// SPDX-License-Identifier: MIT /* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "amdgpu_amdkfd.h" #include "amd_pcie.h" #include "amd_shared.h" #include "amdgpu.h" #include "amdgpu_gfx.h" #include "amdgpu_dma_buf.h" #include #include #include #include "amdgpu_xgmi.h" #include #include "amdgpu_ras.h" #include "amdgpu_umc.h" #include "amdgpu_reset.h" /* Total memory size in system memory and all GPU VRAM. Used to * estimate worst case amount of memory to reserve for page tables */ uint64_t amdgpu_amdkfd_total_mem_size; static bool kfd_initialized; int amdgpu_amdkfd_init(void) { struct sysinfo si; int ret; si_meminfo(&si); amdgpu_amdkfd_total_mem_size = si.freeram - si.freehigh; amdgpu_amdkfd_total_mem_size *= si.mem_unit; ret = kgd2kfd_init(); kfd_initialized = !ret; return ret; } void amdgpu_amdkfd_fini(void) { if (kfd_initialized) { kgd2kfd_exit(); kfd_initialized = false; } } void amdgpu_amdkfd_device_probe(struct amdgpu_device *adev) { bool vf = amdgpu_sriov_vf(adev); if (!kfd_initialized) return; adev->kfd.dev = kgd2kfd_probe(adev, vf); } /** * amdgpu_doorbell_get_kfd_info - Report doorbell configuration required to * setup amdkfd * * @adev: amdgpu_device pointer * @aperture_base: output returning doorbell aperture base physical address * @aperture_size: output returning doorbell aperture size in bytes * @start_offset: output returning # of doorbell bytes reserved for amdgpu. * * amdgpu and amdkfd share the doorbell aperture. amdgpu sets it up, * takes doorbells required for its own rings and reports the setup to amdkfd. * amdgpu reserved doorbells are at the start of the doorbell aperture. */ static void amdgpu_doorbell_get_kfd_info(struct amdgpu_device *adev, phys_addr_t *aperture_base, size_t *aperture_size, size_t *start_offset) { /* * The first num_kernel_doorbells are used by amdgpu. * amdkfd takes whatever's left in the aperture. */ if (adev->enable_mes) { /* * With MES enabled, we only need to initialize * the base address. The size and offset are * not initialized as AMDGPU manages the whole * doorbell space. */ *aperture_base = adev->doorbell.base; *aperture_size = 0; *start_offset = 0; } else if (adev->doorbell.size > adev->doorbell.num_kernel_doorbells * sizeof(u32)) { *aperture_base = adev->doorbell.base; *aperture_size = adev->doorbell.size; *start_offset = adev->doorbell.num_kernel_doorbells * sizeof(u32); } else { *aperture_base = 0; *aperture_size = 0; *start_offset = 0; } } static void amdgpu_amdkfd_reset_work(struct work_struct *work) { struct amdgpu_device *adev = container_of(work, struct amdgpu_device, kfd.reset_work); struct amdgpu_reset_context reset_context; memset(&reset_context, 0, sizeof(reset_context)); reset_context.method = AMD_RESET_METHOD_NONE; reset_context.reset_req_dev = adev; reset_context.src = adev->enable_mes ? AMDGPU_RESET_SRC_MES : AMDGPU_RESET_SRC_HWS; clear_bit(AMDGPU_NEED_FULL_RESET, &reset_context.flags); amdgpu_device_gpu_recover(adev, NULL, &reset_context); } static const struct drm_client_funcs kfd_client_funcs = { .unregister = drm_client_release, }; int amdgpu_amdkfd_drm_client_create(struct amdgpu_device *adev) { int ret; if (!adev->kfd.init_complete || adev->kfd.client.dev) return 0; ret = drm_client_init(&adev->ddev, &adev->kfd.client, "kfd", &kfd_client_funcs); if (ret) { dev_err(adev->dev, "Failed to init DRM client: %d\n", ret); return ret; } drm_client_register(&adev->kfd.client); return 0; } void amdgpu_amdkfd_device_init(struct amdgpu_device *adev) { int i; int last_valid_bit; amdgpu_amdkfd_gpuvm_init_mem_limits(); if (adev->kfd.dev) { struct kgd2kfd_shared_resources gpu_resources = { .compute_vmid_bitmap = ((1 << AMDGPU_NUM_VMID) - 1) - ((1 << adev->vm_manager.first_kfd_vmid) - 1), .num_pipe_per_mec = adev->gfx.mec.num_pipe_per_mec, .num_queue_per_pipe = adev->gfx.mec.num_queue_per_pipe, .gpuvm_size = min(adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT, AMDGPU_GMC_HOLE_START), .drm_render_minor = adev_to_drm(adev)->render->index, .sdma_doorbell_idx = adev->doorbell_index.sdma_engine, .enable_mes = adev->enable_mes, }; /* this is going to have a few of the MSBs set that we need to * clear */ bitmap_complement(gpu_resources.cp_queue_bitmap, adev->gfx.mec_bitmap[0].queue_bitmap, AMDGPU_MAX_QUEUES); /* According to linux/bitmap.h we shouldn't use bitmap_clear if * nbits is not compile time constant */ last_valid_bit = 1 /* only first MEC can have compute queues */ * adev->gfx.mec.num_pipe_per_mec * adev->gfx.mec.num_queue_per_pipe; for (i = last_valid_bit; i < AMDGPU_MAX_QUEUES; ++i) clear_bit(i, gpu_resources.cp_queue_bitmap); amdgpu_doorbell_get_kfd_info(adev, &gpu_resources.doorbell_physical_address, &gpu_resources.doorbell_aperture_size, &gpu_resources.doorbell_start_offset); /* Since SOC15, BIF starts to statically use the * lower 12 bits of doorbell addresses for routing * based on settings in registers like * SDMA0_DOORBELL_RANGE etc.. * In order to route a doorbell to CP engine, the lower * 12 bits of its address has to be outside the range * set for SDMA, VCN, and IH blocks. */ if (adev->asic_type >= CHIP_VEGA10) { gpu_resources.non_cp_doorbells_start = adev->doorbell_index.first_non_cp; gpu_resources.non_cp_doorbells_end = adev->doorbell_index.last_non_cp; } adev->kfd.init_complete = kgd2kfd_device_init(adev->kfd.dev, &gpu_resources); amdgpu_amdkfd_total_mem_size += adev->gmc.real_vram_size; INIT_WORK(&adev->kfd.reset_work, amdgpu_amdkfd_reset_work); } } void amdgpu_amdkfd_device_fini_sw(struct amdgpu_device *adev) { if (adev->kfd.dev) { kgd2kfd_device_exit(adev->kfd.dev); adev->kfd.dev = NULL; amdgpu_amdkfd_total_mem_size -= adev->gmc.real_vram_size; } } void amdgpu_amdkfd_interrupt(struct amdgpu_device *adev, const void *ih_ring_entry) { if (adev->kfd.dev) kgd2kfd_interrupt(adev->kfd.dev, ih_ring_entry); } void amdgpu_amdkfd_suspend(struct amdgpu_device *adev, bool run_pm) { if (adev->kfd.dev) kgd2kfd_suspend(adev->kfd.dev, run_pm); } int amdgpu_amdkfd_resume(struct amdgpu_device *adev, bool run_pm) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_resume(adev->kfd.dev, run_pm); return r; } int amdgpu_amdkfd_pre_reset(struct amdgpu_device *adev, struct amdgpu_reset_context *reset_context) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_pre_reset(adev->kfd.dev, reset_context); return r; } int amdgpu_amdkfd_post_reset(struct amdgpu_device *adev) { int r = 0; if (adev->kfd.dev) r = kgd2kfd_post_reset(adev->kfd.dev); return r; } void amdgpu_amdkfd_gpu_reset(struct amdgpu_device *adev) { if (amdgpu_device_should_recover_gpu(adev)) amdgpu_reset_domain_schedule(adev->reset_domain, &adev->kfd.reset_work); } int amdgpu_amdkfd_alloc_gtt_mem(struct amdgpu_device *adev, size_t size, void **mem_obj, uint64_t *gpu_addr, void **cpu_ptr, bool cp_mqd_gfx9) { struct amdgpu_bo *bo = NULL; struct amdgpu_bo_param bp; int r; void *cpu_ptr_tmp = NULL; memset(&bp, 0, sizeof(bp)); bp.size = size; bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_GTT; bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC; bp.type = ttm_bo_type_kernel; bp.resv = NULL; bp.bo_ptr_size = sizeof(struct amdgpu_bo); if (cp_mqd_gfx9) bp.flags |= AMDGPU_GEM_CREATE_CP_MQD_GFX9; r = amdgpu_bo_create(adev, &bp, &bo); if (r) { dev_err(adev->dev, "failed to allocate BO for amdkfd (%d)\n", r); return r; } /* map the buffer */ r = amdgpu_bo_reserve(bo, true); if (r) { dev_err(adev->dev, "(%d) failed to reserve bo for amdkfd\n", r); goto allocate_mem_reserve_bo_failed; } r = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); if (r) { dev_err(adev->dev, "(%d) failed to pin bo for amdkfd\n", r); goto allocate_mem_pin_bo_failed; } r = amdgpu_ttm_alloc_gart(&bo->tbo); if (r) { dev_err(adev->dev, "%p bind failed\n", bo); goto allocate_mem_kmap_bo_failed; } r = amdgpu_bo_kmap(bo, &cpu_ptr_tmp); if (r) { dev_err(adev->dev, "(%d) failed to map bo to kernel for amdkfd\n", r); goto allocate_mem_kmap_bo_failed; } *mem_obj = bo; *gpu_addr = amdgpu_bo_gpu_offset(bo); *cpu_ptr = cpu_ptr_tmp; amdgpu_bo_unreserve(bo); return 0; allocate_mem_kmap_bo_failed: amdgpu_bo_unpin(bo); allocate_mem_pin_bo_failed: amdgpu_bo_unreserve(bo); allocate_mem_reserve_bo_failed: amdgpu_bo_unref(&bo); return r; } void amdgpu_amdkfd_free_gtt_mem(struct amdgpu_device *adev, void **mem_obj) { struct amdgpu_bo **bo = (struct amdgpu_bo **) mem_obj; amdgpu_bo_reserve(*bo, true); amdgpu_bo_kunmap(*bo); amdgpu_bo_unpin(*bo); amdgpu_bo_unreserve(*bo); amdgpu_bo_unref(bo); } int amdgpu_amdkfd_alloc_gws(struct amdgpu_device *adev, size_t size, void **mem_obj) { struct amdgpu_bo *bo = NULL; struct amdgpu_bo_user *ubo; struct amdgpu_bo_param bp; int r; memset(&bp, 0, sizeof(bp)); bp.size = size; bp.byte_align = 1; bp.domain = AMDGPU_GEM_DOMAIN_GWS; bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; bp.type = ttm_bo_type_device; bp.resv = NULL; bp.bo_ptr_size = sizeof(struct amdgpu_bo); r = amdgpu_bo_create_user(adev, &bp, &ubo); if (r) { dev_err(adev->dev, "failed to allocate gws BO for amdkfd (%d)\n", r); return r; } bo = &ubo->bo; *mem_obj = bo; return 0; } void amdgpu_amdkfd_free_gws(struct amdgpu_device *adev, void *mem_obj) { struct amdgpu_bo *bo = (struct amdgpu_bo *)mem_obj; amdgpu_bo_unref(&bo); } uint32_t amdgpu_amdkfd_get_fw_version(struct amdgpu_device *adev, enum kgd_engine_type type) { switch (type) { case KGD_ENGINE_PFP: return adev->gfx.pfp_fw_version; case KGD_ENGINE_ME: return adev->gfx.me_fw_version; case KGD_ENGINE_CE: return adev->gfx.ce_fw_version; case KGD_ENGINE_MEC1: return adev->gfx.mec_fw_version; case KGD_ENGINE_MEC2: return adev->gfx.mec2_fw_version; case KGD_ENGINE_RLC: return adev->gfx.rlc_fw_version; case KGD_ENGINE_SDMA1: return adev->sdma.instance[0].fw_version; case KGD_ENGINE_SDMA2: return adev->sdma.instance[1].fw_version; default: return 0; } return 0; } void amdgpu_amdkfd_get_local_mem_info(struct amdgpu_device *adev, struct kfd_local_mem_info *mem_info, struct amdgpu_xcp *xcp) { memset(mem_info, 0, sizeof(*mem_info)); if (xcp) { if (adev->gmc.real_vram_size == adev->gmc.visible_vram_size) mem_info->local_mem_size_public = KFD_XCP_MEMORY_SIZE(adev, xcp->id); else mem_info->local_mem_size_private = KFD_XCP_MEMORY_SIZE(adev, xcp->id); } else if (adev->flags & AMD_IS_APU) { mem_info->local_mem_size_public = (ttm_tt_pages_limit() << PAGE_SHIFT); mem_info->local_mem_size_private = 0; } else { mem_info->local_mem_size_public = adev->gmc.visible_vram_size; mem_info->local_mem_size_private = adev->gmc.real_vram_size - adev->gmc.visible_vram_size; } mem_info->vram_width = adev->gmc.vram_width; pr_debug("Address base: %pap public 0x%llx private 0x%llx\n", &adev->gmc.aper_base, mem_info->local_mem_size_public, mem_info->local_mem_size_private); if (adev->pm.dpm_enabled) { if (amdgpu_emu_mode == 1) mem_info->mem_clk_max = 0; else mem_info->mem_clk_max = amdgpu_dpm_get_mclk(adev, false) / 100; } else mem_info->mem_clk_max = 100; } uint64_t amdgpu_amdkfd_get_gpu_clock_counter(struct amdgpu_device *adev) { if (adev->gfx.funcs->get_gpu_clock_counter) return adev->gfx.funcs->get_gpu_clock_counter(adev); return 0; } uint32_t amdgpu_amdkfd_get_max_engine_clock_in_mhz(struct amdgpu_device *adev) { /* the sclk is in quantas of 10kHz */ if (adev->pm.dpm_enabled) return amdgpu_dpm_get_sclk(adev, false) / 100; else return 100; } int amdgpu_amdkfd_get_dmabuf_info(struct amdgpu_device *adev, int dma_buf_fd, struct amdgpu_device **dmabuf_adev, uint64_t *bo_size, void *metadata_buffer, size_t buffer_size, uint32_t *metadata_size, uint32_t *flags, int8_t *xcp_id) { struct dma_buf *dma_buf; struct drm_gem_object *obj; struct amdgpu_bo *bo; uint64_t metadata_flags; int r = -EINVAL; dma_buf = dma_buf_get(dma_buf_fd); if (IS_ERR(dma_buf)) return PTR_ERR(dma_buf); if (dma_buf->ops != &amdgpu_dmabuf_ops) /* Can't handle non-graphics buffers */ goto out_put; obj = dma_buf->priv; if (obj->dev->driver != adev_to_drm(adev)->driver) /* Can't handle buffers from different drivers */ goto out_put; adev = drm_to_adev(obj->dev); bo = gem_to_amdgpu_bo(obj); if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT))) /* Only VRAM and GTT BOs are supported */ goto out_put; r = 0; if (dmabuf_adev) *dmabuf_adev = adev; if (bo_size) *bo_size = amdgpu_bo_size(bo); if (metadata_buffer) r = amdgpu_bo_get_metadata(bo, metadata_buffer, buffer_size, metadata_size, &metadata_flags); if (flags) { *flags = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? KFD_IOC_ALLOC_MEM_FLAGS_VRAM : KFD_IOC_ALLOC_MEM_FLAGS_GTT; if (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) *flags |= KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC; } if (xcp_id) *xcp_id = bo->xcp_id; out_put: dma_buf_put(dma_buf); return r; } uint8_t amdgpu_amdkfd_get_xgmi_hops_count(struct amdgpu_device *dst, struct amdgpu_device *src) { struct amdgpu_device *peer_adev = src; struct amdgpu_device *adev = dst; int ret = amdgpu_xgmi_get_hops_count(adev, peer_adev); if (ret < 0) { DRM_ERROR("amdgpu: failed to get xgmi hops count between node %d and %d. ret = %d\n", adev->gmc.xgmi.physical_node_id, peer_adev->gmc.xgmi.physical_node_id, ret); ret = 0; } return (uint8_t)ret; } int amdgpu_amdkfd_get_xgmi_bandwidth_mbytes(struct amdgpu_device *dst, struct amdgpu_device *src, bool is_min) { struct amdgpu_device *adev = dst, *peer_adev; int num_links; if (amdgpu_ip_version(adev, GC_HWIP, 0) < IP_VERSION(9, 4, 2)) return 0; if (src) peer_adev = src; /* num links returns 0 for indirect peers since indirect route is unknown. */ num_links = is_min ? 1 : amdgpu_xgmi_get_num_links(adev, peer_adev); if (num_links < 0) { DRM_ERROR("amdgpu: failed to get xgmi num links between node %d and %d. ret = %d\n", adev->gmc.xgmi.physical_node_id, peer_adev->gmc.xgmi.physical_node_id, num_links); num_links = 0; } /* Aldebaran xGMI DPM is defeatured so assume x16 x 25Gbps for bandwidth. */ return (num_links * 16 * 25000)/BITS_PER_BYTE; } int amdgpu_amdkfd_get_pcie_bandwidth_mbytes(struct amdgpu_device *adev, bool is_min) { int num_lanes_shift = (is_min ? ffs(adev->pm.pcie_mlw_mask) : fls(adev->pm.pcie_mlw_mask)) - 1; int gen_speed_shift = (is_min ? ffs(adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_MASK) : fls(adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_MASK)) - 1; uint32_t num_lanes_mask = 1 << num_lanes_shift; uint32_t gen_speed_mask = 1 << gen_speed_shift; int num_lanes_factor = 0, gen_speed_mbits_factor = 0; switch (num_lanes_mask) { case CAIL_PCIE_LINK_WIDTH_SUPPORT_X1: num_lanes_factor = 1; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X2: num_lanes_factor = 2; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X4: num_lanes_factor = 4; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X8: num_lanes_factor = 8; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X12: num_lanes_factor = 12; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X16: num_lanes_factor = 16; break; case CAIL_PCIE_LINK_WIDTH_SUPPORT_X32: num_lanes_factor = 32; break; } switch (gen_speed_mask) { case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1: gen_speed_mbits_factor = 2500; break; case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2: gen_speed_mbits_factor = 5000; break; case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3: gen_speed_mbits_factor = 8000; break; case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4: gen_speed_mbits_factor = 16000; break; case CAIL_PCIE_LINK_SPEED_SUPPORT_GEN5: gen_speed_mbits_factor = 32000; break; } return (num_lanes_factor * gen_speed_mbits_factor)/BITS_PER_BYTE; } int amdgpu_amdkfd_submit_ib(struct amdgpu_device *adev, enum kgd_engine_type engine, uint32_t vmid, uint64_t gpu_addr, uint32_t *ib_cmd, uint32_t ib_len) { struct amdgpu_job *job; struct amdgpu_ib *ib; struct amdgpu_ring *ring; struct dma_fence *f = NULL; int ret; switch (engine) { case KGD_ENGINE_MEC1: ring = &adev->gfx.compute_ring[0]; break; case KGD_ENGINE_SDMA1: ring = &adev->sdma.instance[0].ring; break; case KGD_ENGINE_SDMA2: ring = &adev->sdma.instance[1].ring; break; default: pr_err("Invalid engine in IB submission: %d\n", engine); ret = -EINVAL; goto err; } ret = amdgpu_job_alloc(adev, NULL, NULL, NULL, 1, &job); if (ret) goto err; ib = &job->ibs[0]; memset(ib, 0, sizeof(struct amdgpu_ib)); ib->gpu_addr = gpu_addr; ib->ptr = ib_cmd; ib->length_dw = ib_len; /* This works for NO_HWS. TODO: need to handle without knowing VMID */ job->vmid = vmid; job->num_ibs = 1; ret = amdgpu_ib_schedule(ring, 1, ib, job, &f); if (ret) { DRM_ERROR("amdgpu: failed to schedule IB.\n"); goto err_ib_sched; } /* Drop the initial kref_init count (see drm_sched_main as example) */ dma_fence_put(f); ret = dma_fence_wait(f, false); err_ib_sched: amdgpu_job_free(job); err: return ret; } void amdgpu_amdkfd_set_compute_idle(struct amdgpu_device *adev, bool idle) { enum amd_powergating_state state = idle ? AMD_PG_STATE_GATE : AMD_PG_STATE_UNGATE; if (IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) == 11 && ((adev->mes.kiq_version & AMDGPU_MES_VERSION_MASK) <= 64)) { pr_debug("GFXOFF is %s\n", idle ? "enabled" : "disabled"); amdgpu_gfx_off_ctrl(adev, idle); } else if ((IP_VERSION_MAJ(amdgpu_ip_version(adev, GC_HWIP, 0)) == 9) && (adev->flags & AMD_IS_APU)) { /* Disable GFXOFF and PG. Temporary workaround * to fix some compute applications issue on GFX9. */ adev->ip_blocks[AMD_IP_BLOCK_TYPE_GFX].version->funcs->set_powergating_state((void *)adev, state); } amdgpu_dpm_switch_power_profile(adev, PP_SMC_POWER_PROFILE_COMPUTE, !idle); } bool amdgpu_amdkfd_is_kfd_vmid(struct amdgpu_device *adev, u32 vmid) { if (adev->kfd.dev) return vmid >= adev->vm_manager.first_kfd_vmid; return false; } bool amdgpu_amdkfd_have_atomics_support(struct amdgpu_device *adev) { return adev->have_atomics_support; } void amdgpu_amdkfd_debug_mem_fence(struct amdgpu_device *adev) { amdgpu_device_flush_hdp(adev, NULL); } bool amdgpu_amdkfd_is_fed(struct amdgpu_device *adev) { return amdgpu_ras_get_fed_status(adev); } void amdgpu_amdkfd_ras_pasid_poison_consumption_handler(struct amdgpu_device *adev, enum amdgpu_ras_block block, uint16_t pasid, pasid_notify pasid_fn, void *data, uint32_t reset) { amdgpu_umc_pasid_poison_handler(adev, block, pasid, pasid_fn, data, reset); } void amdgpu_amdkfd_ras_poison_consumption_handler(struct amdgpu_device *adev, enum amdgpu_ras_block block, uint32_t reset) { amdgpu_umc_pasid_poison_handler(adev, block, 0, NULL, NULL, reset); } int amdgpu_amdkfd_send_close_event_drain_irq(struct amdgpu_device *adev, uint32_t *payload) { int ret; /* Device or IH ring is not ready so bail. */ ret = amdgpu_ih_wait_on_checkpoint_process_ts(adev, &adev->irq.ih); if (ret) return ret; /* Send payload to fence KFD interrupts */ amdgpu_amdkfd_interrupt(adev, payload); return 0; } int amdgpu_amdkfd_check_and_lock_kfd(struct amdgpu_device *adev) { return kgd2kfd_check_and_lock_kfd(); } void amdgpu_amdkfd_unlock_kfd(struct amdgpu_device *adev) { kgd2kfd_unlock_kfd(); } u64 amdgpu_amdkfd_xcp_memory_size(struct amdgpu_device *adev, int xcp_id) { s8 mem_id = KFD_XCP_MEM_ID(adev, xcp_id); u64 tmp; if (adev->gmc.num_mem_partitions && xcp_id >= 0 && mem_id >= 0) { if (adev->gmc.is_app_apu && adev->gmc.num_mem_partitions == 1) { /* In NPS1 mode, we should restrict the vram reporting * tied to the ttm_pages_limit which is 1/2 of the system * memory. For other partition modes, the HBM is uniformly * divided already per numa node reported. If user wants to * go beyond the default ttm limit and maximize the ROCm * allocations, they can go up to max ttm and sysmem limits. */ tmp = (ttm_tt_pages_limit() << PAGE_SHIFT) / num_online_nodes(); } else { tmp = adev->gmc.mem_partitions[mem_id].size; } do_div(tmp, adev->xcp_mgr->num_xcp_per_mem_partition); return ALIGN_DOWN(tmp, PAGE_SIZE); } else if (adev->flags & AMD_IS_APU) { return (ttm_tt_pages_limit() << PAGE_SHIFT); } else { return adev->gmc.real_vram_size; } } int amdgpu_amdkfd_unmap_hiq(struct amdgpu_device *adev, u32 doorbell_off, u32 inst) { struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; struct amdgpu_ring *kiq_ring = &kiq->ring; struct amdgpu_ring_funcs *ring_funcs; struct amdgpu_ring *ring; int r = 0; if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues) return -EINVAL; ring_funcs = kzalloc(sizeof(*ring_funcs), GFP_KERNEL); if (!ring_funcs) return -ENOMEM; ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) { r = -ENOMEM; goto free_ring_funcs; } ring_funcs->type = AMDGPU_RING_TYPE_COMPUTE; ring->doorbell_index = doorbell_off; ring->funcs = ring_funcs; spin_lock(&kiq->ring_lock); if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size)) { spin_unlock(&kiq->ring_lock); r = -ENOMEM; goto free_ring; } kiq->pmf->kiq_unmap_queues(kiq_ring, ring, RESET_QUEUES, 0, 0); if (kiq_ring->sched.ready && !adev->job_hang) r = amdgpu_ring_test_helper(kiq_ring); spin_unlock(&kiq->ring_lock); free_ring: kfree(ring); free_ring_funcs: kfree(ring_funcs); return r; } /* Stop scheduling on KFD */ int amdgpu_amdkfd_stop_sched(struct amdgpu_device *adev, uint32_t node_id) { if (!adev->kfd.init_complete) return 0; return kgd2kfd_stop_sched(adev->kfd.dev, node_id); } /* Start scheduling on KFD */ int amdgpu_amdkfd_start_sched(struct amdgpu_device *adev, uint32_t node_id) { if (!adev->kfd.init_complete) return 0; return kgd2kfd_start_sched(adev->kfd.dev, node_id); }