret = amdgpu_bo_reserve(bo, true); if (ret) { pr_err("Failed to reserve bo. ret %d\n", ret); goto bo_reserve_failed; } ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); if (ret) { pr_err("Failed to pin bo. ret %d\n", ret); goto pin_failed; } ret = amdgpu_bo_kmap(bo, kptr); if (ret) { pr_err("Failed to map bo to kernel. ret %d\n", ret); goto kmap_failed; } amdgpu_amdkfd_remove_eviction_fence( bo, mem->process_info->eviction_fence); if (size) *size = amdgpu_bo_size(bo); amdgpu_bo_unreserve(bo); mutex_unlock(&mem->process_info->lock); return 0; kmap_failed: amdgpu_bo_unpin(bo); pin_failed: amdgpu_bo_unreserve(bo); bo_reserve_failed: mutex_unlock(&mem->process_info->lock); return ret; } /** amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel() - Unmap a GTT BO for kernel CPU access * * @mem: Buffer object to be unmapped for CPU access * * Removes the kernel CPU mapping and unpins the BO. It does not restore the * eviction fence, so this function should only be used for cleanup before the * BO is destroyed. */ void amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(struct kgd_mem *mem) { struct amdgpu_bo *bo = mem->bo; amdgpu_bo_reserve(bo, true); amdgpu_bo_kunmap(bo); amdgpu_bo_unpin(bo); amdgpu_bo_unreserve(bo); } int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct amdgpu_device *adev, struct kfd_vm_fault_info *mem) { if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { *mem = *adev->gmc.vm_fault_info; mb(); /* make sure read happened */ atomic_set(&adev->gmc.vm_fault_info_updated, 0); } return 0; } static int import_obj_create(struct amdgpu_device *adev, struct dma_buf *dma_buf, struct drm_gem_object *obj, uint64_t va, void *drm_priv, struct kgd_mem **mem, uint64_t *size, uint64_t *mmap_offset) { struct amdgpu_vm *avm = drm_priv_to_vm(drm_priv); struct amdgpu_bo *bo; int ret; bo = gem_to_amdgpu_bo(obj); if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT))) /* Only VRAM and GTT BOs are supported */ return -EINVAL; *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) return -ENOMEM; ret = drm_vma_node_allow(&obj->vma_node, drm_priv); if (ret) goto err_free_mem; if (size) *size = amdgpu_bo_size(bo); if (mmap_offset) *mmap_offset = amdgpu_bo_mmap_offset(bo); INIT_LIST_HEAD(&(*mem)->attachments); mutex_init(&(*mem)->lock); (*mem)->alloc_flags = ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT) | KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE; get_dma_buf(dma_buf); (*mem)->dmabuf = dma_buf; (*mem)->bo = bo; (*mem)->va = va; (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) && !(adev->flags & AMD_IS_APU) ? AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; (*mem)->mapped_to_gpu_memory = 0; (*mem)->process_info = avm->process_info; add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); amdgpu_sync_create(&(*mem)->sync); (*mem)->is_imported = true; mutex_lock(&avm->process_info->lock); if (avm->process_info->eviction_fence && !dma_fence_is_signaled(&avm->process_info->eviction_fence->base)) ret = amdgpu_amdkfd_bo_validate_and_fence(bo, (*mem)->domain, &avm->process_info->eviction_fence->base); mutex_unlock(&avm->process_info->lock); if (ret) goto err_remove_mem; return 0; err_remove_mem: remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); drm_vma_node_revoke(&obj->vma_node, drm_priv); err_free_mem: kfree(*mem); return ret; } int amdgpu_amdkfd_gpuvm_import_dmabuf_fd(struct amdgpu_device *adev, int fd, uint64_t va, void *drm_priv, struct kgd_mem **mem, uint64_t *size, uint64_t *mmap_offset) { struct drm_gem_object *obj; uint32_t handle; int ret; ret = drm_gem_prime_fd_to_handle(&adev->ddev, adev->kfd.client.file, fd, &handle); if (ret) return ret; obj = drm_gem_object_lookup(adev->kfd.client.file, handle); if (!obj) { ret = -EINVAL; goto err_release_handle; } ret = import_obj_create(adev, obj->dma_buf, obj, va, drm_priv, mem, size, mmap_offset); if (ret) goto err_put_obj; (*mem)->gem_handle = handle; return 0; err_put_obj: drm_gem_object_put(obj); err_release_handle: drm_gem_handle_delete(adev->kfd.client.file, handle); return ret; } int amdgpu_amdkfd_gpuvm_export_dmabuf(struct kgd_mem *mem, struct dma_buf **dma_buf) { int ret; mutex_lock(&mem->lock); ret = kfd_mem_export_dmabuf(mem); if (ret) goto out; get_dma_buf(mem->dmabuf); *dma_buf = mem->dmabuf; out: mutex_unlock(&mem->lock); return ret; } /* Evict a userptr BO by stopping the queues if necessary * * Runs in MMU notifier, may be in RECLAIM_FS context. This means it * cannot do any memory allocations, and cannot take any locks that * are held elsewhere while allocating memory. * * It doesn't do anything to the BO itself. The real work happens in * restore, where we get updated page addresses. This function only * ensures that GPU access to the BO is stopped. */ int amdgpu_amdkfd_evict_userptr(struct mmu_interval_notifier *mni, unsigned long cur_seq, struct kgd_mem *mem) { struct amdkfd_process_info *process_info = mem->process_info; int r = 0; /* Do not process MMU notifications during CRIU restore until * KFD_CRIU_OP_RESUME IOCTL is received */ if (READ_ONCE(process_info->block_mmu_notifications)) return 0; mutex_lock(&process_info->notifier_lock); mmu_interval_set_seq(mni, cur_seq); mem->invalid++; if (++process_info->evicted_bos == 1) { /* First eviction, stop the queues */ r = kgd2kfd_quiesce_mm(mni->mm, KFD_QUEUE_EVICTION_TRIGGER_USERPTR); if (r) pr_err("Failed to quiesce KFD\n"); queue_delayed_work(system_freezable_wq, &process_info->restore_userptr_work, msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); } mutex_unlock(&process_info->notifier_lock); return r; } /* Update invalid userptr BOs * * Moves invalidated (evicted) userptr BOs from userptr_valid_list to * userptr_inval_list and updates user pages for all BOs that have * been invalidated since their last update. */ static int update_invalid_user_pages(struct amdkfd_process_info *process_info, struct mm_struct *mm) { struct kgd_mem *mem, *tmp_mem; struct amdgpu_bo *bo; struct ttm_operation_ctx ctx = { false, false }; uint32_t invalid; int ret = 0; mutex_lock(&process_info->notifier_lock); /* Move all invalidated BOs to the userptr_inval_list */ list_for_each_entry_safe(mem, tmp_mem, &process_info->userptr_valid_list, validate_list) if (mem->invalid) list_move_tail(&mem->validate_list, &process_info->userptr_inval_list); /* Go through userptr_inval_list and update any invalid user_pages */ list_for_each_entry(mem, &process_info->userptr_inval_list, validate_list) { invalid = mem->invalid; if (!invalid) /* BO hasn't been invalidated since the last * revalidation attempt. Keep its page list. */ continue; bo = mem->bo; amdgpu_ttm_tt_discard_user_pages(bo->tbo.ttm, mem->range); mem->range = NULL; /* BO reservations and getting user pages (hmm_range_fault) * must happen outside the notifier lock */ mutex_unlock(&process_info->notifier_lock); /* Move the BO to system (CPU) domain if necessary to unmap * and free the SG table */ if (bo->tbo.resource->mem_type != TTM_PL_SYSTEM) { if (amdgpu_bo_reserve(bo, true)) return -EAGAIN; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); amdgpu_bo_unreserve(bo); if (ret) { pr_err("%s: Failed to invalidate userptr BO\n", __func__); return -EAGAIN; } } /* Get updated user pages */ ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages, &mem->range); if (ret) { pr_debug("Failed %d to get user pages\n", ret); /* Return -EFAULT bad address error as success. It will * fail later with a VM fault if the GPU tries to access * it. Better than hanging indefinitely with stalled * user mode queues. * * Return other error -EBUSY or -ENOMEM to retry restore */ if (ret != -EFAULT) return ret; ret = 0; } mutex_lock(&process_info->notifier_lock); /* Mark the BO as valid unless it was invalidated * again concurrently. */ if (mem->invalid != invalid) { ret = -EAGAIN; goto unlock_out; } /* set mem valid if mem has hmm range associated */ if (mem->range) mem->invalid = 0; } unlock_out: mutex_unlock(&process_info->notifier_lock); return ret; } /* Validate invalid userptr BOs * * Validates BOs on the userptr_inval_list. Also updates GPUVM page tables * with new page addresses and waits for the page table updates to complete. */ static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) { struct ttm_operation_ctx ctx = { false, false }; struct amdgpu_sync sync; struct drm_exec exec; struct amdgpu_vm *peer_vm; struct kgd_mem *mem, *tmp_mem; struct amdgpu_bo *bo; int ret; amdgpu_sync_create(&sync); drm_exec_init(&exec, 0, 0); /* Reserve all BOs and page tables for validation */ drm_exec_until_all_locked(&exec) { /* Reserve all the page directories */ list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); drm_exec_retry_on_contention(&exec); if (unlikely(ret)) goto unreserve_out; } /* Reserve the userptr_inval_list entries to resv_list */ list_for_each_entry(mem, &process_info->userptr_inval_list, validate_list) { struct drm_gem_object *gobj; gobj = &mem->bo->tbo.base; ret = drm_exec_prepare_obj(&exec, gobj, 1); drm_exec_retry_on_contention(&exec); if (unlikely(ret)) goto unreserve_out; } } ret = process_validate_vms(process_info, NULL); if (ret) goto unreserve_out; /* Validate BOs and update GPUVM page tables */ list_for_each_entry_safe(mem, tmp_mem, &process_info->userptr_inval_list, validate_list) { struct kfd_mem_attachment *attachment; bo = mem->bo; /* Validate the BO if we got user pages */ if (bo->tbo.ttm->pages[0]) { amdgpu_bo_placement_from_domain(bo, mem->domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) { pr_err("%s: failed to validate BO\n", __func__); goto unreserve_out; } } /* Update mapping. If the BO was not validated * (because we couldn't get user pages), this will * clear the page table entries, which will result in * VM faults if the GPU tries to access the invalid * memory. */ list_for_each_entry(attachment, &mem->attachments, list) { if (!attachment->is_mapped) continue; kfd_mem_dmaunmap_attachment(mem, attachment); ret = update_gpuvm_pte(mem, attachment, &sync); if (ret) { pr_err("%s: update PTE failed\n", __func__); /* make sure this gets validated again */ mutex_lock(&process_info->notifier_lock); mem->invalid++; mutex_unlock(&process_info->notifier_lock); goto unreserve_out; } } } /* Update page directories */ ret = process_update_pds(process_info, &sync); unreserve_out: drm_exec_fini(&exec); amdgpu_sync_wait(&sync, false); amdgpu_sync_free(&sync); return ret; } /* Confirm that all user pages are valid while holding the notifier lock * * Moves valid BOs from the userptr_inval_list back to userptr_val_list. */ static int confirm_valid_user_pages_locked(struct amdkfd_process_info *process_info) { struct kgd_mem *mem, *tmp_mem; int ret = 0; list_for_each_entry_safe(mem, tmp_mem, &process_info->userptr_inval_list, validate_list) { bool valid; /* keep mem without hmm range at userptr_inval_list */ if (!mem->range) continue; /* Only check mem with hmm range associated */ valid = amdgpu_ttm_tt_get_user_pages_done( mem->bo->tbo.ttm, mem->range); mem->range = NULL; if (!valid) { WARN(!mem->invalid, "Invalid BO not marked invalid"); ret = -EAGAIN; continue; } if (mem->invalid) { WARN(1, "Valid BO is marked invalid"); ret = -EAGAIN; continue; } list_move_tail(&mem->validate_list, &process_info->userptr_valid_list); } return ret; } /* Worker callback to restore evicted userptr BOs * * Tries to update and validate all userptr BOs. If successful and no * concurrent evictions happened, the queues are restarted. Otherwise, * reschedule for another attempt later. */ static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct amdkfd_process_info *process_info = container_of(dwork, struct amdkfd_process_info, restore_userptr_work); struct task_struct *usertask; struct mm_struct *mm; uint32_t evicted_bos; mutex_lock(&process_info->notifier_lock); evicted_bos = process_info->evicted_bos; mutex_unlock(&process_info->notifier_lock); if (!evicted_bos) return; /* Reference task and mm in case of concurrent process termination */ usertask = get_pid_task(process_info->pid, PIDTYPE_PID); if (!usertask) return; mm = get_task_mm(usertask); if (!mm) { put_task_struct(usertask); return; } mutex_lock(&process_info->lock); if (update_invalid_user_pages(process_info, mm)) goto unlock_out; /* userptr_inval_list can be empty if all evicted userptr BOs * have been freed. In that case there is nothing to validate * and we can just restart the queues. */ if (!list_empty(&process_info->userptr_inval_list)) { if (validate_invalid_user_pages(process_info)) goto unlock_out; } /* Final check for concurrent evicton and atomic update. If * another eviction happens after successful update, it will * be a first eviction that calls quiesce_mm. The eviction * reference counting inside KFD will handle this case. */ mutex_lock(&process_info->notifier_lock); if (process_info->evicted_bos != evicted_bos) goto unlock_notifier_out; if (confirm_valid_user_pages_locked(process_info)) { WARN(1, "User pages unexpectedly invalid"); goto unlock_notifier_out; } process_info->evicted_bos = evicted_bos = 0; if (kgd2kfd_resume_mm(mm)) { pr_err("%s: Failed to resume KFD\n", __func__); /* No recovery from this failure. Probably the CP is * hanging. No point trying again. */ } unlock_notifier_out: mutex_unlock(&process_info->notifier_lock); unlock_out: mutex_unlock(&process_info->lock); /* If validation failed, reschedule another attempt */ if (evicted_bos) { queue_delayed_work(system_freezable_wq, &process_info->restore_userptr_work, msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); kfd_smi_event_queue_restore_rescheduled(mm); } mmput(mm); put_task_struct(usertask); } static void replace_eviction_fence(struct dma_fence __rcu **ef, struct dma_fence *new_ef) { struct dma_fence *old_ef = rcu_replace_pointer(*ef, new_ef, true /* protected by process_info->lock */); /* If we're replacing an unsignaled eviction fence, that fence will * never be signaled, and if anyone is still waiting on that fence, * they will hang forever. This should never happen. We should only * replace the fence in restore_work that only gets scheduled after * eviction work signaled the fence. */ WARN_ONCE(!dma_fence_is_signaled(old_ef), "Replacing unsignaled eviction fence"); dma_fence_put(old_ef); } /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given * KFD process identified by process_info * * @process_info: amdkfd_process_info of the KFD process * * After memory eviction, restore thread calls this function. The function * should be called when the Process is still valid. BO restore involves - * * 1. Release old eviction fence and create new one * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of * BOs that need to be reserved. * 4. Reserve all the BOs * 5. Validate of PD and PT BOs. * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence * 7. Add fence to all PD and PT BOs. * 8. Unreserve all BOs */ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence __rcu **ef) { struct amdkfd_process_info *process_info = info; struct amdgpu_vm *peer_vm; struct kgd_mem *mem; struct list_head duplicate_save; struct amdgpu_sync sync_obj; unsigned long failed_size = 0; unsigned long total_size = 0; struct drm_exec exec; int ret; INIT_LIST_HEAD(&duplicate_save); mutex_lock(&process_info->lock); drm_exec_init(&exec, DRM_EXEC_IGNORE_DUPLICATES, 0); drm_exec_until_all_locked(&exec) { list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = amdgpu_vm_lock_pd(peer_vm, &exec, 2); drm_exec_retry_on_contention(&exec); if (unlikely(ret)) { pr_err("Locking VM PD failed, ret: %d\n", ret); goto ttm_reserve_fail; } } /* Reserve all BOs and page tables/directory. Add all BOs from * kfd_bo_list to ctx.list */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { struct drm_gem_object *gobj; gobj = &mem->bo->tbo.base; ret = drm_exec_prepare_obj(&exec, gobj, 1); drm_exec_retry_on_contention(&exec); if (unlikely(ret)) { pr_err("drm_exec_prepare_obj failed, ret: %d\n", ret); goto ttm_reserve_fail; } } } amdgpu_sync_create(&sync_obj); /* Validate BOs managed by KFD */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { struct amdgpu_bo *bo = mem->bo; uint32_t domain = mem->domain; struct dma_resv_iter cursor; struct dma_fence *fence; total_size += amdgpu_bo_size(bo); ret = amdgpu_amdkfd_bo_validate(bo, domain, false); if (ret) { pr_debug("Memory eviction: Validate BOs failed\n"); failed_size += amdgpu_bo_size(bo); ret = amdgpu_amdkfd_bo_validate(bo, AMDGPU_GEM_DOMAIN_GTT, false); if (ret) { pr_debug("Memory eviction: Try again\n"); goto validate_map_fail; } } dma_resv_for_each_fence(&cursor, bo->tbo.base.resv, DMA_RESV_USAGE_KERNEL, fence) { ret = amdgpu_sync_fence(&sync_obj, fence); if (ret) { pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); goto validate_map_fail; } } } if (failed_size) pr_debug("0x%lx/0x%lx in system\n", failed_size, total_size); /* Validate PDs, PTs and evicted DMABuf imports last. Otherwise BO * validations above would invalidate DMABuf imports again. */ ret = process_validate_vms(process_info, &exec.ticket); if (ret) { pr_debug("Validating VMs failed, ret: %d\n", ret); goto validate_map_fail; } /* Update mappings managed by KFD. */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { struct kfd_mem_attachment *attachment; list_for_each_entry(attachment, &mem->attachments, list) { if (!attachment->is_mapped) continue; kfd_mem_dmaunmap_attachment(mem, attachment); ret = update_gpuvm_pte(mem, attachment, &sync_obj); if (ret) { pr_debug("Memory eviction: update PTE failed. Try again\n"); goto validate_map_fail; } } } /* Update mappings not managed by KFD */ list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { struct amdgpu_device *adev = amdgpu_ttm_adev( peer_vm->root.bo->tbo.bdev); ret = amdgpu_vm_handle_moved(adev, peer_vm, &exec.ticket); if (ret) { pr_debug("Memory eviction: handle moved failed. Try again\n"); goto validate_map_fail; } } /* Update page directories */ ret = process_update_pds(process_info, &sync_obj); if (ret) { pr_debug("Memory eviction: update PDs failed. Try again\n"); goto validate_map_fail; } /* Sync with fences on all the page tables. They implicitly depend on any * move fences from amdgpu_vm_handle_moved above. */ ret = process_sync_pds_resv(process_info, &sync_obj); if (ret) { pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); goto validate_map_fail; } /* Wait for validate and PT updates to finish */ amdgpu_sync_wait(&sync_obj, false); /* The old eviction fence may be unsignaled if restore happens * after a GPU reset or suspend/resume. Keep the old fence in that * case. Otherwise release the old eviction fence and create new * one, because fence only goes from unsignaled to signaled once * and cannot be reused. Use context and mm from the old fence. * * If an old eviction fence signals after this check, that's OK. * Anyone signaling an eviction fence must stop the queues first * and schedule another restore worker. */ if (dma_fence_is_signaled(&process_info->eviction_fence->base)) { struct amdgpu_amdkfd_fence *new_fence = amdgpu_amdkfd_fence_create( process_info->eviction_fence->base.context, process_info->eviction_fence->mm, NULL); if (!new_fence) { pr_err("Failed to create eviction fence\n"); ret = -ENOMEM; goto validate_map_fail; } dma_fence_put(&process_info->eviction_fence->base); process_info->eviction_fence = new_fence; replace_eviction_fence(ef, dma_fence_get(&new_fence->base)); } else { WARN_ONCE(*ef != &process_info->eviction_fence->base, "KFD eviction fence doesn't match KGD process_info"); } /* Attach new eviction fence to all BOs except pinned ones */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list) { if (mem->bo->tbo.pin_count) continue; dma_resv_add_fence(mem->bo->tbo.base.resv, &process_info->eviction_fence->base, DMA_RESV_USAGE_BOOKKEEP); } /* Attach eviction fence to PD / PT BOs and DMABuf imports */ list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { struct amdgpu_bo *bo = peer_vm->root.bo; dma_resv_add_fence(bo->tbo.base.resv, &process_info->eviction_fence->base, DMA_RESV_USAGE_BOOKKEEP); } validate_map_fail: amdgpu_sync_free(&sync_obj); ttm_reserve_fail: drm_exec_fini(&exec); mutex_unlock(&process_info->lock); return ret; } int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) { struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; int ret; if (!info || !gws) return -EINVAL; *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) return -ENOMEM; mutex_init(&(*mem)->lock); INIT_LIST_HEAD(&(*mem)->attachments); (*mem)->bo = amdgpu_bo_ref(gws_bo); (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; (*mem)->process_info = process_info; add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); amdgpu_sync_create(&(*mem)->sync); /* Validate gws bo the first time it is added to process */ mutex_lock(&(*mem)->process_info->lock); ret = amdgpu_bo_reserve(gws_bo, false); if (unlikely(ret)) { pr_err("Reserve gws bo failed %d\n", ret); goto bo_reservation_failure; } ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); if (ret) { pr_err("GWS BO validate failed %d\n", ret); goto bo_validation_failure; } /* GWS resource is shared b/t amdgpu and amdkfd * Add process eviction fence to bo so they can * evict each other. */ ret = dma_resv_reserve_fences(gws_bo->tbo.base.resv, 1); if (ret) goto reserve_shared_fail; dma_resv_add_fence(gws_bo->tbo.base.resv, &process_info->eviction_fence->base, DMA_RESV_USAGE_BOOKKEEP); amdgpu_bo_unreserve(gws_bo); mutex_unlock(&(*mem)->process_info->lock); return ret; reserve_shared_fail: bo_validation_failure: amdgpu_bo_unreserve(gws_bo); bo_reservation_failure: mutex_unlock(&(*mem)->process_info->lock); amdgpu_sync_free(&(*mem)->sync); remove_kgd_mem_from_kfd_bo_list(*mem, process_info); amdgpu_bo_unref(&gws_bo); mutex_destroy(&(*mem)->lock); kfree(*mem); *mem = NULL; return ret; } int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) { int ret; struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; struct amdgpu_bo *gws_bo = kgd_mem->bo; /* Remove BO from process's validate list so restore worker won't touch * it anymore */ remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); ret = amdgpu_bo_reserve(gws_bo, false); if (unlikely(ret)) { pr_err("Reserve gws bo failed %d\n", ret); //TODO add BO back to validate_list? return ret; } amdgpu_amdkfd_remove_eviction_fence(gws_bo, process_info->eviction_fence); amdgpu_bo_unreserve(gws_bo); amdgpu_sync_free(&kgd_mem->sync); amdgpu_bo_unref(&gws_bo); mutex_destroy(&kgd_mem->lock); kfree(mem); return 0; } /* Returns GPU-specific tiling mode information */ int amdgpu_amdkfd_get_tile_config(struct amdgpu_device *adev, struct tile_config *config) { config->gb_addr_config = adev->gfx.config.gb_addr_config; config->tile_config_ptr = adev->gfx.config.tile_mode_array; config->num_tile_configs = ARRAY_SIZE(adev->gfx.config.tile_mode_array); config->macro_tile_config_ptr = adev->gfx.config.macrotile_mode_array; config->num_macro_tile_configs = ARRAY_SIZE(adev->gfx.config.macrotile_mode_array); /* Those values are not set from GFX9 onwards */ config->num_banks = adev->gfx.config.num_banks; config->num_ranks = adev->gfx.config.num_ranks; return 0; } bool amdgpu_amdkfd_bo_mapped_to_dev(void *drm_priv, struct kgd_mem *mem) { struct amdgpu_vm *vm = drm_priv_to_vm(drm_priv); struct kfd_mem_attachment *entry; list_for_each_entry(entry, &mem->attachments, list) { if (entry->is_mapped && entry->bo_va->base.vm == vm) return true; } return false; } #if defined(CONFIG_DEBUG_FS) int kfd_debugfs_kfd_mem_limits(struct seq_file *m, void *data) { spin_lock(&kfd_mem_limit.mem_limit_lock); seq_printf(m, "System mem used %lldM out of %lluM\n", (kfd_mem_limit.system_mem_used >> 20), (kfd_mem_limit.max_system_mem_limit >> 20)); seq_printf(m, "TTM mem used %lldM out of %lluM\n", (kfd_mem_limit.ttm_mem_used >> 20), (kfd_mem_limit.max_ttm_mem_limit >> 20)); spin_unlock(&kfd_mem_limit.mem_limit_lock); return 0; } #endif