/* * drivers/dma/imx-sdma.c * * This file contains a driver for the Freescale Smart DMA engine * * Copyright 2010 Sascha Hauer, Pengutronix * * Based on code from Freescale: * * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved. * * The code contained herein is licensed under the GNU General Public * License. You may obtain a copy of the GNU General Public License * Version 2 or later at the following locations: * * http://www.opensource.org/licenses/gpl-license.html * http://www.gnu.org/copyleft/gpl.html */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* SDMA registers */ #define SDMA_H_C0PTR 0x000 #define SDMA_H_INTR 0x004 #define SDMA_H_STATSTOP 0x008 #define SDMA_H_START 0x00c #define SDMA_H_EVTOVR 0x010 #define SDMA_H_DSPOVR 0x014 #define SDMA_H_HOSTOVR 0x018 #define SDMA_H_EVTPEND 0x01c #define SDMA_H_DSPENBL 0x020 #define SDMA_H_RESET 0x024 #define SDMA_H_EVTERR 0x028 #define SDMA_H_INTRMSK 0x02c #define SDMA_H_PSW 0x030 #define SDMA_H_EVTERRDBG 0x034 #define SDMA_H_CONFIG 0x038 #define SDMA_ONCE_ENB 0x040 #define SDMA_ONCE_DATA 0x044 #define SDMA_ONCE_INSTR 0x048 #define SDMA_ONCE_STAT 0x04c #define SDMA_ONCE_CMD 0x050 #define SDMA_EVT_MIRROR 0x054 #define SDMA_ILLINSTADDR 0x058 #define SDMA_CHN0ADDR 0x05c #define SDMA_ONCE_RTB 0x060 #define SDMA_XTRIG_CONF1 0x070 #define SDMA_XTRIG_CONF2 0x074 #define SDMA_CHNENBL0_IMX35 0x200 #define SDMA_CHNENBL0_IMX31 0x080 #define SDMA_CHNPRI_0 0x100 /* * Buffer descriptor status values. */ #define BD_DONE 0x01 #define BD_WRAP 0x02 #define BD_CONT 0x04 #define BD_INTR 0x08 #define BD_RROR 0x10 #define BD_LAST 0x20 #define BD_EXTD 0x80 /* * Data Node descriptor status values. */ #define DND_END_OF_FRAME 0x80 #define DND_END_OF_XFER 0x40 #define DND_DONE 0x20 #define DND_UNUSED 0x01 /* * IPCV2 descriptor status values. */ #define BD_IPCV2_END_OF_FRAME 0x40 #define IPCV2_MAX_NODES 50 /* * Error bit set in the CCB status field by the SDMA, * in setbd routine, in case of a transfer error */ #define DATA_ERROR 0x10000000 /* * Buffer descriptor commands. */ #define C0_ADDR 0x01 #define C0_LOAD 0x02 #define C0_DUMP 0x03 #define C0_SETCTX 0x07 #define C0_GETCTX 0x03 #define C0_SETDM 0x01 #define C0_SETPM 0x04 #define C0_GETDM 0x02 #define C0_GETPM 0x08 /* * Change endianness indicator in the BD command field */ #define CHANGE_ENDIANNESS 0x80 /* * Mode/Count of data node descriptors - IPCv2 */ struct sdma_mode_count { u32 count : 16; /* size of the buffer pointed by this BD */ u32 status : 8; /* E,R,I,C,W,D status bits stored here */ u32 command : 8; /* command mostlky used for channel 0 */ }; /* * Buffer descriptor */ struct sdma_buffer_descriptor { struct sdma_mode_count mode; u32 buffer_addr; /* address of the buffer described */ u32 ext_buffer_addr; /* extended buffer address */ } __attribute__ ((packed)); /** * struct sdma_channel_control - Channel control Block * * @current_bd_ptr current buffer descriptor processed * @base_bd_ptr first element of buffer descriptor array * @unused padding. The SDMA engine expects an array of 128 byte * control blocks */ struct sdma_channel_control { u32 current_bd_ptr; u32 base_bd_ptr; u32 unused[2]; } __attribute__ ((packed)); /** * struct sdma_state_registers - SDMA context for a channel * * @pc: program counter * @t: test bit: status of arithmetic & test instruction * @rpc: return program counter * @sf: source fault while loading data * @spc: loop start program counter * @df: destination fault while storing data * @epc: loop end program counter * @lm: loop mode */ struct sdma_state_registers { u32 pc :14; u32 unused1: 1; u32 t : 1; u32 rpc :14; u32 unused0: 1; u32 sf : 1; u32 spc :14; u32 unused2: 1; u32 df : 1; u32 epc :14; u32 lm : 2; } __attribute__ ((packed)); /** * struct sdma_context_data - sdma context specific to a channel * * @channel_state: channel state bits * @gReg: general registers * @mda: burst dma destination address register * @msa: burst dma source address register * @ms: burst dma status register * @md: burst dma data register * @pda: peripheral dma destination address register * @psa: peripheral dma source address register * @ps: peripheral dma status register * @pd: peripheral dma data register * @ca: CRC polynomial register * @cs: CRC accumulator register * @dda: dedicated core destination address register * @dsa: dedicated core source address register * @ds: dedicated core status register * @dd: dedicated core data register */ struct sdma_context_data { struct sdma_state_registers channel_state; u32 gReg[8]; u32 mda; u32 msa; u32 ms; u32 md; u32 pda; u32 psa; u32 ps; u32 pd; u32 ca; u32 cs; u32 dda; u32 dsa; u32 ds; u32 dd; u32 scratch0; u32 scratch1; u32 scratch2; u32 scratch3; u32 scratch4; u32 scratch5; u32 scratch6; u32 scratch7; } __attribute__ ((packed)); #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor)) struct sdma_engine; /** * struct sdma_channel - housekeeping for a SDMA channel * * @sdma pointer to the SDMA engine for this channel * @channel the channel number, matches dmaengine chan_id + 1 * @direction transfer type. Needed for setting SDMA script * @peripheral_type Peripheral type. Needed for setting SDMA script * @event_id0 aka dma request line * @event_id1 for channels that use 2 events * @word_size peripheral access size * @buf_tail ID of the buffer that was processed * @done channel completion * @num_bd max NUM_BD. number of descriptors currently handling */ struct sdma_channel { struct sdma_engine *sdma; unsigned int channel; enum dma_transfer_direction direction; enum sdma_peripheral_type peripheral_type; unsigned int event_id0; unsigned int event_id1; enum dma_slave_buswidth word_size; unsigned int buf_tail; struct completion done; unsigned int num_bd; struct sdma_buffer_descriptor *bd; dma_addr_t bd_phys; unsigned int pc_from_device, pc_to_device; unsigned long flags; dma_addr_t per_address; unsigned long event_mask[2]; unsigned long watermark_level; u32 shp_addr, per_addr; struct dma_chan chan; spinlock_t lock; struct dma_async_tx_descriptor desc; dma_cookie_t last_completed; enum dma_status status; unsigned int chn_count; unsigned int chn_real_count; }; #define IMX_DMA_SG_LOOP BIT(0) #define MAX_DMA_CHANNELS 32 #define MXC_SDMA_DEFAULT_PRIORITY 1 #define MXC_SDMA_MIN_PRIORITY 1 #define MXC_SDMA_MAX_PRIORITY 7 #define SDMA_FIRMWARE_MAGIC 0x414d4453 /** * struct sdma_firmware_header - Layout of the firmware image * * @magic "SDMA" * @version_major increased whenever layout of struct sdma_script_start_addrs * changes. * @version_minor firmware minor version (for binary compatible changes) * @script_addrs_start offset of struct sdma_script_start_addrs in this image * @num_script_addrs Number of script addresses in this image * @ram_code_start offset of SDMA ram image in this firmware image * @ram_code_size size of SDMA ram image * @script_addrs Stores the start address of the SDMA scripts * (in SDMA memory space) */ struct sdma_firmware_header { u32 magic; u32 version_major; u32 version_minor; u32 script_addrs_start; u32 num_script_addrs; u32 ram_code_start; u32 ram_code_size; }; enum sdma_devtype { IMX31_SDMA, /* runs on i.mx31 */ IMX35_SDMA, /* runs on i.mx35 and later */ }; struct sdma_engine { struct device *dev; struct device_dma_parameters dma_parms; struct sdma_channel channel[MAX_DMA_CHANNELS]; struct sdma_channel_control *channel_control; void __iomem *regs; enum sdma_devtype devtype; unsigned int num_events; struct sdma_context_data *context; dma_addr_t context_phys; struct dma_device dma_device; struct clk *clk; struct mutex channel_0_lock; struct sdma_script_start_addrs *script_addrs; }; static struct platform_device_id sdma_devtypes[] = { { .name = "imx31-sdma", .driver_data = IMX31_SDMA, }, { .name = "imx35-sdma", .driver_data = IMX35_SDMA, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, sdma_devtypes); static const struct of_device_id sdma_dt_ids[] = { { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], }, { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sdma_dt_ids); #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */ #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */ #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */ #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/ static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event) { u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 : SDMA_CHNENBL0_IMX35); return chnenbl0 + event * 4; } static int sdma_config_ownership(struct sdma_channel *sdmac, bool event_override, bool mcu_override, bool dsp_override) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; unsigned long evt, mcu, dsp; if (event_override && mcu_override && dsp_override) return -EINVAL; evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR); mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR); dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR); if (dsp_override) __clear_bit(channel, &dsp); else __set_bit(channel, &dsp); if (event_override) __clear_bit(channel, &evt); else __set_bit(channel, &evt); if (mcu_override) __clear_bit(channel, &mcu); else __set_bit(channel, &mcu); writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR); writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR); writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR); return 0; } static void sdma_enable_channel(struct sdma_engine *sdma, int channel) { writel(BIT(channel), sdma->regs + SDMA_H_START); } /* * sdma_run_channel - run a channel and wait till it's done */ static int sdma_run_channel(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; int ret; init_completion(&sdmac->done); sdma_enable_channel(sdma, channel); ret = wait_for_completion_timeout(&sdmac->done, HZ); return ret ? 0 : -ETIMEDOUT; } static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size, u32 address) { struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; void *buf_virt; dma_addr_t buf_phys; int ret; mutex_lock(&sdma->channel_0_lock); buf_virt = dma_alloc_coherent(NULL, size, &buf_phys, GFP_KERNEL); if (!buf_virt) { ret = -ENOMEM; goto err_out; } bd0->mode.command = C0_SETPM; bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; bd0->mode.count = size / 2; bd0->buffer_addr = buf_phys; bd0->ext_buffer_addr = address; memcpy(buf_virt, buf, size); ret = sdma_run_channel(&sdma->channel[0]); dma_free_coherent(NULL, size, buf_virt, buf_phys); err_out: mutex_unlock(&sdma->channel_0_lock); return ret; } static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; unsigned long val; u32 chnenbl = chnenbl_ofs(sdma, event); val = readl_relaxed(sdma->regs + chnenbl); __set_bit(channel, &val); writel_relaxed(val, sdma->regs + chnenbl); } static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; u32 chnenbl = chnenbl_ofs(sdma, event); unsigned long val; val = readl_relaxed(sdma->regs + chnenbl); __clear_bit(channel, &val); writel_relaxed(val, sdma->regs + chnenbl); } static void sdma_handle_channel_loop(struct sdma_channel *sdmac) { struct sdma_buffer_descriptor *bd; /* * loop mode. Iterate over descriptors, re-setup them and * call callback function. */ while (1) { bd = &sdmac->bd[sdmac->buf_tail]; if (bd->mode.status & BD_DONE) break; if (bd->mode.status & BD_RROR) sdmac->status = DMA_ERROR; else sdmac->status = DMA_IN_PROGRESS; bd->mode.status |= BD_DONE; sdmac->buf_tail++; sdmac->buf_tail %= sdmac->num_bd; if (sdmac->desc.callback) sdmac->desc.callback(sdmac->desc.callback_param); } } static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac) { struct sdma_buffer_descriptor *bd; int i, error = 0; sdmac->chn_real_count = 0; /* * non loop mode. Iterate over all descriptors, collect * errors and call callback function */ for (i = 0; i < sdmac->num_bd; i++) { bd = &sdmac->bd[i]; if (bd->mode.status & (BD_DONE | BD_RROR)) error = -EIO; sdmac->chn_real_count += bd->mode.count; } if (error) sdmac->status = DMA_ERROR; else sdmac->status = DMA_SUCCESS; sdmac->last_completed = sdmac->desc.cookie; if (sdmac->desc.callback) sdmac->desc.callback(sdmac->desc.callback_param); } static void mxc_sdma_handle_channel(struct sdma_channel *sdmac) { complete(&sdmac->done); /* not interested in channel 0 interrupts */ if (sdmac->channel == 0) return; if (sdmac->flags & IMX_DMA_SG_LOOP) sdma_handle_channel_loop(sdmac); else mxc_sdma_handle_channel_normal(sdmac); } static irqreturn_t sdma_int_handler(int irq, void *dev_id) { struct sdma_engine *sdma = dev_id; unsigned long stat; stat = readl_relaxed(sdma->regs + SDMA_H_INTR); writel_relaxed(stat, sdma->regs + SDMA_H_INTR); while (stat) { int channel = fls(stat) - 1; struct sdma_channel *sdmac = &sdma->channel[channel]; mxc_sdma_handle_channel(sdmac); __clear_bit(channel, &stat); } return IRQ_HANDLED; } /* * sets the pc of SDMA script according to the peripheral type */ static void sdma_get_pc(struct sdma_channel *sdmac, enum sdma_peripheral_type peripheral_type) { struct sdma_engine *sdma = sdmac->sdma; int per_2_emi = 0, emi_2_per = 0; /* * These are needed once we start to support transfers between * two peripherals or memory-to-memory transfers */ int per_2_per = 0, emi_2_emi = 0; sdmac->pc_from_device = 0; sdmac->pc_to_device = 0; switch (peripheral_type) { case IMX_DMATYPE_MEMORY: emi_2_emi = sdma->script_addrs->ap_2_ap_addr; break; case IMX_DMATYPE_DSP: emi_2_per = sdma->script_addrs->bp_2_ap_addr; per_2_emi = sdma->script_addrs->ap_2_bp_addr; break; case IMX_DMATYPE_FIRI: per_2_emi = sdma->script_addrs->firi_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_firi_addr; break; case IMX_DMATYPE_UART: per_2_emi = sdma->script_addrs->uart_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_app_addr; break; case IMX_DMATYPE_UART_SP: per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_shp_addr; break; case IMX_DMATYPE_ATA: per_2_emi = sdma->script_addrs->ata_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_ata_addr; break; case IMX_DMATYPE_CSPI: case IMX_DMATYPE_EXT: case IMX_DMATYPE_SSI: per_2_emi = sdma->script_addrs->app_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_app_addr; break; case IMX_DMATYPE_SSI_SP: case IMX_DMATYPE_MMC: case IMX_DMATYPE_SDHC: case IMX_DMATYPE_CSPI_SP: case IMX_DMATYPE_ESAI: case IMX_DMATYPE_MSHC_SP: per_2_emi = sdma->script_addrs->shp_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_shp_addr; break; case IMX_DMATYPE_ASRC: per_2_emi = sdma->script_addrs->asrc_2_mcu_addr; emi_2_per = sdma->script_addrs->asrc_2_mcu_addr; per_2_per = sdma->script_addrs->per_2_per_addr; break; case IMX_DMATYPE_MSHC: per_2_emi = sdma->script_addrs->mshc_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_mshc_addr; break; case IMX_DMATYPE_CCM: per_2_emi = sdma->script_addrs->dptc_dvfs_addr; break; case IMX_DMATYPE_SPDIF: per_2_emi = sdma->script_addrs->spdif_2_mcu_addr; emi_2_per = sdma->script_addrs->mcu_2_spdif_addr; break; case IMX_DMATYPE_IPU_MEMORY: emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr; break; default: break; } sdmac->pc_from_device = per_2_emi; sdmac->pc_to_device = emi_2_per; } static int sdma_load_context(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; int load_address; struct sdma_context_data *context = sdma->context; struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd; int ret; if (sdmac->direction == DMA_DEV_TO_MEM) { load_address = sdmac->pc_from_device; } else { load_address = sdmac->pc_to_device; } if (load_address < 0) return load_address; dev_dbg(sdma->dev, "load_address = %d\n", load_address); dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level); dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr); dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr); dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]); dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]); mutex_lock(&sdma->channel_0_lock); memset(context, 0, sizeof(*context)); context->channel_state.pc = load_address; /* Send by context the event mask,base address for peripheral * and watermark level */ context->gReg[0] = sdmac->event_mask[1]; context->gReg[1] = sdmac->event_mask[0]; context->gReg[2] = sdmac->per_addr; context->gReg[6] = sdmac->shp_addr; context->gReg[7] = sdmac->watermark_level; bd0->mode.command = C0_SETDM; bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD; bd0->mode.count = sizeof(*context) / 4; bd0->buffer_addr = sdma->context_phys; bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel; ret = sdma_run_channel(&sdma->channel[0]); mutex_unlock(&sdma->channel_0_lock); return ret; } static void sdma_disable_channel(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP); sdmac->status = DMA_ERROR; } static int sdma_config_channel(struct sdma_channel *sdmac) { int ret; sdma_disable_channel(sdmac); sdmac->event_mask[0] = 0; sdmac->event_mask[1] = 0; sdmac->shp_addr = 0; sdmac->per_addr = 0; if (sdmac->event_id0) { if (sdmac->event_id0 >= sdmac->sdma->num_events) return -EINVAL; sdma_event_enable(sdmac, sdmac->event_id0); } switch (sdmac->peripheral_type) { case IMX_DMATYPE_DSP: sdma_config_ownership(sdmac, false, true, true); break; case IMX_DMATYPE_MEMORY: sdma_config_ownership(sdmac, false, true, false); break; default: sdma_config_ownership(sdmac, true, true, false); break; } sdma_get_pc(sdmac, sdmac->peripheral_type); if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) && (sdmac->peripheral_type != IMX_DMATYPE_DSP)) { /* Handle multiple event channels differently */ if (sdmac->event_id1) { sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32); if (sdmac->event_id1 > 31) __set_bit(31, &sdmac->watermark_level); sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32); if (sdmac->event_id0 > 31) __set_bit(30, &sdmac->watermark_level); } else { __set_bit(sdmac->event_id0, sdmac->event_mask); } /* Watermark Level */ sdmac->watermark_level |= sdmac->watermark_level; /* Address */ sdmac->shp_addr = sdmac->per_address; } else { sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */ } ret = sdma_load_context(sdmac); return ret; } static int sdma_set_channel_priority(struct sdma_channel *sdmac, unsigned int priority) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; if (priority < MXC_SDMA_MIN_PRIORITY || priority > MXC_SDMA_MAX_PRIORITY) { return -EINVAL; } writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel); return 0; } static int sdma_request_channel(struct sdma_channel *sdmac) { struct sdma_engine *sdma = sdmac->sdma; int channel = sdmac->channel; int ret = -EBUSY; sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL); if (!sdmac->bd) { ret = -ENOMEM; goto out; } memset(sdmac->bd, 0, PAGE_SIZE); sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys; sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY); init_completion(&sdmac->done); sdmac->buf_tail = 0; return 0; out: return ret; } static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac) { dma_cookie_t cookie = sdmac->chan.cookie; if (++cookie < 0) cookie = 1; sdmac->chan.cookie = cookie; sdmac->desc.cookie = cookie; return cookie; } static struct sdma_channel *to_sdma_chan(struct dma_chan *chan) { return container_of(chan, struct sdma_channel, chan); } static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx) { unsigned long flags; struct sdma_channel *sdmac = to_sdma_chan(tx->chan); dma_cookie_t cookie; spin_lock_irqsave(&sdmac->lock, flags); cookie = sdma_assign_cookie(sdmac); spin_unlock_irqrestore(&sdmac->lock, flags); return cookie; } static int sdma_alloc_chan_resources(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct imx_dma_data *data = chan->private; int prio, ret; if (!data) return -EINVAL; switch (data->priority) { case DMA_PRIO_HIGH: prio = 3; break; case DMA_PRIO_MEDIUM: prio = 2; break; case DMA_PRIO_LOW: default: prio = 1; break; } sdmac->peripheral_type = data->peripheral_type; sdmac->event_id0 = data->dma_request; clk_enable(sdmac->sdma->clk); ret = sdma_request_channel(sdmac); if (ret) return ret; ret = sdma_set_channel_priority(sdmac, prio); if (ret) return ret; dma_async_tx_descriptor_init(&sdmac->desc, chan); sdmac->desc.tx_submit = sdma_tx_submit; /* txd.flags will be overwritten in prep funcs */ sdmac->desc.flags = DMA_CTRL_ACK; return 0; } static void sdma_free_chan_resources(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; sdma_disable_channel(sdmac); if (sdmac->event_id0) sdma_event_disable(sdmac, sdmac->event_id0); if (sdmac->event_id1) sdma_event_disable(sdmac, sdmac->event_id1); sdmac->event_id0 = 0; sdmac->event_id1 = 0; sdma_set_channel_priority(sdmac, 0); dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys); clk_disable(sdma->clk); } static struct dma_async_tx_descriptor *sdma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; int ret, i, count; int channel = sdmac->channel; struct scatterlist *sg; if (sdmac->status == DMA_IN_PROGRESS) return NULL; sdmac->status = DMA_IN_PROGRESS; sdmac->flags = 0; dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n", sg_len, channel); sdmac->direction = direction; ret = sdma_load_context(sdmac); if (ret) goto err_out; if (sg_len > NUM_BD) { dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", channel, sg_len, NUM_BD); ret = -EINVAL; goto err_out; } sdmac->chn_count = 0; for_each_sg(sgl, sg, sg_len, i) { struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; int param; bd->buffer_addr = sg->dma_address; count = sg->length; if (count > 0xffff) { dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n", channel, count, 0xffff); ret = -EINVAL; goto err_out; } bd->mode.count = count; sdmac->chn_count += count; if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) { ret = -EINVAL; goto err_out; } switch (sdmac->word_size) { case DMA_SLAVE_BUSWIDTH_4_BYTES: bd->mode.command = 0; if (count & 3 || sg->dma_address & 3) return NULL; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: bd->mode.command = 2; if (count & 1 || sg->dma_address & 1) return NULL; break; case DMA_SLAVE_BUSWIDTH_1_BYTE: bd->mode.command = 1; break; default: return NULL; } param = BD_DONE | BD_EXTD | BD_CONT; if (i + 1 == sg_len) { param |= BD_INTR; param |= BD_LAST; param &= ~BD_CONT; } dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n", i, count, sg->dma_address, param & BD_WRAP ? "wrap" : "", param & BD_INTR ? " intr" : ""); bd->mode.status = param; } sdmac->num_bd = sg_len; sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; return &sdmac->desc; err_out: sdmac->status = DMA_ERROR; return NULL; } static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; int num_periods = buf_len / period_len; int channel = sdmac->channel; int ret, i = 0, buf = 0; dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel); if (sdmac->status == DMA_IN_PROGRESS) return NULL; sdmac->status = DMA_IN_PROGRESS; sdmac->flags |= IMX_DMA_SG_LOOP; sdmac->direction = direction; ret = sdma_load_context(sdmac); if (ret) goto err_out; if (num_periods > NUM_BD) { dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n", channel, num_periods, NUM_BD); goto err_out; } if (period_len > 0xffff) { dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n", channel, period_len, 0xffff); goto err_out; } while (buf < buf_len) { struct sdma_buffer_descriptor *bd = &sdmac->bd[i]; int param; bd->buffer_addr = dma_addr; bd->mode.count = period_len; if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) goto err_out; if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES) bd->mode.command = 0; else bd->mode.command = sdmac->word_size; param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR; if (i + 1 == num_periods) param |= BD_WRAP; dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n", i, period_len, dma_addr, param & BD_WRAP ? "wrap" : "", param & BD_INTR ? " intr" : ""); bd->mode.status = param; dma_addr += period_len; buf += period_len; i++; } sdmac->num_bd = num_periods; sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys; return &sdmac->desc; err_out: sdmac->status = DMA_ERROR; return NULL; } static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct dma_slave_config *dmaengine_cfg = (void *)arg; switch (cmd) { case DMA_TERMINATE_ALL: sdma_disable_channel(sdmac); return 0; case DMA_SLAVE_CONFIG: if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) { sdmac->per_address = dmaengine_cfg->src_addr; sdmac->watermark_level = dmaengine_cfg->src_maxburst * dmaengine_cfg->src_addr_width; sdmac->word_size = dmaengine_cfg->src_addr_width; } else { sdmac->per_address = dmaengine_cfg->dst_addr; sdmac->watermark_level = dmaengine_cfg->dst_maxburst * dmaengine_cfg->dst_addr_width; sdmac->word_size = dmaengine_cfg->dst_addr_width; } sdmac->direction = dmaengine_cfg->direction; return sdma_config_channel(sdmac); default: return -ENOSYS; } return -EINVAL; } static enum dma_status sdma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct sdma_channel *sdmac = to_sdma_chan(chan); dma_cookie_t last_used; last_used = chan->cookie; dma_set_tx_state(txstate, sdmac->last_completed, last_used, sdmac->chn_count - sdmac->chn_real_count); return sdmac->status; } static void sdma_issue_pending(struct dma_chan *chan) { struct sdma_channel *sdmac = to_sdma_chan(chan); struct sdma_engine *sdma = sdmac->sdma; if (sdmac->status == DMA_IN_PROGRESS) sdma_enable_channel(sdma, sdmac->channel); } #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34 static void sdma_add_scripts(struct sdma_engine *sdma, const struct sdma_script_start_addrs *addr) { s32 *addr_arr = (u32 *)addr; s32 *saddr_arr = (u32 *)sdma->script_addrs; int i; for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) if (addr_arr[i] > 0) saddr_arr[i] = addr_arr[i]; } static void sdma_load_firmware(const struct firmware *fw, void *context) { struct sdma_engine *sdma = context; const struct sdma_firmware_header *header; const struct sdma_script_start_addrs *addr; unsigned short *ram_code; if (!fw) { dev_err(sdma->dev, "firmware not found\n"); return; } if (fw->size < sizeof(*header)) goto err_firmware; header = (struct sdma_firmware_header *)fw->data; if (header->magic != SDMA_FIRMWARE_MAGIC) goto err_firmware; if (header->ram_code_start + header->ram_code_size > fw->size) goto err_firmware; addr = (void *)header + header->script_addrs_start; ram_code = (void *)header + header->ram_code_start; clk_enable(sdma->clk); /* download the RAM image for SDMA */ sdma_load_script(sdma, ram_code, header->ram_code_size, addr->ram_code_start_addr); clk_disable(sdma->clk); sdma_add_scripts(sdma, addr); dev_info(sdma->dev, "loaded firmware %d.%d\n", header->version_major, header->version_minor); err_firmware: release_firmware(fw); } static int __init sdma_get_firmware(struct sdma_engine *sdma, const char *fw_name) { int ret; ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG, fw_name, sdma->dev, GFP_KERNEL, sdma, sdma_load_firmware); return ret; } static int __init sdma_init(struct sdma_engine *sdma) { int i, ret; dma_addr_t ccb_phys; switch (sdma->devtype) { case IMX31_SDMA: sdma->num_events = 32; break; case IMX35_SDMA: sdma->num_events = 48; break; default: dev_err(sdma->dev, "Unknown sdma type %d. aborting\n", sdma->devtype); return -ENODEV; } clk_enable(sdma->clk); /* Be sure SDMA has not started yet */ writel_relaxed(0, sdma->regs + SDMA_H_C0PTR); sdma->channel_control = dma_alloc_coherent(NULL, MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) + sizeof(struct sdma_context_data), &ccb_phys, GFP_KERNEL); if (!sdma->channel_control) { ret = -ENOMEM; goto err_dma_alloc; } sdma->context = (void *)sdma->channel_control + MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); sdma->context_phys = ccb_phys + MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control); /* Zero-out the CCB structures array just allocated */ memset(sdma->channel_control, 0, MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control)); /* disable all channels */ for (i = 0; i < sdma->num_events; i++) writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i)); /* All channels have priority 0 */ for (i = 0; i < MAX_DMA_CHANNELS; i++) writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4); ret = sdma_request_channel(&sdma->channel[0]); if (ret) goto err_dma_alloc; sdma_config_ownership(&sdma->channel[0], false, true, false); /* Set Command Channel (Channel Zero) */ writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR); /* Set bits of CONFIG register but with static context switching */ /* FIXME: Check whether to set ACR bit depending on clock ratios */ writel_relaxed(0, sdma->regs + SDMA_H_CONFIG); writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR); /* Set bits of CONFIG register with given context switching mode */ writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG); /* Initializes channel's priorities */ sdma_set_channel_priority(&sdma->channel[0], 7); clk_disable(sdma->clk); return 0; err_dma_alloc: clk_disable(sdma->clk); dev_err(sdma->dev, "initialisation failed with %d\n", ret); return ret; } static int __init sdma_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(sdma_dt_ids, &pdev->dev); struct device_node *np = pdev->dev.of_node; const char *fw_name; int ret; int irq; struct resource *iores; struct sdma_platform_data *pdata = pdev->dev.platform_data; int i; struct sdma_engine *sdma; s32 *saddr_arr; sdma = kzalloc(sizeof(*sdma), GFP_KERNEL); if (!sdma) return -ENOMEM; mutex_init(&sdma->channel_0_lock); sdma->dev = &pdev->dev; iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!iores || irq < 0) { ret = -EINVAL; goto err_irq; } if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) { ret = -EBUSY; goto err_request_region; } sdma->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(sdma->clk)) { ret = PTR_ERR(sdma->clk); goto err_clk; } sdma->regs = ioremap(iores->start, resource_size(iores)); if (!sdma->regs) { ret = -ENOMEM; goto err_ioremap; } ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma); if (ret) goto err_request_irq; sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL); if (!sdma->script_addrs) { ret = -ENOMEM; goto err_alloc; } /* initially no scripts available */ saddr_arr = (s32 *)sdma->script_addrs; for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++) saddr_arr[i] = -EINVAL; if (of_id) pdev->id_entry = of_id->data; sdma->devtype = pdev->id_entry->driver_data; dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask); dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask); INIT_LIST_HEAD(&sdma->dma_device.channels); /* Initialize channel parameters */ for (i = 0; i < MAX_DMA_CHANNELS; i++) { struct sdma_channel *sdmac = &sdma->channel[i]; sdmac->sdma = sdma; spin_lock_init(&sdmac->lock); sdmac->chan.device = &sdma->dma_device; sdmac->channel = i; /* * Add the channel to the DMAC list. Do not add channel 0 though * because we need it internally in the SDMA driver. This also means * that channel 0 in dmaengine counting matches sdma channel 1. */ if (i) list_add_tail(&sdmac->chan.device_node, &sdma->dma_device.channels); } ret = sdma_init(sdma); if (ret) goto err_init; if (pdata && pdata->script_addrs) sdma_add_scripts(sdma, pdata->script_addrs); if (pdata) { sdma_get_firmware(sdma, pdata->fw_name); } else { /* * Because that device tree does not encode ROM script address, * the RAM script in firmware is mandatory for device tree * probe, otherwise it fails. */ ret = of_property_read_string(np, "fsl,sdma-ram-script-name", &fw_name); if (ret) dev_err(&pdev->dev, "failed to get firmware name\n"); else { ret = sdma_get_firmware(sdma, fw_name); if (ret) dev_err(&pdev->dev, "failed to get firmware\n"); } } sdma->dma_device.dev = &pdev->dev; sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources; sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources; sdma->dma_device.device_tx_status = sdma_tx_status; sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg; sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic; sdma->dma_device.device_control = sdma_control; sdma->dma_device.device_issue_pending = sdma_issue_pending; sdma->dma_device.dev->dma_parms = &sdma->dma_parms; dma_set_max_seg_size(sdma->dma_device.dev, 65535); ret = dma_async_device_register(&sdma->dma_device); if (ret) { dev_err(&pdev->dev, "unable to register\n"); goto err_init; } dev_info(sdma->dev, "initialized\n"); return 0; err_init: kfree(sdma->script_addrs); err_alloc: free_irq(irq, sdma); err_request_irq: iounmap(sdma->regs); err_ioremap: clk_put(sdma->clk); err_clk: release_mem_region(iores->start, resource_size(iores)); err_request_region: err_irq: kfree(sdma); return ret; } static int __exit sdma_remove(struct platform_device *pdev) { return -EBUSY; } static struct platform_driver sdma_driver = { .driver = { .name = "imx-sdma", .of_match_table = sdma_dt_ids, }, .id_table = sdma_devtypes, .remove = __exit_p(sdma_remove), }; static int __init sdma_module_init(void) { return platform_driver_probe(&sdma_driver, sdma_probe); } module_init(sdma_module_init); MODULE_AUTHOR("Sascha Hauer, Pengutronix "); MODULE_DESCRIPTION("i.MX SDMA driver"); MODULE_LICENSE("GPL");