/* * Copyright 2014-2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "gc/gc_9_0_offset.h" #include "gc/gc_9_0_sh_mask.h" #include "vega10_enum.h" #include "sdma0/sdma0_4_0_offset.h" #include "sdma0/sdma0_4_0_sh_mask.h" #include "sdma1/sdma1_4_0_offset.h" #include "sdma1/sdma1_4_0_sh_mask.h" #include "athub/athub_1_0_offset.h" #include "athub/athub_1_0_sh_mask.h" #include "oss/osssys_4_0_offset.h" #include "oss/osssys_4_0_sh_mask.h" #include "soc15_common.h" #include "v9_structs.h" #include "soc15.h" #include "soc15d.h" #include "gfx_v9_0.h" #include "amdgpu_amdkfd_gfx_v9.h" #include enum hqd_dequeue_request_type { NO_ACTION = 0, DRAIN_PIPE, RESET_WAVES, SAVE_WAVES }; static void kgd_gfx_v9_lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid, uint32_t inst) { mutex_lock(&adev->srbm_mutex); soc15_grbm_select(adev, mec, pipe, queue, vmid, GET_INST(GC, inst)); } static void kgd_gfx_v9_unlock_srbm(struct amdgpu_device *adev, uint32_t inst) { soc15_grbm_select(adev, 0, 0, 0, 0, GET_INST(GC, inst)); mutex_unlock(&adev->srbm_mutex); } void kgd_gfx_v9_acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); kgd_gfx_v9_lock_srbm(adev, mec, pipe, queue_id, 0, inst); } uint64_t kgd_gfx_v9_get_queue_mask(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id) { unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe + queue_id; return 1ull << bit; } void kgd_gfx_v9_release_queue(struct amdgpu_device *adev, uint32_t inst) { kgd_gfx_v9_unlock_srbm(adev, inst); } void kgd_gfx_v9_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases, uint32_t inst) { kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_CONFIG, sh_mem_config); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmSH_MEM_BASES, sh_mem_bases); /* APE1 no longer exists on GFX9 */ kgd_gfx_v9_unlock_srbm(adev, inst); } int kgd_gfx_v9_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid, unsigned int vmid, uint32_t inst) { /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because * a mapping is in progress or because a mapping finished * and the SW cleared it. * So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID0_PASID_MAPPING__VALID_MASK; /* * need to do this twice, once for gfx and once for mmhub * for ATC add 16 to VMID for mmhub, for IH different registers. * ATC_VMID0..15 registers are separate from ATC_VMID16..31. */ WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid, pasid_mapping); while (!(RREG32(SOC15_REG_OFFSET( ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & (1U << vmid))) cpu_relax(); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 1U << vmid); /* Mapping vmid to pasid also for IH block */ WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid, pasid_mapping); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID16_PASID_MAPPING) + vmid, pasid_mapping); while (!(RREG32(SOC15_REG_OFFSET( ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) & (1U << (vmid + 16)))) cpu_relax(); WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID_PASID_MAPPING_UPDATE_STATUS), 1U << (vmid + 16)); /* Mapping vmid to pasid also for IH block */ WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT_MM) + vmid, pasid_mapping); return 0; } /* TODO - RING0 form of field is obsolete, seems to date back to SI * but still works */ int kgd_gfx_v9_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t inst) { uint32_t mec; uint32_t pipe; mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); kgd_gfx_v9_lock_srbm(adev, mec, pipe, 0, 0, inst); WREG32_SOC15(GC, GET_INST(GC, inst), mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); kgd_gfx_v9_unlock_srbm(adev, inst); return 0; } static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev, unsigned int engine_id, unsigned int queue_id) { uint32_t sdma_engine_reg_base = 0; uint32_t sdma_rlc_reg_offset; switch (engine_id) { default: dev_warn(adev->dev, "Invalid sdma engine id (%d), using engine id 0\n", engine_id); fallthrough; case 0: sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; break; case 1: sdma_engine_reg_base = SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL; break; } sdma_rlc_reg_offset = sdma_engine_reg_base + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL); pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id, queue_id, sdma_rlc_reg_offset); return sdma_rlc_reg_offset; } static inline struct v9_mqd *get_mqd(void *mqd) { return (struct v9_mqd *)mqd; } static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd) { return (struct v9_sdma_mqd *)mqd; } int kgd_gfx_v9_hqd_load(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr, uint32_t wptr_shift, uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst) { struct v9_mqd *m; uint32_t *mqd_hqd; uint32_t reg, hqd_base, data; m = get_mqd(mqd); kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */ mqd_hqd = &m->cp_mqd_base_addr_lo; hqd_base = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR); for (reg = hqd_base; reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++) WREG32_XCC(reg, mqd_hqd[reg - hqd_base], inst); /* Activate doorbell logic before triggering WPTR poll. */ data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control, CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_DOORBELL_CONTROL, data); if (wptr) { /* Don't read wptr with get_user because the user * context may not be accessible (if this function * runs in a work queue). Instead trigger a one-shot * polling read from memory in the CP. This assumes * that wptr is GPU-accessible in the queue's VMID via * ATC or SVM. WPTR==RPTR before starting the poll so * the CP starts fetching new commands from the right * place. * * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit * tricky. Assume that the queue didn't overflow. The * number of valid bits in the 32-bit RPTR depends on * the queue size. The remaining bits are taken from * the saved 64-bit WPTR. If the WPTR wrapped, add the * queue size. */ uint32_t queue_size = 2 << REG_GET_FIELD(m->cp_hqd_pq_control, CP_HQD_PQ_CONTROL, QUEUE_SIZE); uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1); if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr) guessed_wptr += queue_size; guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1); guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32; WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_LO, lower_32_bits(guessed_wptr)); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI, upper_32_bits(guessed_wptr)); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR, lower_32_bits((uintptr_t)wptr)); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, upper_32_bits((uintptr_t)wptr)); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_PQ_WPTR_POLL_CNTL1, (uint32_t)kgd_gfx_v9_get_queue_mask(adev, pipe_id, queue_id)); } /* Start the EOP fetcher */ WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_EOP_RPTR, REG_SET_FIELD(m->cp_hqd_eop_rptr, CP_HQD_EOP_RPTR, INIT_FETCHER, 1)); data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1); WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE, data); kgd_gfx_v9_release_queue(adev, inst); return 0; } int kgd_gfx_v9_hiq_mqd_load(struct amdgpu_device *adev, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t doorbell_off, uint32_t inst) { struct amdgpu_ring *kiq_ring = &adev->gfx.kiq[inst].ring; struct v9_mqd *m; uint32_t mec, pipe; int r; m = get_mqd(mqd); kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1; pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec); pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n", mec, pipe, queue_id); spin_lock(&adev->gfx.kiq[inst].ring_lock); r = amdgpu_ring_alloc(kiq_ring, 7); if (r) { pr_err("Failed to alloc KIQ (%d).\n", r); goto out_unlock; } amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5)); amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */ PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */ PACKET3_MAP_QUEUES_QUEUE(queue_id) | PACKET3_MAP_QUEUES_PIPE(pipe) | PACKET3_MAP_QUEUES_ME((mec - 1)) | PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */ PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */ PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */ PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */ amdgpu_ring_write(kiq_ring, PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off)); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo); amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi); amdgpu_ring_commit(kiq_ring); out_unlock: spin_unlock(&adev->gfx.kiq[inst].ring_lock); kgd_gfx_v9_release_queue(adev, inst); return r; } int kgd_gfx_v9_hqd_dump(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst) { uint32_t i = 0, reg; #define HQD_N_REGS 56 #define DUMP_REG(addr) do { \ if (WARN_ON_ONCE(i >= HQD_N_REGS)) \ break; \ (*dump)[i][0] = (addr) << 2; \ (*dump)[i++][1] = RREG32(addr); \ } while (0) *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); for (reg = SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_MQD_BASE_ADDR); reg <= SOC15_REG_OFFSET(GC, GET_INST(GC, inst), mmCP_HQD_PQ_WPTR_HI); reg++) DUMP_REG(reg); kgd_gfx_v9_release_queue(adev, inst); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd, uint32_t __user *wptr, struct mm_struct *mm) { struct v9_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; unsigned long end_jiffies; uint32_t data; uint64_t data64; uint64_t __user *wptr64 = (uint64_t __user *)wptr; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)); end_jiffies = msecs_to_jiffies(2000) + jiffies; while (true) { data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET, m->sdmax_rlcx_doorbell_offset); data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL, ENABLE, 1); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI, m->sdmax_rlcx_rb_rptr_hi); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1); if (read_user_wptr(mm, wptr64, data64)) { WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, lower_32_bits(data64)); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, upper_32_bits(data64)); } else { WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, m->sdmax_rlcx_rb_rptr); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI, m->sdmax_rlcx_rb_rptr_hi); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI, m->sdmax_rlcx_rb_base_hi); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdmax_rlcx_rb_rptr_addr_lo); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdmax_rlcx_rb_rptr_addr_hi); data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL, RB_ENABLE, 1); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data); return 0; } static int kgd_hqd_sdma_dump(struct amdgpu_device *adev, uint32_t engine_id, uint32_t queue_id, uint32_t (**dump)[2], uint32_t *n_regs) { uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, engine_id, queue_id); uint32_t i = 0, reg; #undef HQD_N_REGS #define HQD_N_REGS (19+6+7+10) *dump = kmalloc_array(HQD_N_REGS, sizeof(**dump), GFP_KERNEL); if (*dump == NULL) return -ENOMEM; for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++) DUMP_REG(sdma_rlc_reg_offset + reg); WARN_ON_ONCE(i != HQD_N_REGS); *n_regs = i; return 0; } bool kgd_gfx_v9_hqd_is_occupied(struct amdgpu_device *adev, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { uint32_t act; bool retval = false; uint32_t low, high; kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); act = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE) && high == RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI)) retval = true; } kgd_gfx_v9_release_queue(adev, inst); return retval; } static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd) { struct v9_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } int kgd_gfx_v9_hqd_destroy(struct amdgpu_device *adev, void *mqd, enum kfd_preempt_type reset_type, unsigned int utimeout, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { enum hqd_dequeue_request_type type; unsigned long end_jiffies; uint32_t temp; struct v9_mqd *m = get_mqd(mqd); if (amdgpu_in_reset(adev)) return -EIO; kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); if (m->cp_hqd_vmid == 0) WREG32_FIELD15_RLC(GC, GET_INST(GC, inst), RLC_CP_SCHEDULERS, scheduler1, 0); switch (reset_type) { case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN: type = DRAIN_PIPE; break; case KFD_PREEMPT_TYPE_WAVEFRONT_RESET: type = RESET_WAVES; break; case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE: type = SAVE_WAVES; break; default: type = DRAIN_PIPE; break; } WREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_HQD_DEQUEUE_REQUEST, type); end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) break; if (time_after(jiffies, end_jiffies)) { pr_err("cp queue preemption time out.\n"); kgd_gfx_v9_release_queue(adev, inst); return -ETIME; } usleep_range(500, 1000); } kgd_gfx_v9_release_queue(adev, inst); return 0; } static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd, unsigned int utimeout) { struct v9_sdma_mqd *m; uint32_t sdma_rlc_reg_offset; uint32_t temp; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; m = get_sdma_mqd(mqd); sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id, m->sdma_queue_id); temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK) break; if (time_after(jiffies, end_jiffies)) { pr_err("SDMA RLC not idle in %s\n", __func__); return -ETIME; } usleep_range(500, 1000); } WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) | SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR); m->sdmax_rlcx_rb_rptr_hi = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI); return 0; } bool kgd_gfx_v9_get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev, uint8_t vmid, uint16_t *p_pasid) { uint32_t value; value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid); *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK; return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK); } int kgd_gfx_v9_wave_control_execute(struct amdgpu_device *adev, uint32_t gfx_index_val, uint32_t sq_cmd, uint32_t inst) { uint32_t data = 0; mutex_lock(&adev->grbm_idx_mutex); WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, gfx_index_val); WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_CMD, sq_cmd); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, INSTANCE_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SH_BROADCAST_WRITES, 1); data = REG_SET_FIELD(data, GRBM_GFX_INDEX, SE_BROADCAST_WRITES, 1); WREG32_SOC15_RLC_SHADOW(GC, GET_INST(GC, inst), mmGRBM_GFX_INDEX, data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } /* * GFX9 helper for wave launch stall requirements on debug trap setting. * * vmid: * Target VMID to stall/unstall. * * stall: * 0-unstall wave launch (enable), 1-stall wave launch (disable). * After wavefront launch has been stalled, allocated waves must drain from * SPI in order for debug trap settings to take effect on those waves. * This is roughly a ~96 clock cycle wait on SPI where a read on * SPI_GDBG_WAVE_CNTL translates to ~32 clock cycles. * KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY indicates the number of reads required. * * NOTE: We can afford to clear the entire STALL_VMID field on unstall * because GFX9.4.1 cannot support multi-process debugging due to trap * configuration and masking being limited to global scope. Always assume * single process conditions. */ #define KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY 3 void kgd_gfx_v9_set_wave_launch_stall(struct amdgpu_device *adev, uint32_t vmid, bool stall) { int i; uint32_t data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); if (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 1)) data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_VMID, stall ? 1 << vmid : 0); else data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL, STALL_RA, stall ? 1 : 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), data); if (!stall) return; for (i = 0; i < KGD_GFX_V9_WAVE_LAUNCH_SPI_DRAIN_LATENCY; i++) RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); } /* * restore_dbg_registers is ignored here but is a general interface requirement * for devices that support GFXOFF and where the RLC save/restore list * does not support hw registers for debugging i.e. the driver has to manually * initialize the debug mode registers after it has disabled GFX off during the * debug session. */ uint32_t kgd_gfx_v9_enable_debug_trap(struct amdgpu_device *adev, bool restore_dbg_registers, uint32_t vmid) { mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } /* * keep_trap_enabled is ignored here but is a general interface requirement * for devices that support multi-process debugging where the performance * overhead from trap temporary setup needs to be bypassed when the debug * session has ended. */ uint32_t kgd_gfx_v9_disable_debug_trap(struct amdgpu_device *adev, bool keep_trap_enabled, uint32_t vmid) { mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), 0); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } int kgd_gfx_v9_validate_trap_override_request(struct amdgpu_device *adev, uint32_t trap_override, uint32_t *trap_mask_supported) { *trap_mask_supported &= KFD_DBG_TRAP_MASK_DBG_ADDRESS_WATCH; /* The SPI_GDBG_TRAP_MASK register is global and affects all * processes. Only allow OR-ing the address-watch bit, since * this only affects processes under the debugger. Other bits * should stay 0 to avoid the debugger interfering with other * processes. */ if (trap_override != KFD_DBG_TRAP_OVERRIDE_OR) return -EINVAL; return 0; } uint32_t kgd_gfx_v9_set_wave_launch_trap_override(struct amdgpu_device *adev, uint32_t vmid, uint32_t trap_override, uint32_t trap_mask_bits, uint32_t trap_mask_request, uint32_t *trap_mask_prev, uint32_t kfd_dbg_cntl_prev) { uint32_t data, wave_cntl_prev; mutex_lock(&adev->grbm_idx_mutex); wave_cntl_prev = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL)); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); data = RREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK)); *trap_mask_prev = REG_GET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN); trap_mask_bits = (trap_mask_bits & trap_mask_request) | (*trap_mask_prev & ~trap_mask_request); data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, EXCP_EN, trap_mask_bits); data = REG_SET_FIELD(data, SPI_GDBG_TRAP_MASK, REPLACE, trap_override); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_TRAP_MASK), data); /* We need to preserve wave launch mode stall settings. */ WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL), wave_cntl_prev); mutex_unlock(&adev->grbm_idx_mutex); return 0; } uint32_t kgd_gfx_v9_set_wave_launch_mode(struct amdgpu_device *adev, uint8_t wave_launch_mode, uint32_t vmid) { uint32_t data = 0; bool is_mode_set = !!wave_launch_mode; mutex_lock(&adev->grbm_idx_mutex); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, true); data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, VMID_MASK, is_mode_set ? 1 << vmid : 0); data = REG_SET_FIELD(data, SPI_GDBG_WAVE_CNTL2, MODE, is_mode_set ? wave_launch_mode : 0); WREG32(SOC15_REG_OFFSET(GC, 0, mmSPI_GDBG_WAVE_CNTL2), data); kgd_gfx_v9_set_wave_launch_stall(adev, vmid, false); mutex_unlock(&adev->grbm_idx_mutex); return 0; } #define TCP_WATCH_STRIDE (mmTCP_WATCH1_ADDR_H - mmTCP_WATCH0_ADDR_H) uint32_t kgd_gfx_v9_set_address_watch(struct amdgpu_device *adev, uint64_t watch_address, uint32_t watch_address_mask, uint32_t watch_id, uint32_t watch_mode, uint32_t debug_vmid, uint32_t inst) { uint32_t watch_address_high; uint32_t watch_address_low; uint32_t watch_address_cntl; watch_address_cntl = 0; watch_address_low = lower_32_bits(watch_address); watch_address_high = upper_32_bits(watch_address) & 0xffff; watch_address_cntl = REG_SET_FIELD(watch_address_cntl, TCP_WATCH0_CNTL, VMID, debug_vmid); watch_address_cntl = REG_SET_FIELD(watch_address_cntl, TCP_WATCH0_CNTL, MODE, watch_mode); watch_address_cntl = REG_SET_FIELD(watch_address_cntl, TCP_WATCH0_CNTL, MASK, watch_address_mask >> 6); /* Turning off this watch point until we set all the registers */ watch_address_cntl = REG_SET_FIELD(watch_address_cntl, TCP_WATCH0_CNTL, VALID, 0); WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), watch_address_cntl); WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) + (watch_id * TCP_WATCH_STRIDE)), watch_address_high); WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_L) + (watch_id * TCP_WATCH_STRIDE)), watch_address_low); /* Enable the watch point */ watch_address_cntl = REG_SET_FIELD(watch_address_cntl, TCP_WATCH0_CNTL, VALID, 1); WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), watch_address_cntl); return 0; } uint32_t kgd_gfx_v9_clear_address_watch(struct amdgpu_device *adev, uint32_t watch_id) { uint32_t watch_address_cntl; watch_address_cntl = 0; WREG32_RLC((SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_CNTL) + (watch_id * TCP_WATCH_STRIDE)), watch_address_cntl); return 0; } /* kgd_gfx_v9_get_iq_wait_times: Returns the mmCP_IQ_WAIT_TIME1/2 values * The values read are: * ib_offload_wait_time -- Wait Count for Indirect Buffer Offloads. * atomic_offload_wait_time -- Wait Count for L2 and GDS Atomics Offloads. * wrm_offload_wait_time -- Wait Count for WAIT_REG_MEM Offloads. * gws_wait_time -- Wait Count for Global Wave Syncs. * que_sleep_wait_time -- Wait Count for Dequeue Retry. * sch_wave_wait_time -- Wait Count for Scheduling Wave Message. * sem_rearm_wait_time -- Wait Count for Semaphore re-arm. * deq_retry_wait_time -- Wait Count for Global Wave Syncs. */ void kgd_gfx_v9_get_iq_wait_times(struct amdgpu_device *adev, uint32_t *wait_times, uint32_t inst) { *wait_times = RREG32_SOC15_RLC(GC, GET_INST(GC, inst), mmCP_IQ_WAIT_TIME2); } void kgd_gfx_v9_set_vm_context_page_table_base(struct amdgpu_device *adev, uint32_t vmid, uint64_t page_table_base) { if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) { pr_err("trying to set page table base for wrong VMID %u\n", vmid); return; } adev->mmhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base); } static void lock_spi_csq_mutexes(struct amdgpu_device *adev) { mutex_lock(&adev->srbm_mutex); mutex_lock(&adev->grbm_idx_mutex); } static void unlock_spi_csq_mutexes(struct amdgpu_device *adev) { mutex_unlock(&adev->grbm_idx_mutex); mutex_unlock(&adev->srbm_mutex); } /** * get_wave_count: Read device registers to get number of waves in flight for * a particular queue. The method also returns the VMID associated with the * queue. * * @adev: Handle of device whose registers are to be read * @queue_idx: Index of queue in the queue-map bit-field * @wave_cnt: Output parameter updated with number of waves in flight * @vmid: Output parameter updated with VMID of queue whose wave count * is being collected * @inst: xcc's instance number on a multi-XCC setup */ static void get_wave_count(struct amdgpu_device *adev, int queue_idx, int *wave_cnt, int *vmid, uint32_t inst) { int pipe_idx; int queue_slot; unsigned int reg_val; /* * Program GRBM with appropriate MEID, PIPEID, QUEUEID and VMID * parameters to read out waves in flight. Get VMID if there are * non-zero waves in flight. */ *vmid = 0xFF; *wave_cnt = 0; pipe_idx = queue_idx / adev->gfx.mec.num_queue_per_pipe; queue_slot = queue_idx % adev->gfx.mec.num_queue_per_pipe; soc15_grbm_select(adev, 1, pipe_idx, queue_slot, 0, inst); reg_val = RREG32_SOC15_IP(GC, SOC15_REG_OFFSET(GC, inst, mmSPI_CSQ_WF_ACTIVE_COUNT_0) + queue_slot); *wave_cnt = reg_val & SPI_CSQ_WF_ACTIVE_COUNT_0__COUNT_MASK; if (*wave_cnt != 0) *vmid = (RREG32_SOC15(GC, inst, mmCP_HQD_VMID) & CP_HQD_VMID__VMID_MASK) >> CP_HQD_VMID__VMID__SHIFT; } /** * kgd_gfx_v9_get_cu_occupancy: Reads relevant registers associated with each * shader engine and aggregates the number of waves that are in flight for the * process whose pasid is provided as a parameter. The process could have ZERO * or more queues running and submitting waves to compute units. * * @adev: Handle of device from which to get number of waves in flight * @pasid: Identifies the process for which this query call is invoked * @pasid_wave_cnt: Output parameter updated with number of waves in flight that * belong to process with given pasid * @max_waves_per_cu: Output parameter updated with maximum number of waves * possible per Compute Unit * @inst: xcc's instance number on a multi-XCC setup * * Note: It's possible that the device has too many queues (oversubscription) * in which case a VMID could be remapped to a different PASID. This could lead * to an inaccurate wave count. Following is a high-level sequence: * Time T1: vmid = getVmid(); vmid is associated with Pasid P1 * Time T2: passId = getPasId(vmid); vmid is associated with Pasid P2 * In the sequence above wave count obtained from time T1 will be incorrectly * lost or added to total wave count. * * The registers that provide the waves in flight are: * * SPI_CSQ_WF_ACTIVE_STATUS - bit-map of queues per pipe. The bit is ON if a * queue is slotted, OFF if there is no queue. A process could have ZERO or * more queues slotted and submitting waves to be run on compute units. Even * when there is a queue it is possible there could be zero wave fronts, this * can happen when queue is waiting on top-of-pipe events - e.g. waitRegMem * command * * For each bit that is ON from above: * * Read (SPI_CSQ_WF_ACTIVE_COUNT_0 + queue_idx) register. It provides the * number of waves that are in flight for the queue at specified index. The * index ranges from 0 to 7. * * If non-zero waves are in flight, read CP_HQD_VMID register to obtain VMID * of the wave(s). * * Determine if VMID from above step maps to pasid provided as parameter. If * it matches agrregate the wave count. That the VMID will not match pasid is * a normal condition i.e. a device is expected to support multiple queues * from multiple proceses. * * Reading registers referenced above involves programming GRBM appropriately */ void kgd_gfx_v9_get_cu_occupancy(struct amdgpu_device *adev, int pasid, int *pasid_wave_cnt, int *max_waves_per_cu, uint32_t inst) { int qidx; int vmid; int se_idx; int sh_idx; int se_cnt; int sh_cnt; int wave_cnt; int queue_map; int pasid_tmp; int max_queue_cnt; int vmid_wave_cnt = 0; DECLARE_BITMAP(cp_queue_bitmap, AMDGPU_MAX_QUEUES); lock_spi_csq_mutexes(adev); soc15_grbm_select(adev, 1, 0, 0, 0, inst); /* * Iterate through the shader engines and arrays of the device * to get number of waves in flight */ bitmap_complement(cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_QUEUES); max_queue_cnt = adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; sh_cnt = adev->gfx.config.max_sh_per_se; se_cnt = adev->gfx.config.max_shader_engines; for (se_idx = 0; se_idx < se_cnt; se_idx++) { for (sh_idx = 0; sh_idx < sh_cnt; sh_idx++) { amdgpu_gfx_select_se_sh(adev, se_idx, sh_idx, 0xffffffff, inst); queue_map = RREG32_SOC15(GC, inst, mmSPI_CSQ_WF_ACTIVE_STATUS); /* * Assumption: queue map encodes following schema: four * pipes per each micro-engine, with each pipe mapping * eight queues. This schema is true for GFX9 devices * and must be verified for newer device families */ for (qidx = 0; qidx < max_queue_cnt; qidx++) { /* Skip qeueus that are not associated with * compute functions */ if (!test_bit(qidx, cp_queue_bitmap)) continue; if (!(queue_map & (1 << qidx))) continue; /* Get number of waves in flight and aggregate them */ get_wave_count(adev, qidx, &wave_cnt, &vmid, inst); if (wave_cnt != 0) { pasid_tmp = RREG32(SOC15_REG_OFFSET(OSSSYS, inst, mmIH_VMID_0_LUT) + vmid); if (pasid_tmp == pasid) vmid_wave_cnt += wave_cnt; } } } } amdgpu_gfx_select_se_sh(adev, 0xffffffff, 0xffffffff, 0xffffffff, inst); soc15_grbm_select(adev, 0, 0, 0, 0, inst); unlock_spi_csq_mutexes(adev); /* Update the output parameters and return */ *pasid_wave_cnt = vmid_wave_cnt; *max_waves_per_cu = adev->gfx.cu_info.simd_per_cu * adev->gfx.cu_info.max_waves_per_simd; } void kgd_gfx_v9_build_grace_period_packet_info(struct amdgpu_device *adev, uint32_t wait_times, uint32_t grace_period, uint32_t *reg_offset, uint32_t *reg_data) { *reg_data = wait_times; /* * The CP cannot handle a 0 grace period input and will result in * an infinite grace period being set so set to 1 to prevent this. */ if (grace_period == 0) grace_period = 1; *reg_data = REG_SET_FIELD(*reg_data, CP_IQ_WAIT_TIME2, SCH_WAVE, grace_period); *reg_offset = SOC15_REG_OFFSET(GC, 0, mmCP_IQ_WAIT_TIME2); } void kgd_gfx_v9_program_trap_handler_settings(struct amdgpu_device *adev, uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr, uint32_t inst) { kgd_gfx_v9_lock_srbm(adev, 0, 0, 0, vmid, inst); /* * Program TBA registers */ WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_LO, lower_32_bits(tba_addr >> 8)); WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TBA_HI, upper_32_bits(tba_addr >> 8)); /* * Program TMA registers */ WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_LO, lower_32_bits(tma_addr >> 8)); WREG32_SOC15(GC, GET_INST(GC, inst), mmSQ_SHADER_TMA_HI, upper_32_bits(tma_addr >> 8)); kgd_gfx_v9_unlock_srbm(adev, inst); } uint64_t kgd_gfx_v9_hqd_get_pq_addr(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t inst) { uint32_t low, high; uint64_t queue_addr = 0; if (!adev->debug_exp_resets && !adev->gfx.num_gfx_rings) return 0; kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); amdgpu_gfx_rlc_enter_safe_mode(adev, inst); if (!RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE)) goto unlock_out; low = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE); high = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI); /* only concerned with user queues. */ if (!high) goto unlock_out; queue_addr = (((queue_addr | high) << 32) | low) << 8; unlock_out: amdgpu_gfx_rlc_exit_safe_mode(adev, inst); kgd_gfx_v9_release_queue(adev, inst); return queue_addr; } /* assume queue acquired */ static int kgd_gfx_v9_hqd_dequeue_wait(struct amdgpu_device *adev, uint32_t inst, unsigned int utimeout) { unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies; while (true) { uint32_t temp = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE); if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK)) return 0; if (time_after(jiffies, end_jiffies)) return -ETIME; usleep_range(500, 1000); } } uint64_t kgd_gfx_v9_hqd_reset(struct amdgpu_device *adev, uint32_t pipe_id, uint32_t queue_id, uint32_t inst, unsigned int utimeout) { uint32_t low, high, pipe_reset_data = 0; uint64_t queue_addr = 0; kgd_gfx_v9_acquire_queue(adev, pipe_id, queue_id, inst); amdgpu_gfx_rlc_enter_safe_mode(adev, inst); if (!RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_ACTIVE)) goto unlock_out; low = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE); high = RREG32_SOC15(GC, GET_INST(GC, inst), mmCP_HQD_PQ_BASE_HI); /* only concerned with user queues. */ if (!high) goto unlock_out; queue_addr = (((queue_addr | high) << 32) | low) << 8; pr_debug("Attempting queue reset on XCC %i pipe id %i queue id %i\n", inst, pipe_id, queue_id); /* assume previous dequeue request issued will take affect after reset */ WREG32_SOC15(GC, GET_INST(GC, inst), mmSPI_COMPUTE_QUEUE_RESET, 0x1); if (!kgd_gfx_v9_hqd_dequeue_wait(adev, inst, utimeout)) goto unlock_out; pr_debug("Attempting pipe reset on XCC %i pipe id %i\n", inst, pipe_id); pipe_reset_data = REG_SET_FIELD(pipe_reset_data, CP_MEC_CNTL, MEC_ME1_PIPE0_RESET, 1); pipe_reset_data = pipe_reset_data << pipe_id; WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_MEC_CNTL, pipe_reset_data); WREG32_SOC15(GC, GET_INST(GC, inst), mmCP_MEC_CNTL, 0); if (kgd_gfx_v9_hqd_dequeue_wait(adev, inst, utimeout)) queue_addr = 0; unlock_out: pr_debug("queue reset on XCC %i pipe id %i queue id %i %s\n", inst, pipe_id, queue_id, !!queue_addr ? "succeeded!" : "failed!"); amdgpu_gfx_rlc_exit_safe_mode(adev, inst); kgd_gfx_v9_release_queue(adev, inst); return queue_addr; } const struct kfd2kgd_calls gfx_v9_kfd2kgd = { .program_sh_mem_settings = kgd_gfx_v9_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_gfx_v9_set_pasid_vmid_mapping, .init_interrupts = kgd_gfx_v9_init_interrupts, .hqd_load = kgd_gfx_v9_hqd_load, .hiq_mqd_load = kgd_gfx_v9_hiq_mqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_dump = kgd_gfx_v9_hqd_dump, .hqd_sdma_dump = kgd_hqd_sdma_dump, .hqd_is_occupied = kgd_gfx_v9_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_gfx_v9_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .wave_control_execute = kgd_gfx_v9_wave_control_execute, .get_atc_vmid_pasid_mapping_info = kgd_gfx_v9_get_atc_vmid_pasid_mapping_info, .set_vm_context_page_table_base = kgd_gfx_v9_set_vm_context_page_table_base, .enable_debug_trap = kgd_gfx_v9_enable_debug_trap, .disable_debug_trap = kgd_gfx_v9_disable_debug_trap, .validate_trap_override_request = kgd_gfx_v9_validate_trap_override_request, .set_wave_launch_trap_override = kgd_gfx_v9_set_wave_launch_trap_override, .set_wave_launch_mode = kgd_gfx_v9_set_wave_launch_mode, .set_address_watch = kgd_gfx_v9_set_address_watch, .clear_address_watch = kgd_gfx_v9_clear_address_watch, .get_iq_wait_times = kgd_gfx_v9_get_iq_wait_times, .build_grace_period_packet_info = kgd_gfx_v9_build_grace_period_packet_info, .get_cu_occupancy = kgd_gfx_v9_get_cu_occupancy, .program_trap_handler_settings = kgd_gfx_v9_program_trap_handler_settings, .hqd_get_pq_addr = kgd_gfx_v9_hqd_get_pq_addr, .hqd_reset = kgd_gfx_v9_hqd_reset };