// SPDX-License-Identifier: GPL-2.0 /* * Xilinx ZynqMP DPDMA Engine driver * * Copyright (C) 2015 - 2020 Xilinx, Inc. * * Author: Hyun Woo Kwon */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../dmaengine.h" #include "../virt-dma.h" /* DPDMA registers */ #define XILINX_DPDMA_ERR_CTRL 0x000 #define XILINX_DPDMA_ISR 0x004 #define XILINX_DPDMA_IMR 0x008 #define XILINX_DPDMA_IEN 0x00c #define XILINX_DPDMA_IDS 0x010 #define XILINX_DPDMA_INTR_DESC_DONE(n) BIT((n) + 0) #define XILINX_DPDMA_INTR_DESC_DONE_MASK GENMASK(5, 0) #define XILINX_DPDMA_INTR_NO_OSTAND(n) BIT((n) + 6) #define XILINX_DPDMA_INTR_NO_OSTAND_MASK GENMASK(11, 6) #define XILINX_DPDMA_INTR_AXI_ERR(n) BIT((n) + 12) #define XILINX_DPDMA_INTR_AXI_ERR_MASK GENMASK(17, 12) #define XILINX_DPDMA_INTR_DESC_ERR(n) BIT((n) + 16) #define XILINX_DPDMA_INTR_DESC_ERR_MASK GENMASK(23, 18) #define XILINX_DPDMA_INTR_WR_CMD_FIFO_FULL BIT(24) #define XILINX_DPDMA_INTR_WR_DATA_FIFO_FULL BIT(25) #define XILINX_DPDMA_INTR_AXI_4K_CROSS BIT(26) #define XILINX_DPDMA_INTR_VSYNC BIT(27) #define XILINX_DPDMA_INTR_CHAN_ERR_MASK 0x00041000 #define XILINX_DPDMA_INTR_CHAN_ERR 0x00fff000 #define XILINX_DPDMA_INTR_GLOBAL_ERR 0x07000000 #define XILINX_DPDMA_INTR_ERR_ALL 0x07fff000 #define XILINX_DPDMA_INTR_CHAN_MASK 0x00041041 #define XILINX_DPDMA_INTR_GLOBAL_MASK 0x0f000000 #define XILINX_DPDMA_INTR_ALL 0x0fffffff #define XILINX_DPDMA_EISR 0x014 #define XILINX_DPDMA_EIMR 0x018 #define XILINX_DPDMA_EIEN 0x01c #define XILINX_DPDMA_EIDS 0x020 #define XILINX_DPDMA_EINTR_INV_APB BIT(0) #define XILINX_DPDMA_EINTR_RD_AXI_ERR(n) BIT((n) + 1) #define XILINX_DPDMA_EINTR_RD_AXI_ERR_MASK GENMASK(6, 1) #define XILINX_DPDMA_EINTR_PRE_ERR(n) BIT((n) + 7) #define XILINX_DPDMA_EINTR_PRE_ERR_MASK GENMASK(12, 7) #define XILINX_DPDMA_EINTR_CRC_ERR(n) BIT((n) + 13) #define XILINX_DPDMA_EINTR_CRC_ERR_MASK GENMASK(18, 13) #define XILINX_DPDMA_EINTR_WR_AXI_ERR(n) BIT((n) + 19) #define XILINX_DPDMA_EINTR_WR_AXI_ERR_MASK GENMASK(24, 19) #define XILINX_DPDMA_EINTR_DESC_DONE_ERR(n) BIT((n) + 25) #define XILINX_DPDMA_EINTR_DESC_DONE_ERR_MASK GENMASK(30, 25) #define XILINX_DPDMA_EINTR_RD_CMD_FIFO_FULL BIT(32) #define XILINX_DPDMA_EINTR_CHAN_ERR_MASK 0x02082082 #define XILINX_DPDMA_EINTR_CHAN_ERR 0x7ffffffe #define XILINX_DPDMA_EINTR_GLOBAL_ERR 0x80000001 #define XILINX_DPDMA_EINTR_ALL 0xffffffff #define XILINX_DPDMA_CNTL 0x100 #define XILINX_DPDMA_GBL 0x104 #define XILINX_DPDMA_GBL_TRIG_MASK(n) ((n) << 0) #define XILINX_DPDMA_GBL_RETRIG_MASK(n) ((n) << 6) #define XILINX_DPDMA_ALC0_CNTL 0x108 #define XILINX_DPDMA_ALC0_STATUS 0x10c #define XILINX_DPDMA_ALC0_MAX 0x110 #define XILINX_DPDMA_ALC0_MIN 0x114 #define XILINX_DPDMA_ALC0_ACC 0x118 #define XILINX_DPDMA_ALC0_ACC_TRAN 0x11c #define XILINX_DPDMA_ALC1_CNTL 0x120 #define XILINX_DPDMA_ALC1_STATUS 0x124 #define XILINX_DPDMA_ALC1_MAX 0x128 #define XILINX_DPDMA_ALC1_MIN 0x12c #define XILINX_DPDMA_ALC1_ACC 0x130 #define XILINX_DPDMA_ALC1_ACC_TRAN 0x134 /* Channel register */ #define XILINX_DPDMA_CH_BASE 0x200 #define XILINX_DPDMA_CH_OFFSET 0x100 #define XILINX_DPDMA_CH_DESC_START_ADDRE 0x000 #define XILINX_DPDMA_CH_DESC_START_ADDRE_MASK GENMASK(15, 0) #define XILINX_DPDMA_CH_DESC_START_ADDR 0x004 #define XILINX_DPDMA_CH_DESC_NEXT_ADDRE 0x008 #define XILINX_DPDMA_CH_DESC_NEXT_ADDR 0x00c #define XILINX_DPDMA_CH_PYLD_CUR_ADDRE 0x010 #define XILINX_DPDMA_CH_PYLD_CUR_ADDR 0x014 #define XILINX_DPDMA_CH_CNTL 0x018 #define XILINX_DPDMA_CH_CNTL_ENABLE BIT(0) #define XILINX_DPDMA_CH_CNTL_PAUSE BIT(1) #define XILINX_DPDMA_CH_CNTL_QOS_DSCR_WR_MASK GENMASK(5, 2) #define XILINX_DPDMA_CH_CNTL_QOS_DSCR_RD_MASK GENMASK(9, 6) #define XILINX_DPDMA_CH_CNTL_QOS_DATA_RD_MASK GENMASK(13, 10) #define XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS 11 #define XILINX_DPDMA_CH_STATUS 0x01c #define XILINX_DPDMA_CH_STATUS_OTRAN_CNT_MASK GENMASK(24, 21) #define XILINX_DPDMA_CH_VDO 0x020 #define XILINX_DPDMA_CH_PYLD_SZ 0x024 #define XILINX_DPDMA_CH_DESC_ID 0x028 #define XILINX_DPDMA_CH_DESC_ID_MASK GENMASK(15, 0) /* DPDMA descriptor fields */ #define XILINX_DPDMA_DESC_CONTROL_PREEMBLE 0xa5 #define XILINX_DPDMA_DESC_CONTROL_COMPLETE_INTR BIT(8) #define XILINX_DPDMA_DESC_CONTROL_DESC_UPDATE BIT(9) #define XILINX_DPDMA_DESC_CONTROL_IGNORE_DONE BIT(10) #define XILINX_DPDMA_DESC_CONTROL_FRAG_MODE BIT(18) #define XILINX_DPDMA_DESC_CONTROL_LAST BIT(19) #define XILINX_DPDMA_DESC_CONTROL_ENABLE_CRC BIT(20) #define XILINX_DPDMA_DESC_CONTROL_LAST_OF_FRAME BIT(21) #define XILINX_DPDMA_DESC_ID_MASK GENMASK(15, 0) #define XILINX_DPDMA_DESC_HSIZE_STRIDE_HSIZE_MASK GENMASK(17, 0) #define XILINX_DPDMA_DESC_HSIZE_STRIDE_STRIDE_MASK GENMASK(31, 18) #define XILINX_DPDMA_DESC_ADDR_EXT_NEXT_ADDR_MASK GENMASK(15, 0) #define XILINX_DPDMA_DESC_ADDR_EXT_SRC_ADDR_MASK GENMASK(31, 16) #define XILINX_DPDMA_ALIGN_BYTES 256 #define XILINX_DPDMA_LINESIZE_ALIGN_BITS 128 #define XILINX_DPDMA_NUM_CHAN 6 struct xilinx_dpdma_chan; /** * struct xilinx_dpdma_hw_desc - DPDMA hardware descriptor * @control: control configuration field * @desc_id: descriptor ID * @xfer_size: transfer size * @hsize_stride: horizontal size and stride * @timestamp_lsb: LSB of time stamp * @timestamp_msb: MSB of time stamp * @addr_ext: upper 16 bit of 48 bit address (next_desc and src_addr) * @next_desc: next descriptor 32 bit address * @src_addr: payload source address (1st page, 32 LSB) * @addr_ext_23: payload source address (2nd and 3rd pages, 16 LSBs) * @addr_ext_45: payload source address (4th and 5th pages, 16 LSBs) * @src_addr2: payload source address (2nd page, 32 LSB) * @src_addr3: payload source address (3rd page, 32 LSB) * @src_addr4: payload source address (4th page, 32 LSB) * @src_addr5: payload source address (5th page, 32 LSB) * @crc: descriptor CRC */ struct xilinx_dpdma_hw_desc { u32 control; u32 desc_id; u32 xfer_size; u32 hsize_stride; u32 timestamp_lsb; u32 timestamp_msb; u32 addr_ext; u32 next_desc; u32 src_addr; u32 addr_ext_23; u32 addr_ext_45; u32 src_addr2; u32 src_addr3; u32 src_addr4; u32 src_addr5; u32 crc; } __aligned(XILINX_DPDMA_ALIGN_BYTES); /** * struct xilinx_dpdma_sw_desc - DPDMA software descriptor * @hw: DPDMA hardware descriptor * @node: list node for software descriptors * @dma_addr: DMA address of the software descriptor */ struct xilinx_dpdma_sw_desc { struct xilinx_dpdma_hw_desc hw; struct list_head node; dma_addr_t dma_addr; }; /** * struct xilinx_dpdma_tx_desc - DPDMA transaction descriptor * @vdesc: virtual DMA descriptor * @chan: DMA channel * @descriptors: list of software descriptors * @error: an error has been detected with this descriptor */ struct xilinx_dpdma_tx_desc { struct virt_dma_desc vdesc; struct xilinx_dpdma_chan *chan; struct list_head descriptors; bool error; }; #define to_dpdma_tx_desc(_desc) \ container_of(_desc, struct xilinx_dpdma_tx_desc, vdesc) /** * struct xilinx_dpdma_chan - DPDMA channel * @vchan: virtual DMA channel * @reg: register base address * @id: channel ID * @wait_to_stop: queue to wait for outstanding transactions before stopping * @running: true if the channel is running * @first_frame: flag for the first frame of stream * @video_group: flag if multi-channel operation is needed for video channels * @lock: lock to access struct xilinx_dpdma_chan. Must be taken before * @vchan.lock, if both are to be held. * @desc_pool: descriptor allocation pool * @err_task: error IRQ bottom half handler * @desc: References to descriptors being processed * @desc.pending: Descriptor schedule to the hardware, pending execution * @desc.active: Descriptor being executed by the hardware * @xdev: DPDMA device */ struct xilinx_dpdma_chan { struct virt_dma_chan vchan; void __iomem *reg; unsigned int id; wait_queue_head_t wait_to_stop; bool running; bool first_frame; bool video_group; spinlock_t lock; /* lock to access struct xilinx_dpdma_chan */ struct dma_pool *desc_pool; struct tasklet_struct err_task; struct { struct xilinx_dpdma_tx_desc *pending; struct xilinx_dpdma_tx_desc *active; } desc; struct xilinx_dpdma_device *xdev; }; #define to_xilinx_chan(_chan) \ container_of(_chan, struct xilinx_dpdma_chan, vchan.chan) /** * struct xilinx_dpdma_device - DPDMA device * @common: generic dma device structure * @reg: register base address * @dev: generic device structure * @irq: the interrupt number * @axi_clk: axi clock * @chan: DPDMA channels * @ext_addr: flag for 64 bit system (48 bit addressing) */ struct xilinx_dpdma_device { struct dma_device common; void __iomem *reg; struct device *dev; int irq; struct clk *axi_clk; struct xilinx_dpdma_chan *chan[XILINX_DPDMA_NUM_CHAN]; bool ext_addr; }; /* ----------------------------------------------------------------------------- * DebugFS */ #define XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE 32 #define XILINX_DPDMA_DEBUGFS_UINT16_MAX_STR "65535" /* Match xilinx_dpdma_testcases vs dpdma_debugfs_reqs[] entry */ enum xilinx_dpdma_testcases { DPDMA_TC_INTR_DONE, DPDMA_TC_NONE }; struct xilinx_dpdma_debugfs { enum xilinx_dpdma_testcases testcase; u16 xilinx_dpdma_irq_done_count; unsigned int chan_id; }; static struct xilinx_dpdma_debugfs dpdma_debugfs; struct xilinx_dpdma_debugfs_request { const char *name; enum xilinx_dpdma_testcases tc; ssize_t (*read)(char *buf); int (*write)(char *args); }; static void xilinx_dpdma_debugfs_desc_done_irq(struct xilinx_dpdma_chan *chan) { if (IS_ENABLED(CONFIG_DEBUG_FS) && chan->id == dpdma_debugfs.chan_id) dpdma_debugfs.xilinx_dpdma_irq_done_count++; } static ssize_t xilinx_dpdma_debugfs_desc_done_irq_read(char *buf) { size_t out_str_len; dpdma_debugfs.testcase = DPDMA_TC_NONE; out_str_len = strlen(XILINX_DPDMA_DEBUGFS_UINT16_MAX_STR); out_str_len = min_t(size_t, XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE, out_str_len + 1); snprintf(buf, out_str_len, "%d", dpdma_debugfs.xilinx_dpdma_irq_done_count); return 0; } static int xilinx_dpdma_debugfs_desc_done_irq_write(char *args) { char *arg; int ret; u32 id; arg = strsep(&args, " "); if (!arg || strncasecmp(arg, "start", 5)) return -EINVAL; arg = strsep(&args, " "); if (!arg) return -EINVAL; ret = kstrtou32(arg, 0, &id); if (ret < 0) return ret; if (id < ZYNQMP_DPDMA_VIDEO0 || id > ZYNQMP_DPDMA_AUDIO1) return -EINVAL; dpdma_debugfs.testcase = DPDMA_TC_INTR_DONE; dpdma_debugfs.xilinx_dpdma_irq_done_count = 0; dpdma_debugfs.chan_id = id; return 0; } /* Match xilinx_dpdma_testcases vs dpdma_debugfs_reqs[] entry */ static struct xilinx_dpdma_debugfs_request dpdma_debugfs_reqs[] = { { .name = "DESCRIPTOR_DONE_INTR", .tc = DPDMA_TC_INTR_DONE, .read = xilinx_dpdma_debugfs_desc_done_irq_read, .write = xilinx_dpdma_debugfs_desc_done_irq_write, }, }; static ssize_t xilinx_dpdma_debugfs_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { enum xilinx_dpdma_testcases testcase; char *kern_buff; int ret = 0; if (*pos != 0 || size <= 0) return -EINVAL; kern_buff = kzalloc(XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE, GFP_KERNEL); if (!kern_buff) { dpdma_debugfs.testcase = DPDMA_TC_NONE; return -ENOMEM; } testcase = READ_ONCE(dpdma_debugfs.testcase); if (testcase != DPDMA_TC_NONE) { ret = dpdma_debugfs_reqs[testcase].read(kern_buff); if (ret < 0) goto done; } else { strscpy(kern_buff, "No testcase executed", XILINX_DPDMA_DEBUGFS_READ_MAX_SIZE); } size = min(size, strlen(kern_buff)); if (copy_to_user(buf, kern_buff, size)) ret = -EFAULT; done: kfree(kern_buff); if (ret) return ret; *pos = size + 1; return size; } static ssize_t xilinx_dpdma_debugfs_write(struct file *f, const char __user *buf, size_t size, loff_t *pos) { char *kern_buff, *kern_buff_start; char *testcase; unsigned int i; int ret; if (*pos != 0 || size <= 0) return -EINVAL; /* Supporting single instance of test as of now. */ if (dpdma_debugfs.testcase != DPDMA_TC_NONE) return -EBUSY; kern_buff = kzalloc(size, GFP_KERNEL); if (!kern_buff) return -ENOMEM; kern_buff_start = kern_buff; ret = strncpy_from_user(kern_buff, buf, size); if (ret < 0) goto done; /* Read the testcase name from a user request. */ testcase = strsep(&kern_buff, " "); for (i = 0; i < ARRAY_SIZE(dpdma_debugfs_reqs); i++) { if (!strcasecmp(testcase, dpdma_debugfs_reqs[i].name)) break; } if (i == ARRAY_SIZE(dpdma_debugfs_reqs)) { ret = -EINVAL; goto done; } ret = dpdma_debugfs_reqs[i].write(kern_buff); if (ret < 0) goto done; ret = size; done: kfree(kern_buff_start); return ret; } static const struct file_operations fops_xilinx_dpdma_dbgfs = { .owner = THIS_MODULE, .read = xilinx_dpdma_debugfs_read, .write = xilinx_dpdma_debugfs_write, }; static void xilinx_dpdma_debugfs_init(struct xilinx_dpdma_device *xdev) { struct dentry *dent; dpdma_debugfs.testcase = DPDMA_TC_NONE; dent = debugfs_create_file("testcase", 0444, xdev->common.dbg_dev_root, NULL, &fops_xilinx_dpdma_dbgfs); if (IS_ERR(dent)) dev_err(xdev->dev, "Failed to create debugfs testcase file\n"); } /* ----------------------------------------------------------------------------- * I/O Accessors */ static inline u32 dpdma_read(void __iomem *base, u32 offset) { return ioread32(base + offset); } static inline void dpdma_write(void __iomem *base, u32 offset, u32 val) { iowrite32(val, base + offset); } static inline void dpdma_clr(void __iomem *base, u32 offset, u32 clr) { dpdma_write(base, offset, dpdma_read(base, offset) & ~clr); } static inline void dpdma_set(void __iomem *base, u32 offset, u32 set) { dpdma_write(base, offset, dpdma_read(base, offset) | set); } /* ----------------------------------------------------------------------------- * Descriptor Operations */ /** * xilinx_dpdma_sw_desc_set_dma_addrs - Set DMA addresses in the descriptor * @xdev: DPDMA device * @sw_desc: The software descriptor in which to set DMA addresses * @prev: The previous descriptor * @dma_addr: array of dma addresses * @num_src_addr: number of addresses in @dma_addr * * Set all the DMA addresses in the hardware descriptor corresponding to @dev * from @dma_addr. If a previous descriptor is specified in @prev, its next * descriptor DMA address is set to the DMA address of @sw_desc. @prev may be * identical to @sw_desc for cyclic transfers. */ static void xilinx_dpdma_sw_desc_set_dma_addrs(struct xilinx_dpdma_device *xdev, struct xilinx_dpdma_sw_desc *sw_desc, struct xilinx_dpdma_sw_desc *prev, dma_addr_t dma_addr[], unsigned int num_src_addr) { struct xilinx_dpdma_hw_desc *hw_desc = &sw_desc->hw; unsigned int i; hw_desc->src_addr = lower_32_bits(dma_addr[0]); if (xdev->ext_addr) hw_desc->addr_ext |= FIELD_PREP(XILINX_DPDMA_DESC_ADDR_EXT_SRC_ADDR_MASK, upper_32_bits(dma_addr[0])); for (i = 1; i < num_src_addr; i++) { u32 *addr = &hw_desc->src_addr2; addr[i - 1] = lower_32_bits(dma_addr[i]); if (xdev->ext_addr) { u32 *addr_ext = &hw_desc->addr_ext_23; u32 addr_msb; addr_msb = upper_32_bits(dma_addr[i]) & GENMASK(15, 0); addr_msb <<= 16 * ((i - 1) % 2); addr_ext[(i - 1) / 2] |= addr_msb; } } if (!prev) return; prev->hw.next_desc = lower_32_bits(sw_desc->dma_addr); if (xdev->ext_addr) prev->hw.addr_ext |= FIELD_PREP(XILINX_DPDMA_DESC_ADDR_EXT_NEXT_ADDR_MASK, upper_32_bits(sw_desc->dma_addr)); } /** * xilinx_dpdma_chan_alloc_sw_desc - Allocate a software descriptor * @chan: DPDMA channel * * Allocate a software descriptor from the channel's descriptor pool. * * Return: a software descriptor or NULL. */ static struct xilinx_dpdma_sw_desc * xilinx_dpdma_chan_alloc_sw_desc(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_sw_desc *sw_desc; dma_addr_t dma_addr; sw_desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &dma_addr); if (!sw_desc) return NULL; sw_desc->dma_addr = dma_addr; return sw_desc; } /** * xilinx_dpdma_chan_free_sw_desc - Free a software descriptor * @chan: DPDMA channel * @sw_desc: software descriptor to free * * Free a software descriptor from the channel's descriptor pool. */ static void xilinx_dpdma_chan_free_sw_desc(struct xilinx_dpdma_chan *chan, struct xilinx_dpdma_sw_desc *sw_desc) { dma_pool_free(chan->desc_pool, sw_desc, sw_desc->dma_addr); } /** * xilinx_dpdma_chan_dump_tx_desc - Dump a tx descriptor * @chan: DPDMA channel * @tx_desc: tx descriptor to dump * * Dump contents of a tx descriptor */ static void xilinx_dpdma_chan_dump_tx_desc(struct xilinx_dpdma_chan *chan, struct xilinx_dpdma_tx_desc *tx_desc) { struct xilinx_dpdma_sw_desc *sw_desc; struct device *dev = chan->xdev->dev; unsigned int i = 0; dev_dbg(dev, "------- TX descriptor dump start -------\n"); dev_dbg(dev, "------- channel ID = %d -------\n", chan->id); list_for_each_entry(sw_desc, &tx_desc->descriptors, node) { struct xilinx_dpdma_hw_desc *hw_desc = &sw_desc->hw; dev_dbg(dev, "------- HW descriptor %d -------\n", i++); dev_dbg(dev, "descriptor DMA addr: %pad\n", &sw_desc->dma_addr); dev_dbg(dev, "control: 0x%08x\n", hw_desc->control); dev_dbg(dev, "desc_id: 0x%08x\n", hw_desc->desc_id); dev_dbg(dev, "xfer_size: 0x%08x\n", hw_desc->xfer_size); dev_dbg(dev, "hsize_stride: 0x%08x\n", hw_desc->hsize_stride); dev_dbg(dev, "timestamp_lsb: 0x%08x\n", hw_desc->timestamp_lsb); dev_dbg(dev, "timestamp_msb: 0x%08x\n", hw_desc->timestamp_msb); dev_dbg(dev, "addr_ext: 0x%08x\n", hw_desc->addr_ext); dev_dbg(dev, "next_desc: 0x%08x\n", hw_desc->next_desc); dev_dbg(dev, "src_addr: 0x%08x\n", hw_desc->src_addr); dev_dbg(dev, "addr_ext_23: 0x%08x\n", hw_desc->addr_ext_23); dev_dbg(dev, "addr_ext_45: 0x%08x\n", hw_desc->addr_ext_45); dev_dbg(dev, "src_addr2: 0x%08x\n", hw_desc->src_addr2); dev_dbg(dev, "src_addr3: 0x%08x\n", hw_desc->src_addr3); dev_dbg(dev, "src_addr4: 0x%08x\n", hw_desc->src_addr4); dev_dbg(dev, "src_addr5: 0x%08x\n", hw_desc->src_addr5); dev_dbg(dev, "crc: 0x%08x\n", hw_desc->crc); } dev_dbg(dev, "------- TX descriptor dump end -------\n"); } /** * xilinx_dpdma_chan_alloc_tx_desc - Allocate a transaction descriptor * @chan: DPDMA channel * * Allocate a tx descriptor. * * Return: a tx descriptor or NULL. */ static struct xilinx_dpdma_tx_desc * xilinx_dpdma_chan_alloc_tx_desc(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_tx_desc *tx_desc; tx_desc = kzalloc(sizeof(*tx_desc), GFP_NOWAIT); if (!tx_desc) return NULL; INIT_LIST_HEAD(&tx_desc->descriptors); tx_desc->chan = chan; tx_desc->error = false; return tx_desc; } /** * xilinx_dpdma_chan_free_tx_desc - Free a virtual DMA descriptor * @vdesc: virtual DMA descriptor * * Free the virtual DMA descriptor @vdesc including its software descriptors. */ static void xilinx_dpdma_chan_free_tx_desc(struct virt_dma_desc *vdesc) { struct xilinx_dpdma_sw_desc *sw_desc, *next; struct xilinx_dpdma_tx_desc *desc; if (!vdesc) return; desc = to_dpdma_tx_desc(vdesc); list_for_each_entry_safe(sw_desc, next, &desc->descriptors, node) { list_del(&sw_desc->node); xilinx_dpdma_chan_free_sw_desc(desc->chan, sw_desc); } kfree(desc); } /** * xilinx_dpdma_chan_prep_cyclic - Prepare a cyclic dma descriptor * @chan: DPDMA channel * @buf_addr: buffer address * @buf_len: buffer length * @period_len: number of periods * @flags: tx flags argument passed in to prepare function * * Prepare a tx descriptor incudling internal software/hardware descriptors * for the given cyclic transaction. * * Return: A dma async tx descriptor on success, or NULL. */ static struct dma_async_tx_descriptor * xilinx_dpdma_chan_prep_cyclic(struct xilinx_dpdma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, unsigned long flags) { struct xilinx_dpdma_tx_desc *tx_desc; struct xilinx_dpdma_sw_desc *sw_desc, *last = NULL; unsigned int periods = buf_len / period_len; unsigned int i; tx_desc = xilinx_dpdma_chan_alloc_tx_desc(chan); if (!tx_desc) return NULL; for (i = 0; i < periods; i++) { struct xilinx_dpdma_hw_desc *hw_desc; if (!IS_ALIGNED(buf_addr, XILINX_DPDMA_ALIGN_BYTES)) { dev_err(chan->xdev->dev, "buffer should be aligned at %d B\n", XILINX_DPDMA_ALIGN_BYTES); goto error; } sw_desc = xilinx_dpdma_chan_alloc_sw_desc(chan); if (!sw_desc) goto error; xilinx_dpdma_sw_desc_set_dma_addrs(chan->xdev, sw_desc, last, &buf_addr, 1); hw_desc = &sw_desc->hw; hw_desc->xfer_size = period_len; hw_desc->hsize_stride = FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_HSIZE_MASK, period_len) | FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_STRIDE_MASK, period_len); hw_desc->control = XILINX_DPDMA_DESC_CONTROL_PREEMBLE | XILINX_DPDMA_DESC_CONTROL_IGNORE_DONE | XILINX_DPDMA_DESC_CONTROL_COMPLETE_INTR; list_add_tail(&sw_desc->node, &tx_desc->descriptors); buf_addr += period_len; last = sw_desc; } sw_desc = list_first_entry(&tx_desc->descriptors, struct xilinx_dpdma_sw_desc, node); last->hw.next_desc = lower_32_bits(sw_desc->dma_addr); if (chan->xdev->ext_addr) last->hw.addr_ext |= FIELD_PREP(XILINX_DPDMA_DESC_ADDR_EXT_NEXT_ADDR_MASK, upper_32_bits(sw_desc->dma_addr)); last->hw.control |= XILINX_DPDMA_DESC_CONTROL_LAST_OF_FRAME; return vchan_tx_prep(&chan->vchan, &tx_desc->vdesc, flags); error: xilinx_dpdma_chan_free_tx_desc(&tx_desc->vdesc); return NULL; } /** * xilinx_dpdma_chan_prep_interleaved_dma - Prepare an interleaved dma * descriptor * @chan: DPDMA channel * @xt: dma interleaved template * * Prepare a tx descriptor including internal software/hardware descriptors * based on @xt. * * Return: A DPDMA TX descriptor on success, or NULL. */ static struct xilinx_dpdma_tx_desc * xilinx_dpdma_chan_prep_interleaved_dma(struct xilinx_dpdma_chan *chan, struct dma_interleaved_template *xt) { struct xilinx_dpdma_tx_desc *tx_desc; struct xilinx_dpdma_sw_desc *sw_desc; struct xilinx_dpdma_hw_desc *hw_desc; size_t hsize = xt->sgl[0].size; size_t stride = hsize + xt->sgl[0].icg; if (!IS_ALIGNED(xt->src_start, XILINX_DPDMA_ALIGN_BYTES)) { dev_err(chan->xdev->dev, "chan%u: buffer should be aligned at %d B\n", chan->id, XILINX_DPDMA_ALIGN_BYTES); return NULL; } tx_desc = xilinx_dpdma_chan_alloc_tx_desc(chan); if (!tx_desc) return NULL; sw_desc = xilinx_dpdma_chan_alloc_sw_desc(chan); if (!sw_desc) { xilinx_dpdma_chan_free_tx_desc(&tx_desc->vdesc); return NULL; } xilinx_dpdma_sw_desc_set_dma_addrs(chan->xdev, sw_desc, sw_desc, &xt->src_start, 1); hw_desc = &sw_desc->hw; hsize = ALIGN(hsize, XILINX_DPDMA_LINESIZE_ALIGN_BITS / 8); hw_desc->xfer_size = hsize * xt->numf; hw_desc->hsize_stride = FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_HSIZE_MASK, hsize) | FIELD_PREP(XILINX_DPDMA_DESC_HSIZE_STRIDE_STRIDE_MASK, stride / 16); hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_PREEMBLE; hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_COMPLETE_INTR; hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_IGNORE_DONE; hw_desc->control |= XILINX_DPDMA_DESC_CONTROL_LAST_OF_FRAME; list_add_tail(&sw_desc->node, &tx_desc->descriptors); return tx_desc; } /* ----------------------------------------------------------------------------- * DPDMA Channel Operations */ /** * xilinx_dpdma_chan_enable - Enable the channel * @chan: DPDMA channel * * Enable the channel and its interrupts. Set the QoS values for video class. */ static void xilinx_dpdma_chan_enable(struct xilinx_dpdma_chan *chan) { u32 reg; reg = (XILINX_DPDMA_INTR_CHAN_MASK << chan->id) | XILINX_DPDMA_INTR_GLOBAL_MASK; dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, reg); reg = (XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id) | XILINX_DPDMA_INTR_GLOBAL_ERR; dpdma_write(chan->xdev->reg, XILINX_DPDMA_EIEN, reg); reg = XILINX_DPDMA_CH_CNTL_ENABLE | FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DSCR_WR_MASK, XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS) | FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DSCR_RD_MASK, XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS) | FIELD_PREP(XILINX_DPDMA_CH_CNTL_QOS_DATA_RD_MASK, XILINX_DPDMA_CH_CNTL_QOS_VID_CLASS); dpdma_set(chan->reg, XILINX_DPDMA_CH_CNTL, reg); } /** * xilinx_dpdma_chan_disable - Disable the channel * @chan: DPDMA channel * * Disable the channel and its interrupts. */ static void xilinx_dpdma_chan_disable(struct xilinx_dpdma_chan *chan) { u32 reg; reg = XILINX_DPDMA_INTR_CHAN_MASK << chan->id; dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, reg); reg = XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id; dpdma_write(chan->xdev->reg, XILINX_DPDMA_EIEN, reg); dpdma_clr(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_ENABLE); } /** * xilinx_dpdma_chan_pause - Pause the channel * @chan: DPDMA channel * * Pause the channel. */ static void xilinx_dpdma_chan_pause(struct xilinx_dpdma_chan *chan) { dpdma_set(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_PAUSE); } /** * xilinx_dpdma_chan_unpause - Unpause the channel * @chan: DPDMA channel * * Unpause the channel. */ static void xilinx_dpdma_chan_unpause(struct xilinx_dpdma_chan *chan) { dpdma_clr(chan->reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_PAUSE); } static u32 xilinx_dpdma_chan_video_group_ready(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_device *xdev = chan->xdev; u32 channels = 0; unsigned int i; for (i = ZYNQMP_DPDMA_VIDEO0; i <= ZYNQMP_DPDMA_VIDEO2; i++) { if (xdev->chan[i]->video_group && !xdev->chan[i]->running) return 0; if (xdev->chan[i]->video_group) channels |= BIT(i); } return channels; } /** * xilinx_dpdma_chan_queue_transfer - Queue the next transfer * @chan: DPDMA channel * * Queue the next descriptor, if any, to the hardware. If the channel is * stopped, start it first. Otherwise retrigger it with the next descriptor. */ static void xilinx_dpdma_chan_queue_transfer(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_device *xdev = chan->xdev; struct xilinx_dpdma_sw_desc *sw_desc; struct xilinx_dpdma_tx_desc *desc; struct virt_dma_desc *vdesc; u32 reg, channels; bool first_frame; lockdep_assert_held(&chan->lock); if (chan->desc.pending) return; if (!chan->running) { xilinx_dpdma_chan_unpause(chan); xilinx_dpdma_chan_enable(chan); chan->first_frame = true; chan->running = true; } vdesc = vchan_next_desc(&chan->vchan); if (!vdesc) return; desc = to_dpdma_tx_desc(vdesc); chan->desc.pending = desc; list_del(&desc->vdesc.node); /* * Assign the cookie to descriptors in this transaction. Only 16 bit * will be used, but it should be enough. */ list_for_each_entry(sw_desc, &desc->descriptors, node) sw_desc->hw.desc_id = desc->vdesc.tx.cookie & XILINX_DPDMA_CH_DESC_ID_MASK; sw_desc = list_first_entry(&desc->descriptors, struct xilinx_dpdma_sw_desc, node); dpdma_write(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDR, lower_32_bits(sw_desc->dma_addr)); if (xdev->ext_addr) dpdma_write(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDRE, FIELD_PREP(XILINX_DPDMA_CH_DESC_START_ADDRE_MASK, upper_32_bits(sw_desc->dma_addr))); first_frame = chan->first_frame; chan->first_frame = false; if (chan->video_group) { channels = xilinx_dpdma_chan_video_group_ready(chan); /* * Trigger the transfer only when all channels in the group are * ready. */ if (!channels) return; } else { channels = BIT(chan->id); } if (first_frame) reg = XILINX_DPDMA_GBL_TRIG_MASK(channels); else reg = XILINX_DPDMA_GBL_RETRIG_MASK(channels); dpdma_write(xdev->reg, XILINX_DPDMA_GBL, reg); } /** * xilinx_dpdma_chan_ostand - Number of outstanding transactions * @chan: DPDMA channel * * Read and return the number of outstanding transactions from register. * * Return: Number of outstanding transactions from the status register. */ static u32 xilinx_dpdma_chan_ostand(struct xilinx_dpdma_chan *chan) { return FIELD_GET(XILINX_DPDMA_CH_STATUS_OTRAN_CNT_MASK, dpdma_read(chan->reg, XILINX_DPDMA_CH_STATUS)); } /** * xilinx_dpdma_chan_notify_no_ostand - Notify no outstanding transaction event * @chan: DPDMA channel * * Notify waiters for no outstanding event, so waiters can stop the channel * safely. This function is supposed to be called when 'no outstanding' * interrupt is generated. The 'no outstanding' interrupt is disabled and * should be re-enabled when this event is handled. If the channel status * register still shows some number of outstanding transactions, the interrupt * remains enabled. * * Return: 0 on success. On failure, -EWOULDBLOCK if there's still outstanding * transaction(s). */ static int xilinx_dpdma_chan_notify_no_ostand(struct xilinx_dpdma_chan *chan) { u32 cnt; cnt = xilinx_dpdma_chan_ostand(chan); if (cnt) { dev_dbg(chan->xdev->dev, "chan%u: %d outstanding transactions\n", chan->id, cnt); return -EWOULDBLOCK; } /* Disable 'no outstanding' interrupt */ dpdma_write(chan->xdev->reg, XILINX_DPDMA_IDS, XILINX_DPDMA_INTR_NO_OSTAND(chan->id)); wake_up(&chan->wait_to_stop); return 0; } /** * xilinx_dpdma_chan_wait_no_ostand - Wait for the no outstanding irq * @chan: DPDMA channel * * Wait for the no outstanding transaction interrupt. This functions can sleep * for 50ms. * * Return: 0 on success. On failure, -ETIMEOUT for time out, or the error code * from wait_event_interruptible_timeout(). */ static int xilinx_dpdma_chan_wait_no_ostand(struct xilinx_dpdma_chan *chan) { int ret; /* Wait for a no outstanding transaction interrupt upto 50msec */ ret = wait_event_interruptible_timeout(chan->wait_to_stop, !xilinx_dpdma_chan_ostand(chan), msecs_to_jiffies(50)); if (ret > 0) { dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, XILINX_DPDMA_INTR_NO_OSTAND(chan->id)); return 0; } dev_err(chan->xdev->dev, "chan%u: not ready to stop: %d trans\n", chan->id, xilinx_dpdma_chan_ostand(chan)); if (ret == 0) return -ETIMEDOUT; return ret; } /** * xilinx_dpdma_chan_poll_no_ostand - Poll the outstanding transaction status * @chan: DPDMA channel * * Poll the outstanding transaction status, and return when there's no * outstanding transaction. This functions can be used in the interrupt context * or where the atomicity is required. Calling thread may wait more than 50ms. * * Return: 0 on success, or -ETIMEDOUT. */ static int xilinx_dpdma_chan_poll_no_ostand(struct xilinx_dpdma_chan *chan) { u32 cnt, loop = 50000; /* Poll at least for 50ms (20 fps). */ do { cnt = xilinx_dpdma_chan_ostand(chan); udelay(1); } while (loop-- > 0 && cnt); if (loop) { dpdma_write(chan->xdev->reg, XILINX_DPDMA_IEN, XILINX_DPDMA_INTR_NO_OSTAND(chan->id)); return 0; } dev_err(chan->xdev->dev, "chan%u: not ready to stop: %d trans\n", chan->id, xilinx_dpdma_chan_ostand(chan)); return -ETIMEDOUT; } /** * xilinx_dpdma_chan_stop - Stop the channel * @chan: DPDMA channel * * Stop a previously paused channel by first waiting for completion of all * outstanding transaction and then disabling the channel. * * Return: 0 on success, or -ETIMEDOUT if the channel failed to stop. */ static int xilinx_dpdma_chan_stop(struct xilinx_dpdma_chan *chan) { unsigned long flags; int ret; ret = xilinx_dpdma_chan_wait_no_ostand(chan); if (ret) return ret; spin_lock_irqsave(&chan->lock, flags); xilinx_dpdma_chan_disable(chan); chan->running = false; spin_unlock_irqrestore(&chan->lock, flags); return 0; } /** * xilinx_dpdma_chan_done_irq - Handle hardware descriptor completion * @chan: DPDMA channel * * Handle completion of the currently active descriptor (@chan->desc.active). As * we currently support cyclic transfers only, this just invokes the cyclic * callback. The descriptor will be completed at the VSYNC interrupt when a new * descriptor replaces it. */ static void xilinx_dpdma_chan_done_irq(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_tx_desc *active; spin_lock(&chan->lock); xilinx_dpdma_debugfs_desc_done_irq(chan); active = chan->desc.active; if (active) vchan_cyclic_callback(&active->vdesc); else dev_warn(chan->xdev->dev, "chan%u: DONE IRQ with no active descriptor!\n", chan->id); spin_unlock(&chan->lock); } /** * xilinx_dpdma_chan_vsync_irq - Handle hardware descriptor scheduling * @chan: DPDMA channel * * At VSYNC the active descriptor may have been replaced by the pending * descriptor. Detect this through the DESC_ID and perform appropriate * bookkeeping. */ static void xilinx_dpdma_chan_vsync_irq(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_tx_desc *pending; struct xilinx_dpdma_sw_desc *sw_desc; u32 desc_id; spin_lock(&chan->lock); pending = chan->desc.pending; if (!chan->running || !pending) goto out; desc_id = dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_ID) & XILINX_DPDMA_CH_DESC_ID_MASK; /* If the retrigger raced with vsync, retry at the next frame. */ sw_desc = list_first_entry(&pending->descriptors, struct xilinx_dpdma_sw_desc, node); if (sw_desc->hw.desc_id != desc_id) { dev_dbg(chan->xdev->dev, "chan%u: vsync race lost (%u != %u), retrying\n", chan->id, sw_desc->hw.desc_id, desc_id); goto out; } /* * Complete the active descriptor, if any, promote the pending * descriptor to active, and queue the next transfer, if any. */ spin_lock(&chan->vchan.lock); if (chan->desc.active) vchan_cookie_complete(&chan->desc.active->vdesc); chan->desc.active = pending; chan->desc.pending = NULL; xilinx_dpdma_chan_queue_transfer(chan); spin_unlock(&chan->vchan.lock); out: spin_unlock(&chan->lock); } /** * xilinx_dpdma_chan_err - Detect any channel error * @chan: DPDMA channel * @isr: masked Interrupt Status Register * @eisr: Error Interrupt Status Register * * Return: true if any channel error occurs, or false otherwise. */ static bool xilinx_dpdma_chan_err(struct xilinx_dpdma_chan *chan, u32 isr, u32 eisr) { if (!chan) return false; if (chan->running && ((isr & (XILINX_DPDMA_INTR_CHAN_ERR_MASK << chan->id)) || (eisr & (XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id)))) return true; return false; } /** * xilinx_dpdma_chan_handle_err - DPDMA channel error handling * @chan: DPDMA channel * * This function is called when any channel error or any global error occurs. * The function disables the paused channel by errors and determines * if the current active descriptor can be rescheduled depending on * the descriptor status. */ static void xilinx_dpdma_chan_handle_err(struct xilinx_dpdma_chan *chan) { struct xilinx_dpdma_device *xdev = chan->xdev; struct xilinx_dpdma_tx_desc *active; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); dev_dbg(xdev->dev, "chan%u: cur desc addr = 0x%04x%08x\n", chan->id, dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDRE), dpdma_read(chan->reg, XILINX_DPDMA_CH_DESC_START_ADDR)); dev_dbg(xdev->dev, "chan%u: cur payload addr = 0x%04x%08x\n", chan->id, dpdma_read(chan->reg, XILINX_DPDMA_CH_PYLD_CUR_ADDRE), dpdma_read(chan->reg, XILINX_DPDMA_CH_PYLD_CUR_ADDR)); xilinx_dpdma_chan_disable(chan); chan->running = false; if (!chan->desc.active) goto out_unlock; active = chan->desc.active; chan->desc.active = NULL; xilinx_dpdma_chan_dump_tx_desc(chan, active); if (active->error) dev_dbg(xdev->dev, "chan%u: repeated error on desc\n", chan->id); /* Reschedule if there's no new descriptor */ if (!chan->desc.pending && list_empty(&chan->vchan.desc_issued)) { active->error = true; list_add_tail(&active->vdesc.node, &chan->vchan.desc_issued); } else { xilinx_dpdma_chan_free_tx_desc(&active->vdesc); } out_unlock: spin_unlock_irqrestore(&chan->lock, flags); } /* ----------------------------------------------------------------------------- * DMA Engine Operations */ static struct dma_async_tx_descriptor * xilinx_dpdma_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); if (direction != DMA_MEM_TO_DEV) return NULL; if (buf_len % period_len) return NULL; return xilinx_dpdma_chan_prep_cyclic(chan, buf_addr, buf_len, period_len, flags); } static struct dma_async_tx_descriptor * xilinx_dpdma_prep_interleaved_dma(struct dma_chan *dchan, struct dma_interleaved_template *xt, unsigned long flags) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dpdma_tx_desc *desc; if (xt->dir != DMA_MEM_TO_DEV) return NULL; if (!xt->numf || !xt->sgl[0].size) return NULL; if (!(flags & DMA_PREP_REPEAT) || !(flags & DMA_PREP_LOAD_EOT)) return NULL; desc = xilinx_dpdma_chan_prep_interleaved_dma(chan, xt); if (!desc) return NULL; vchan_tx_prep(&chan->vchan, &desc->vdesc, flags | DMA_CTRL_ACK); return &desc->vdesc.tx; } /** * xilinx_dpdma_alloc_chan_resources - Allocate resources for the channel * @dchan: DMA channel * * Allocate a descriptor pool for the channel. * * Return: 0 on success, or -ENOMEM if failed to allocate a pool. */ static int xilinx_dpdma_alloc_chan_resources(struct dma_chan *dchan) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); size_t align = __alignof__(struct xilinx_dpdma_sw_desc); chan->desc_pool = dma_pool_create(dev_name(chan->xdev->dev), chan->xdev->dev, sizeof(struct xilinx_dpdma_sw_desc), align, 0); if (!chan->desc_pool) { dev_err(chan->xdev->dev, "chan%u: failed to allocate a descriptor pool\n", chan->id); return -ENOMEM; } return 0; } /** * xilinx_dpdma_free_chan_resources - Free all resources for the channel * @dchan: DMA channel * * Free resources associated with the virtual DMA channel, and destroy the * descriptor pool. */ static void xilinx_dpdma_free_chan_resources(struct dma_chan *dchan) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); vchan_free_chan_resources(&chan->vchan); dma_pool_destroy(chan->desc_pool); chan->desc_pool = NULL; } static void xilinx_dpdma_issue_pending(struct dma_chan *dchan) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); unsigned long flags; spin_lock_irqsave(&chan->lock, flags); spin_lock(&chan->vchan.lock); if (vchan_issue_pending(&chan->vchan)) xilinx_dpdma_chan_queue_transfer(chan); spin_unlock(&chan->vchan.lock); spin_unlock_irqrestore(&chan->lock, flags); } static int xilinx_dpdma_config(struct dma_chan *dchan, struct dma_slave_config *config) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dpdma_peripheral_config *pconfig; unsigned long flags; /* * The destination address doesn't need to be specified as the DPDMA is * hardwired to the destination (the DP controller). The transfer * width, burst size and port window size are thus meaningless, they're * fixed both on the DPDMA side and on the DP controller side. */ /* * Use the peripheral_config to indicate that the channel is part * of a video group. This requires matching use of the custom * structure in each driver. */ pconfig = config->peripheral_config; if (WARN_ON(pconfig && config->peripheral_size != sizeof(*pconfig))) return -EINVAL; spin_lock_irqsave(&chan->lock, flags); if (chan->id <= ZYNQMP_DPDMA_VIDEO2 && pconfig) chan->video_group = pconfig->video_group; spin_unlock_irqrestore(&chan->lock, flags); return 0; } static int xilinx_dpdma_pause(struct dma_chan *dchan) { xilinx_dpdma_chan_pause(to_xilinx_chan(dchan)); return 0; } static int xilinx_dpdma_resume(struct dma_chan *dchan) { xilinx_dpdma_chan_unpause(to_xilinx_chan(dchan)); return 0; } /** * xilinx_dpdma_terminate_all - Terminate the channel and descriptors * @dchan: DMA channel * * Pause the channel without waiting for ongoing transfers to complete. Waiting * for completion is performed by xilinx_dpdma_synchronize() that will disable * the channel to complete the stop. * * All the descriptors associated with the channel that are guaranteed not to * be touched by the hardware. The pending and active descriptor are not * touched, and will be freed either upon completion, or by * xilinx_dpdma_synchronize(). * * Return: 0 on success, or -ETIMEDOUT if the channel failed to stop. */ static int xilinx_dpdma_terminate_all(struct dma_chan *dchan) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dpdma_device *xdev = chan->xdev; LIST_HEAD(descriptors); unsigned long flags; unsigned int i; /* Pause the channel (including the whole video group if applicable). */ if (chan->video_group) { for (i = ZYNQMP_DPDMA_VIDEO0; i <= ZYNQMP_DPDMA_VIDEO2; i++) { if (xdev->chan[i]->video_group && xdev->chan[i]->running) { xilinx_dpdma_chan_pause(xdev->chan[i]); xdev->chan[i]->video_group = false; } } } else { xilinx_dpdma_chan_pause(chan); } /* Gather all the descriptors we can free and free them. */ spin_lock_irqsave(&chan->vchan.lock, flags); vchan_get_all_descriptors(&chan->vchan, &descriptors); spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_dma_desc_free_list(&chan->vchan, &descriptors); return 0; } /** * xilinx_dpdma_synchronize - Synchronize callback execution * @dchan: DMA channel * * Synchronizing callback execution ensures that all previously issued * transfers have completed and all associated callbacks have been called and * have returned. * * This function waits for the DMA channel to stop. It assumes it has been * paused by a previous call to dmaengine_terminate_async(), and that no new * pending descriptors have been issued with dma_async_issue_pending(). The * behaviour is undefined otherwise. */ static void xilinx_dpdma_synchronize(struct dma_chan *dchan) { struct xilinx_dpdma_chan *chan = to_xilinx_chan(dchan); unsigned long flags; xilinx_dpdma_chan_stop(chan); spin_lock_irqsave(&chan->vchan.lock, flags); if (chan->desc.pending) { vchan_terminate_vdesc(&chan->desc.pending->vdesc); chan->desc.pending = NULL; } if (chan->desc.active) { vchan_terminate_vdesc(&chan->desc.active->vdesc); chan->desc.active = NULL; } spin_unlock_irqrestore(&chan->vchan.lock, flags); vchan_synchronize(&chan->vchan); } /* ----------------------------------------------------------------------------- * Interrupt and Tasklet Handling */ /** * xilinx_dpdma_err - Detect any global error * @isr: Interrupt Status Register * @eisr: Error Interrupt Status Register * * Return: True if any global error occurs, or false otherwise. */ static bool xilinx_dpdma_err(u32 isr, u32 eisr) { if (isr & XILINX_DPDMA_INTR_GLOBAL_ERR || eisr & XILINX_DPDMA_EINTR_GLOBAL_ERR) return true; return false; } /** * xilinx_dpdma_handle_err_irq - Handle DPDMA error interrupt * @xdev: DPDMA device * @isr: masked Interrupt Status Register * @eisr: Error Interrupt Status Register * * Handle if any error occurs based on @isr and @eisr. This function disables * corresponding error interrupts, and those should be re-enabled once handling * is done. */ static void xilinx_dpdma_handle_err_irq(struct xilinx_dpdma_device *xdev, u32 isr, u32 eisr) { bool err = xilinx_dpdma_err(isr, eisr); unsigned int i; dev_dbg_ratelimited(xdev->dev, "error irq: isr = 0x%08x, eisr = 0x%08x\n", isr, eisr); /* Disable channel error interrupts until errors are handled. */ dpdma_write(xdev->reg, XILINX_DPDMA_IDS, isr & ~XILINX_DPDMA_INTR_GLOBAL_ERR); dpdma_write(xdev->reg, XILINX_DPDMA_EIDS, eisr & ~XILINX_DPDMA_EINTR_GLOBAL_ERR); for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) if (err || xilinx_dpdma_chan_err(xdev->chan[i], isr, eisr)) tasklet_schedule(&xdev->chan[i]->err_task); } /** * xilinx_dpdma_enable_irq - Enable interrupts * @xdev: DPDMA device * * Enable interrupts. */ static void xilinx_dpdma_enable_irq(struct xilinx_dpdma_device *xdev) { dpdma_write(xdev->reg, XILINX_DPDMA_IEN, XILINX_DPDMA_INTR_ALL); dpdma_write(xdev->reg, XILINX_DPDMA_EIEN, XILINX_DPDMA_EINTR_ALL); } /** * xilinx_dpdma_disable_irq - Disable interrupts * @xdev: DPDMA device * * Disable interrupts. */ static void xilinx_dpdma_disable_irq(struct xilinx_dpdma_device *xdev) { dpdma_write(xdev->reg, XILINX_DPDMA_IDS, XILINX_DPDMA_INTR_ALL); dpdma_write(xdev->reg, XILINX_DPDMA_EIDS, XILINX_DPDMA_EINTR_ALL); } /** * xilinx_dpdma_chan_err_task - Per channel tasklet for error handling * @t: pointer to the tasklet associated with this handler * * Per channel error handling tasklet. This function waits for the outstanding * transaction to complete and triggers error handling. After error handling, * re-enable channel error interrupts, and restart the channel if needed. */ static void xilinx_dpdma_chan_err_task(struct tasklet_struct *t) { struct xilinx_dpdma_chan *chan = from_tasklet(chan, t, err_task); struct xilinx_dpdma_device *xdev = chan->xdev; unsigned long flags; /* Proceed error handling even when polling fails. */ xilinx_dpdma_chan_poll_no_ostand(chan); xilinx_dpdma_chan_handle_err(chan); dpdma_write(xdev->reg, XILINX_DPDMA_IEN, XILINX_DPDMA_INTR_CHAN_ERR_MASK << chan->id); dpdma_write(xdev->reg, XILINX_DPDMA_EIEN, XILINX_DPDMA_EINTR_CHAN_ERR_MASK << chan->id); spin_lock_irqsave(&chan->lock, flags); spin_lock(&chan->vchan.lock); xilinx_dpdma_chan_queue_transfer(chan); spin_unlock(&chan->vchan.lock); spin_unlock_irqrestore(&chan->lock, flags); } static irqreturn_t xilinx_dpdma_irq_handler(int irq, void *data) { struct xilinx_dpdma_device *xdev = data; unsigned long mask; unsigned int i; u32 status; u32 error; status = dpdma_read(xdev->reg, XILINX_DPDMA_ISR); error = dpdma_read(xdev->reg, XILINX_DPDMA_EISR); if (!status && !error) return IRQ_NONE; dpdma_write(xdev->reg, XILINX_DPDMA_ISR, status); dpdma_write(xdev->reg, XILINX_DPDMA_EISR, error); if (status & XILINX_DPDMA_INTR_VSYNC) { /* * There's a single VSYNC interrupt that needs to be processed * by each running channel to update the active descriptor. */ for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) { struct xilinx_dpdma_chan *chan = xdev->chan[i]; if (chan) xilinx_dpdma_chan_vsync_irq(chan); } } mask = FIELD_GET(XILINX_DPDMA_INTR_DESC_DONE_MASK, status); if (mask) { for_each_set_bit(i, &mask, ARRAY_SIZE(xdev->chan)) xilinx_dpdma_chan_done_irq(xdev->chan[i]); } mask = FIELD_GET(XILINX_DPDMA_INTR_NO_OSTAND_MASK, status); if (mask) { for_each_set_bit(i, &mask, ARRAY_SIZE(xdev->chan)) xilinx_dpdma_chan_notify_no_ostand(xdev->chan[i]); } mask = status & XILINX_DPDMA_INTR_ERR_ALL; if (mask || error) xilinx_dpdma_handle_err_irq(xdev, mask, error); return IRQ_HANDLED; } /* ----------------------------------------------------------------------------- * Initialization & Cleanup */ static int xilinx_dpdma_chan_init(struct xilinx_dpdma_device *xdev, unsigned int chan_id) { struct xilinx_dpdma_chan *chan; chan = devm_kzalloc(xdev->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return -ENOMEM; chan->id = chan_id; chan->reg = xdev->reg + XILINX_DPDMA_CH_BASE + XILINX_DPDMA_CH_OFFSET * chan->id; chan->running = false; chan->xdev = xdev; spin_lock_init(&chan->lock); init_waitqueue_head(&chan->wait_to_stop); tasklet_setup(&chan->err_task, xilinx_dpdma_chan_err_task); chan->vchan.desc_free = xilinx_dpdma_chan_free_tx_desc; vchan_init(&chan->vchan, &xdev->common); xdev->chan[chan->id] = chan; return 0; } static void xilinx_dpdma_chan_remove(struct xilinx_dpdma_chan *chan) { if (!chan) return; tasklet_kill(&chan->err_task); list_del(&chan->vchan.chan.device_node); } static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct xilinx_dpdma_device *xdev = ofdma->of_dma_data; u32 chan_id = dma_spec->args[0]; if (chan_id >= ARRAY_SIZE(xdev->chan)) return NULL; if (!xdev->chan[chan_id]) return NULL; return dma_get_slave_channel(&xdev->chan[chan_id]->vchan.chan); } static void dpdma_hw_init(struct xilinx_dpdma_device *xdev) { unsigned int i; void __iomem *reg; /* Disable all interrupts */ xilinx_dpdma_disable_irq(xdev); /* Stop all channels */ for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) { reg = xdev->reg + XILINX_DPDMA_CH_BASE + XILINX_DPDMA_CH_OFFSET * i; dpdma_clr(reg, XILINX_DPDMA_CH_CNTL, XILINX_DPDMA_CH_CNTL_ENABLE); } /* Clear the interrupt status registers */ dpdma_write(xdev->reg, XILINX_DPDMA_ISR, XILINX_DPDMA_INTR_ALL); dpdma_write(xdev->reg, XILINX_DPDMA_EISR, XILINX_DPDMA_EINTR_ALL); } static int xilinx_dpdma_probe(struct platform_device *pdev) { struct xilinx_dpdma_device *xdev; struct dma_device *ddev; unsigned int i; int ret; xdev = devm_kzalloc(&pdev->dev, sizeof(*xdev), GFP_KERNEL); if (!xdev) return -ENOMEM; xdev->dev = &pdev->dev; xdev->ext_addr = sizeof(dma_addr_t) > 4; INIT_LIST_HEAD(&xdev->common.channels); platform_set_drvdata(pdev, xdev); xdev->axi_clk = devm_clk_get(xdev->dev, "axi_clk"); if (IS_ERR(xdev->axi_clk)) return PTR_ERR(xdev->axi_clk); xdev->reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(xdev->reg)) return PTR_ERR(xdev->reg); dpdma_hw_init(xdev); xdev->irq = platform_get_irq(pdev, 0); if (xdev->irq < 0) return xdev->irq; ret = request_irq(xdev->irq, xilinx_dpdma_irq_handler, IRQF_SHARED, dev_name(xdev->dev), xdev); if (ret) { dev_err(xdev->dev, "failed to request IRQ\n"); return ret; } ddev = &xdev->common; ddev->dev = &pdev->dev; dma_cap_set(DMA_SLAVE, ddev->cap_mask); dma_cap_set(DMA_PRIVATE, ddev->cap_mask); dma_cap_set(DMA_CYCLIC, ddev->cap_mask); dma_cap_set(DMA_INTERLEAVE, ddev->cap_mask); dma_cap_set(DMA_REPEAT, ddev->cap_mask); dma_cap_set(DMA_LOAD_EOT, ddev->cap_mask); ddev->copy_align = fls(XILINX_DPDMA_ALIGN_BYTES - 1); ddev->device_alloc_chan_resources = xilinx_dpdma_alloc_chan_resources; ddev->device_free_chan_resources = xilinx_dpdma_free_chan_resources; ddev->device_prep_dma_cyclic = xilinx_dpdma_prep_dma_cyclic; ddev->device_prep_interleaved_dma = xilinx_dpdma_prep_interleaved_dma; /* TODO: Can we achieve better granularity ? */ ddev->device_tx_status = dma_cookie_status; ddev->device_issue_pending = xilinx_dpdma_issue_pending; ddev->device_config = xilinx_dpdma_config; ddev->device_pause = xilinx_dpdma_pause; ddev->device_resume = xilinx_dpdma_resume; ddev->device_terminate_all = xilinx_dpdma_terminate_all; ddev->device_synchronize = xilinx_dpdma_synchronize; ddev->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED); ddev->directions = BIT(DMA_MEM_TO_DEV); ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; for (i = 0; i < ARRAY_SIZE(xdev->chan); ++i) { ret = xilinx_dpdma_chan_init(xdev, i); if (ret < 0) { dev_err(xdev->dev, "failed to initialize channel %u\n", i); goto error; } } ret = clk_prepare_enable(xdev->axi_clk); if (ret) { dev_err(xdev->dev, "failed to enable the axi clock\n"); goto error; } ret = dma_async_device_register(ddev); if (ret) { dev_err(xdev->dev, "failed to register the dma device\n"); goto error_dma_async; } ret = of_dma_controller_register(xdev->dev->of_node, of_dma_xilinx_xlate, ddev); if (ret) { dev_err(xdev->dev, "failed to register DMA to DT DMA helper\n"); goto error_of_dma; } xilinx_dpdma_enable_irq(xdev); xilinx_dpdma_debugfs_init(xdev); dev_info(&pdev->dev, "Xilinx DPDMA engine is probed\n"); return 0; error_of_dma: dma_async_device_unregister(ddev); error_dma_async: clk_disable_unprepare(xdev->axi_clk); error: for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) xilinx_dpdma_chan_remove(xdev->chan[i]); free_irq(xdev->irq, xdev); return ret; } static void xilinx_dpdma_remove(struct platform_device *pdev) { struct xilinx_dpdma_device *xdev = platform_get_drvdata(pdev); unsigned int i; /* Start by disabling the IRQ to avoid races during cleanup. */ free_irq(xdev->irq, xdev); xilinx_dpdma_disable_irq(xdev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&xdev->common); clk_disable_unprepare(xdev->axi_clk); for (i = 0; i < ARRAY_SIZE(xdev->chan); i++) xilinx_dpdma_chan_remove(xdev->chan[i]); } static const struct of_device_id xilinx_dpdma_of_match[] = { { .compatible = "xlnx,zynqmp-dpdma",}, { /* end of table */ }, }; MODULE_DEVICE_TABLE(of, xilinx_dpdma_of_match); static struct platform_driver xilinx_dpdma_driver = { .probe = xilinx_dpdma_probe, .remove_new = xilinx_dpdma_remove, .driver = { .name = "xilinx-zynqmp-dpdma", .of_match_table = xilinx_dpdma_of_match, }, }; module_platform_driver(xilinx_dpdma_driver); MODULE_AUTHOR("Xilinx, Inc."); MODULE_DESCRIPTION("Xilinx ZynqMP DPDMA driver"); MODULE_LICENSE("GPL v2");