// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2022 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" /** * DOC: cxl core region * * CXL Regions represent mapped memory capacity in system physical address * space. Whereas the CXL Root Decoders identify the bounds of potential CXL * Memory ranges, Regions represent the active mapped capacity by the HDM * Decoder Capability structures throughout the Host Bridges, Switches, and * Endpoints in the topology. * * Region configuration has ordering constraints. UUID may be set at any time * but is only visible for persistent regions. * 1. Interleave granularity * 2. Interleave size * 3. Decoder targets */ static struct cxl_region *to_cxl_region(struct device *dev); #define __ACCESS_ATTR_RO(_level, _name) { \ .attr = { .name = __stringify(_name), .mode = 0444 }, \ .show = _name##_access##_level##_show, \ } #define ACCESS_DEVICE_ATTR_RO(level, name) \ struct device_attribute dev_attr_access##level##_##name = __ACCESS_ATTR_RO(level, name) #define ACCESS_ATTR_RO(level, attrib) \ static ssize_t attrib##_access##level##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct cxl_region *cxlr = to_cxl_region(dev); \ \ if (cxlr->coord[level].attrib == 0) \ return -ENOENT; \ \ return sysfs_emit(buf, "%u\n", cxlr->coord[level].attrib); \ } \ static ACCESS_DEVICE_ATTR_RO(level, attrib) ACCESS_ATTR_RO(0, read_bandwidth); ACCESS_ATTR_RO(0, read_latency); ACCESS_ATTR_RO(0, write_bandwidth); ACCESS_ATTR_RO(0, write_latency); #define ACCESS_ATTR_DECLARE(level, attrib) \ (&dev_attr_access##level##_##attrib.attr) static struct attribute *access0_coordinate_attrs[] = { ACCESS_ATTR_DECLARE(0, read_bandwidth), ACCESS_ATTR_DECLARE(0, write_bandwidth), ACCESS_ATTR_DECLARE(0, read_latency), ACCESS_ATTR_DECLARE(0, write_latency), NULL }; ACCESS_ATTR_RO(1, read_bandwidth); ACCESS_ATTR_RO(1, read_latency); ACCESS_ATTR_RO(1, write_bandwidth); ACCESS_ATTR_RO(1, write_latency); static struct attribute *access1_coordinate_attrs[] = { ACCESS_ATTR_DECLARE(1, read_bandwidth), ACCESS_ATTR_DECLARE(1, write_bandwidth), ACCESS_ATTR_DECLARE(1, read_latency), ACCESS_ATTR_DECLARE(1, write_latency), NULL }; #define ACCESS_VISIBLE(level) \ static umode_t cxl_region_access##level##_coordinate_visible( \ struct kobject *kobj, struct attribute *a, int n) \ { \ struct device *dev = kobj_to_dev(kobj); \ struct cxl_region *cxlr = to_cxl_region(dev); \ \ if (a == &dev_attr_access##level##_read_latency.attr && \ cxlr->coord[level].read_latency == 0) \ return 0; \ \ if (a == &dev_attr_access##level##_write_latency.attr && \ cxlr->coord[level].write_latency == 0) \ return 0; \ \ if (a == &dev_attr_access##level##_read_bandwidth.attr && \ cxlr->coord[level].read_bandwidth == 0) \ return 0; \ \ if (a == &dev_attr_access##level##_write_bandwidth.attr && \ cxlr->coord[level].write_bandwidth == 0) \ return 0; \ \ return a->mode; \ } ACCESS_VISIBLE(0); ACCESS_VISIBLE(1); static const struct attribute_group cxl_region_access0_coordinate_group = { .name = "access0", .attrs = access0_coordinate_attrs, .is_visible = cxl_region_access0_coordinate_visible, }; static const struct attribute_group *get_cxl_region_access0_group(void) { return &cxl_region_access0_coordinate_group; } static const struct attribute_group cxl_region_access1_coordinate_group = { .name = "access1", .attrs = access1_coordinate_attrs, .is_visible = cxl_region_access1_coordinate_visible, }; static const struct attribute_group *get_cxl_region_access1_group(void) { return &cxl_region_access1_coordinate_group; } static ssize_t uuid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; if (cxlr->mode != CXL_DECODER_PMEM) rc = sysfs_emit(buf, "\n"); else rc = sysfs_emit(buf, "%pUb\n", &p->uuid); up_read(&cxl_region_rwsem); return rc; } static int is_dup(struct device *match, void *data) { struct cxl_region_params *p; struct cxl_region *cxlr; uuid_t *uuid = data; if (!is_cxl_region(match)) return 0; lockdep_assert_held(&cxl_region_rwsem); cxlr = to_cxl_region(match); p = &cxlr->params; if (uuid_equal(&p->uuid, uuid)) { dev_dbg(match, "already has uuid: %pUb\n", uuid); return -EBUSY; } return 0; } static ssize_t uuid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; uuid_t temp; ssize_t rc; if (len != UUID_STRING_LEN + 1) return -EINVAL; rc = uuid_parse(buf, &temp); if (rc) return rc; if (uuid_is_null(&temp)) return -EINVAL; rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; if (uuid_equal(&p->uuid, &temp)) goto out; rc = -EBUSY; if (p->state >= CXL_CONFIG_ACTIVE) goto out; rc = bus_for_each_dev(&cxl_bus_type, NULL, &temp, is_dup); if (rc < 0) goto out; uuid_copy(&p->uuid, &temp); out: up_write(&cxl_region_rwsem); if (rc) return rc; return len; } static DEVICE_ATTR_RW(uuid); static struct cxl_region_ref *cxl_rr_load(struct cxl_port *port, struct cxl_region *cxlr) { return xa_load(&port->regions, (unsigned long)cxlr); } static int cxl_region_invalidate_memregion(struct cxl_region *cxlr) { if (!cpu_cache_has_invalidate_memregion()) { if (IS_ENABLED(CONFIG_CXL_REGION_INVALIDATION_TEST)) { dev_info_once( &cxlr->dev, "Bypassing cpu_cache_invalidate_memregion() for testing!\n"); return 0; } else { dev_err(&cxlr->dev, "Failed to synchronize CPU cache state\n"); return -ENXIO; } } cpu_cache_invalidate_memregion(IORES_DESC_CXL); return 0; } static int cxl_region_decode_reset(struct cxl_region *cxlr, int count) { struct cxl_region_params *p = &cxlr->params; int i, rc = 0; /* * Before region teardown attempt to flush, and if the flush * fails cancel the region teardown for data consistency * concerns */ rc = cxl_region_invalidate_memregion(cxlr); if (rc) return rc; for (i = count - 1; i >= 0; i--) { struct cxl_endpoint_decoder *cxled = p->targets[i]; struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_port *iter = cxled_to_port(cxled); struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_ep *ep; if (cxlds->rcd) goto endpoint_reset; while (!is_cxl_root(to_cxl_port(iter->dev.parent))) iter = to_cxl_port(iter->dev.parent); for (ep = cxl_ep_load(iter, cxlmd); iter; iter = ep->next, ep = cxl_ep_load(iter, cxlmd)) { struct cxl_region_ref *cxl_rr; struct cxl_decoder *cxld; cxl_rr = cxl_rr_load(iter, cxlr); cxld = cxl_rr->decoder; if (cxld->reset) rc = cxld->reset(cxld); if (rc) return rc; set_bit(CXL_REGION_F_NEEDS_RESET, &cxlr->flags); } endpoint_reset: rc = cxled->cxld.reset(&cxled->cxld); if (rc) return rc; set_bit(CXL_REGION_F_NEEDS_RESET, &cxlr->flags); } /* all decoders associated with this region have been torn down */ clear_bit(CXL_REGION_F_NEEDS_RESET, &cxlr->flags); return 0; } static int commit_decoder(struct cxl_decoder *cxld) { struct cxl_switch_decoder *cxlsd = NULL; if (cxld->commit) return cxld->commit(cxld); if (is_switch_decoder(&cxld->dev)) cxlsd = to_cxl_switch_decoder(&cxld->dev); if (dev_WARN_ONCE(&cxld->dev, !cxlsd || cxlsd->nr_targets > 1, "->commit() is required\n")) return -ENXIO; return 0; } static int cxl_region_decode_commit(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; int i, rc = 0; for (i = 0; i < p->nr_targets; i++) { struct cxl_endpoint_decoder *cxled = p->targets[i]; struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_region_ref *cxl_rr; struct cxl_decoder *cxld; struct cxl_port *iter; struct cxl_ep *ep; /* commit bottom up */ for (iter = cxled_to_port(cxled); !is_cxl_root(iter); iter = to_cxl_port(iter->dev.parent)) { cxl_rr = cxl_rr_load(iter, cxlr); cxld = cxl_rr->decoder; rc = commit_decoder(cxld); if (rc) break; } if (rc) { /* programming @iter failed, teardown */ for (ep = cxl_ep_load(iter, cxlmd); ep && iter; iter = ep->next, ep = cxl_ep_load(iter, cxlmd)) { cxl_rr = cxl_rr_load(iter, cxlr); cxld = cxl_rr->decoder; if (cxld->reset) cxld->reset(cxld); } cxled->cxld.reset(&cxled->cxld); goto err; } } return 0; err: /* undo the targets that were successfully committed */ cxl_region_decode_reset(cxlr, i); return rc; } static ssize_t commit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; bool commit; ssize_t rc; rc = kstrtobool(buf, &commit); if (rc) return rc; rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; /* Already in the requested state? */ if (commit && p->state >= CXL_CONFIG_COMMIT) goto out; if (!commit && p->state < CXL_CONFIG_COMMIT) goto out; /* Not ready to commit? */ if (commit && p->state < CXL_CONFIG_ACTIVE) { rc = -ENXIO; goto out; } /* * Invalidate caches before region setup to drop any speculative * consumption of this address space */ rc = cxl_region_invalidate_memregion(cxlr); if (rc) goto out; if (commit) { rc = cxl_region_decode_commit(cxlr); if (rc == 0) p->state = CXL_CONFIG_COMMIT; } else { p->state = CXL_CONFIG_RESET_PENDING; up_write(&cxl_region_rwsem); device_release_driver(&cxlr->dev); down_write(&cxl_region_rwsem); /* * The lock was dropped, so need to revalidate that the reset is * still pending. */ if (p->state == CXL_CONFIG_RESET_PENDING) { rc = cxl_region_decode_reset(cxlr, p->interleave_ways); /* * Revert to committed since there may still be active * decoders associated with this region, or move forward * to active to mark the reset successful */ if (rc) p->state = CXL_CONFIG_COMMIT; else p->state = CXL_CONFIG_ACTIVE; } } out: up_write(&cxl_region_rwsem); if (rc) return rc; return len; } static ssize_t commit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; rc = sysfs_emit(buf, "%d\n", p->state >= CXL_CONFIG_COMMIT); up_read(&cxl_region_rwsem); return rc; } static DEVICE_ATTR_RW(commit); static umode_t cxl_region_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct cxl_region *cxlr = to_cxl_region(dev); /* * Support tooling that expects to find a 'uuid' attribute for all * regions regardless of mode. */ if (a == &dev_attr_uuid.attr && cxlr->mode != CXL_DECODER_PMEM) return 0444; return a->mode; } static ssize_t interleave_ways_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; rc = sysfs_emit(buf, "%d\n", p->interleave_ways); up_read(&cxl_region_rwsem); return rc; } static const struct attribute_group *get_cxl_region_target_group(void); static ssize_t interleave_ways_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev->parent); struct cxl_decoder *cxld = &cxlrd->cxlsd.cxld; struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; unsigned int val, save; int rc; u8 iw; rc = kstrtouint(buf, 0, &val); if (rc) return rc; rc = ways_to_eiw(val, &iw); if (rc) return rc; /* * Even for x3, x6, and x12 interleaves the region interleave must be a * power of 2 multiple of the host bridge interleave. */ if (!is_power_of_2(val / cxld->interleave_ways) || (val % cxld->interleave_ways)) { dev_dbg(&cxlr->dev, "invalid interleave: %d\n", val); return -EINVAL; } rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; if (p->state >= CXL_CONFIG_INTERLEAVE_ACTIVE) { rc = -EBUSY; goto out; } save = p->interleave_ways; p->interleave_ways = val; rc = sysfs_update_group(&cxlr->dev.kobj, get_cxl_region_target_group()); if (rc) p->interleave_ways = save; out: up_write(&cxl_region_rwsem); if (rc) return rc; return len; } static DEVICE_ATTR_RW(interleave_ways); static ssize_t interleave_granularity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; rc = sysfs_emit(buf, "%d\n", p->interleave_granularity); up_read(&cxl_region_rwsem); return rc; } static ssize_t interleave_granularity_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev->parent); struct cxl_decoder *cxld = &cxlrd->cxlsd.cxld; struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; int rc, val; u16 ig; rc = kstrtoint(buf, 0, &val); if (rc) return rc; rc = granularity_to_eig(val, &ig); if (rc) return rc; /* * When the host-bridge is interleaved, disallow region granularity != * root granularity. Regions with a granularity less than the root * interleave result in needing multiple endpoints to support a single * slot in the interleave (possible to support in the future). Regions * with a granularity greater than the root interleave result in invalid * DPA translations (invalid to support). */ if (cxld->interleave_ways > 1 && val != cxld->interleave_granularity) return -EINVAL; rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; if (p->state >= CXL_CONFIG_INTERLEAVE_ACTIVE) { rc = -EBUSY; goto out; } p->interleave_granularity = val; out: up_write(&cxl_region_rwsem); if (rc) return rc; return len; } static DEVICE_ATTR_RW(interleave_granularity); static ssize_t resource_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; u64 resource = -1ULL; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; if (p->res) resource = p->res->start; rc = sysfs_emit(buf, "%#llx\n", resource); up_read(&cxl_region_rwsem); return rc; } static DEVICE_ATTR_RO(resource); static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); return sysfs_emit(buf, "%s\n", cxl_decoder_mode_name(cxlr->mode)); } static DEVICE_ATTR_RO(mode); static int alloc_hpa(struct cxl_region *cxlr, resource_size_t size) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(cxlr->dev.parent); struct cxl_region_params *p = &cxlr->params; struct resource *res; u64 remainder = 0; lockdep_assert_held_write(&cxl_region_rwsem); /* Nothing to do... */ if (p->res && resource_size(p->res) == size) return 0; /* To change size the old size must be freed first */ if (p->res) return -EBUSY; if (p->state >= CXL_CONFIG_INTERLEAVE_ACTIVE) return -EBUSY; /* ways, granularity and uuid (if PMEM) need to be set before HPA */ if (!p->interleave_ways || !p->interleave_granularity || (cxlr->mode == CXL_DECODER_PMEM && uuid_is_null(&p->uuid))) return -ENXIO; div64_u64_rem(size, (u64)SZ_256M * p->interleave_ways, &remainder); if (remainder) return -EINVAL; res = alloc_free_mem_region(cxlrd->res, size, SZ_256M, dev_name(&cxlr->dev)); if (IS_ERR(res)) { dev_dbg(&cxlr->dev, "HPA allocation error (%ld) for size:%pap in %s %pr\n", PTR_ERR(res), &size, cxlrd->res->name, cxlrd->res); return PTR_ERR(res); } p->res = res; p->state = CXL_CONFIG_INTERLEAVE_ACTIVE; return 0; } static void cxl_region_iomem_release(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; if (device_is_registered(&cxlr->dev)) lockdep_assert_held_write(&cxl_region_rwsem); if (p->res) { /* * Autodiscovered regions may not have been able to insert their * resource. */ if (p->res->parent) remove_resource(p->res); kfree(p->res); p->res = NULL; } } static int free_hpa(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; lockdep_assert_held_write(&cxl_region_rwsem); if (!p->res) return 0; if (p->state >= CXL_CONFIG_ACTIVE) return -EBUSY; cxl_region_iomem_release(cxlr); p->state = CXL_CONFIG_IDLE; return 0; } static ssize_t size_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_region *cxlr = to_cxl_region(dev); u64 val; int rc; rc = kstrtou64(buf, 0, &val); if (rc) return rc; rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; if (val) rc = alloc_hpa(cxlr, val); else rc = free_hpa(cxlr); up_write(&cxl_region_rwsem); if (rc) return rc; return len; } static ssize_t size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; u64 size = 0; ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; if (p->res) size = resource_size(p->res); rc = sysfs_emit(buf, "%#llx\n", size); up_read(&cxl_region_rwsem); return rc; } static DEVICE_ATTR_RW(size); static struct attribute *cxl_region_attrs[] = { &dev_attr_uuid.attr, &dev_attr_commit.attr, &dev_attr_interleave_ways.attr, &dev_attr_interleave_granularity.attr, &dev_attr_resource.attr, &dev_attr_size.attr, &dev_attr_mode.attr, NULL, }; static const struct attribute_group cxl_region_group = { .attrs = cxl_region_attrs, .is_visible = cxl_region_visible, }; static size_t show_targetN(struct cxl_region *cxlr, char *buf, int pos) { struct cxl_region_params *p = &cxlr->params; struct cxl_endpoint_decoder *cxled; int rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; if (pos >= p->interleave_ways) { dev_dbg(&cxlr->dev, "position %d out of range %d\n", pos, p->interleave_ways); rc = -ENXIO; goto out; } cxled = p->targets[pos]; if (!cxled) rc = sysfs_emit(buf, "\n"); else rc = sysfs_emit(buf, "%s\n", dev_name(&cxled->cxld.dev)); out: up_read(&cxl_region_rwsem); return rc; } static int match_free_decoder(struct device *dev, void *data) { struct cxl_decoder *cxld; int *id = data; if (!is_switch_decoder(dev)) return 0; cxld = to_cxl_decoder(dev); /* enforce ordered allocation */ if (cxld->id != *id) return 0; if (!cxld->region) return 1; (*id)++; return 0; } static int match_auto_decoder(struct device *dev, void *data) { struct cxl_region_params *p = data; struct cxl_decoder *cxld; struct range *r; if (!is_switch_decoder(dev)) return 0; cxld = to_cxl_decoder(dev); r = &cxld->hpa_range; if (p->res && p->res->start == r->start && p->res->end == r->end) return 1; return 0; } static struct cxl_decoder * cxl_region_find_decoder(struct cxl_port *port, struct cxl_endpoint_decoder *cxled, struct cxl_region *cxlr) { struct device *dev; int id = 0; if (port == cxled_to_port(cxled)) return &cxled->cxld; if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) dev = device_find_child(&port->dev, &cxlr->params, match_auto_decoder); else dev = device_find_child(&port->dev, &id, match_free_decoder); if (!dev) return NULL; /* * This decoder is pinned registered as long as the endpoint decoder is * registered, and endpoint decoder unregistration holds the * cxl_region_rwsem over unregister events, so no need to hold on to * this extra reference. */ put_device(dev); return to_cxl_decoder(dev); } static bool auto_order_ok(struct cxl_port *port, struct cxl_region *cxlr_iter, struct cxl_decoder *cxld) { struct cxl_region_ref *rr = cxl_rr_load(port, cxlr_iter); struct cxl_decoder *cxld_iter = rr->decoder; /* * Allow the out of order assembly of auto-discovered regions. * Per CXL Spec 3.1 8.2.4.20.12 software must commit decoders * in HPA order. Confirm that the decoder with the lesser HPA * starting address has the lesser id. */ dev_dbg(&cxld->dev, "check for HPA violation %s:%d < %s:%d\n", dev_name(&cxld->dev), cxld->id, dev_name(&cxld_iter->dev), cxld_iter->id); if (cxld_iter->id > cxld->id) return true; return false; } static struct cxl_region_ref * alloc_region_ref(struct cxl_port *port, struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled) { struct cxl_region_params *p = &cxlr->params; struct cxl_region_ref *cxl_rr, *iter; unsigned long index; int rc; xa_for_each(&port->regions, index, iter) { struct cxl_region_params *ip = &iter->region->params; if (!ip->res || ip->res->start < p->res->start) continue; if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) { struct cxl_decoder *cxld; cxld = cxl_region_find_decoder(port, cxled, cxlr); if (auto_order_ok(port, iter->region, cxld)) continue; } dev_dbg(&cxlr->dev, "%s: HPA order violation %s:%pr vs %pr\n", dev_name(&port->dev), dev_name(&iter->region->dev), ip->res, p->res); return ERR_PTR(-EBUSY); } cxl_rr = kzalloc(sizeof(*cxl_rr), GFP_KERNEL); if (!cxl_rr) return ERR_PTR(-ENOMEM); cxl_rr->port = port; cxl_rr->region = cxlr; cxl_rr->nr_targets = 1; xa_init(&cxl_rr->endpoints); rc = xa_insert(&port->regions, (unsigned long)cxlr, cxl_rr, GFP_KERNEL); if (rc) { dev_dbg(&cxlr->dev, "%s: failed to track region reference: %d\n", dev_name(&port->dev), rc); kfree(cxl_rr); return ERR_PTR(rc); } return cxl_rr; } static void cxl_rr_free_decoder(struct cxl_region_ref *cxl_rr) { struct cxl_region *cxlr = cxl_rr->region; struct cxl_decoder *cxld = cxl_rr->decoder; if (!cxld) return; dev_WARN_ONCE(&cxlr->dev, cxld->region != cxlr, "region mismatch\n"); if (cxld->region == cxlr) { cxld->region = NULL; put_device(&cxlr->dev); } } static void free_region_ref(struct cxl_region_ref *cxl_rr) { struct cxl_port *port = cxl_rr->port; struct cxl_region *cxlr = cxl_rr->region; cxl_rr_free_decoder(cxl_rr); xa_erase(&port->regions, (unsigned long)cxlr); xa_destroy(&cxl_rr->endpoints); kfree(cxl_rr); } static int cxl_rr_ep_add(struct cxl_region_ref *cxl_rr, struct cxl_endpoint_decoder *cxled) { int rc; struct cxl_port *port = cxl_rr->port; struct cxl_region *cxlr = cxl_rr->region; struct cxl_decoder *cxld = cxl_rr->decoder; struct cxl_ep *ep = cxl_ep_load(port, cxled_to_memdev(cxled)); if (ep) { rc = xa_insert(&cxl_rr->endpoints, (unsigned long)cxled, ep, GFP_KERNEL); if (rc) return rc; } cxl_rr->nr_eps++; if (!cxld->region) { cxld->region = cxlr; get_device(&cxlr->dev); } return 0; } static int cxl_rr_alloc_decoder(struct cxl_port *port, struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, struct cxl_region_ref *cxl_rr) { struct cxl_decoder *cxld; cxld = cxl_region_find_decoder(port, cxled, cxlr); if (!cxld) { dev_dbg(&cxlr->dev, "%s: no decoder available\n", dev_name(&port->dev)); return -EBUSY; } if (cxld->region) { dev_dbg(&cxlr->dev, "%s: %s already attached to %s\n", dev_name(&port->dev), dev_name(&cxld->dev), dev_name(&cxld->region->dev)); return -EBUSY; } /* * Endpoints should already match the region type, but backstop that * assumption with an assertion. Switch-decoders change mapping-type * based on what is mapped when they are assigned to a region. */ dev_WARN_ONCE(&cxlr->dev, port == cxled_to_port(cxled) && cxld->target_type != cxlr->type, "%s:%s mismatch decoder type %d -> %d\n", dev_name(&cxled_to_memdev(cxled)->dev), dev_name(&cxld->dev), cxld->target_type, cxlr->type); cxld->target_type = cxlr->type; cxl_rr->decoder = cxld; return 0; } /** * cxl_port_attach_region() - track a region's interest in a port by endpoint * @port: port to add a new region reference 'struct cxl_region_ref' * @cxlr: region to attach to @port * @cxled: endpoint decoder used to create or further pin a region reference * @pos: interleave position of @cxled in @cxlr * * The attach event is an opportunity to validate CXL decode setup * constraints and record metadata needed for programming HDM decoders, * in particular decoder target lists. * * The steps are: * * - validate that there are no other regions with a higher HPA already * associated with @port * - establish a region reference if one is not already present * * - additionally allocate a decoder instance that will host @cxlr on * @port * * - pin the region reference by the endpoint * - account for how many entries in @port's target list are needed to * cover all of the added endpoints. */ static int cxl_port_attach_region(struct cxl_port *port, struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, int pos) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_ep *ep = cxl_ep_load(port, cxlmd); struct cxl_region_ref *cxl_rr; bool nr_targets_inc = false; struct cxl_decoder *cxld; unsigned long index; int rc = -EBUSY; lockdep_assert_held_write(&cxl_region_rwsem); cxl_rr = cxl_rr_load(port, cxlr); if (cxl_rr) { struct cxl_ep *ep_iter; int found = 0; /* * Walk the existing endpoints that have been attached to * @cxlr at @port and see if they share the same 'next' port * in the downstream direction. I.e. endpoints that share common * upstream switch. */ xa_for_each(&cxl_rr->endpoints, index, ep_iter) { if (ep_iter == ep) continue; if (ep_iter->next == ep->next) { found++; break; } } /* * New target port, or @port is an endpoint port that always * accounts its own local decode as a target. */ if (!found || !ep->next) { cxl_rr->nr_targets++; nr_targets_inc = true; } } else { cxl_rr = alloc_region_ref(port, cxlr, cxled); if (IS_ERR(cxl_rr)) { dev_dbg(&cxlr->dev, "%s: failed to allocate region reference\n", dev_name(&port->dev)); return PTR_ERR(cxl_rr); } nr_targets_inc = true; rc = cxl_rr_alloc_decoder(port, cxlr, cxled, cxl_rr); if (rc) goto out_erase; } cxld = cxl_rr->decoder; /* * the number of targets should not exceed the target_count * of the decoder */ if (is_switch_decoder(&cxld->dev)) { struct cxl_switch_decoder *cxlsd; cxlsd = to_cxl_switch_decoder(&cxld->dev); if (cxl_rr->nr_targets > cxlsd->nr_targets) { dev_dbg(&cxlr->dev, "%s:%s %s add: %s:%s @ %d overflows targets: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxld->dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos, cxlsd->nr_targets); rc = -ENXIO; goto out_erase; } } rc = cxl_rr_ep_add(cxl_rr, cxled); if (rc) { dev_dbg(&cxlr->dev, "%s: failed to track endpoint %s:%s reference\n", dev_name(&port->dev), dev_name(&cxlmd->dev), dev_name(&cxld->dev)); goto out_erase; } dev_dbg(&cxlr->dev, "%s:%s %s add: %s:%s @ %d next: %s nr_eps: %d nr_targets: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxld->dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos, ep ? ep->next ? dev_name(ep->next->uport_dev) : dev_name(&cxlmd->dev) : "none", cxl_rr->nr_eps, cxl_rr->nr_targets); return 0; out_erase: if (nr_targets_inc) cxl_rr->nr_targets--; if (cxl_rr->nr_eps == 0) free_region_ref(cxl_rr); return rc; } static void cxl_port_detach_region(struct cxl_port *port, struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled) { struct cxl_region_ref *cxl_rr; struct cxl_ep *ep = NULL; lockdep_assert_held_write(&cxl_region_rwsem); cxl_rr = cxl_rr_load(port, cxlr); if (!cxl_rr) return; /* * Endpoint ports do not carry cxl_ep references, and they * never target more than one endpoint by definition */ if (cxl_rr->decoder == &cxled->cxld) cxl_rr->nr_eps--; else ep = xa_erase(&cxl_rr->endpoints, (unsigned long)cxled); if (ep) { struct cxl_ep *ep_iter; unsigned long index; int found = 0; cxl_rr->nr_eps--; xa_for_each(&cxl_rr->endpoints, index, ep_iter) { if (ep_iter->next == ep->next) { found++; break; } } if (!found) cxl_rr->nr_targets--; } if (cxl_rr->nr_eps == 0) free_region_ref(cxl_rr); } static int check_last_peer(struct cxl_endpoint_decoder *cxled, struct cxl_ep *ep, struct cxl_region_ref *cxl_rr, int distance) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_region *cxlr = cxl_rr->region; struct cxl_region_params *p = &cxlr->params; struct cxl_endpoint_decoder *cxled_peer; struct cxl_port *port = cxl_rr->port; struct cxl_memdev *cxlmd_peer; struct cxl_ep *ep_peer; int pos = cxled->pos; /* * If this position wants to share a dport with the last endpoint mapped * then that endpoint, at index 'position - distance', must also be * mapped by this dport. */ if (pos < distance) { dev_dbg(&cxlr->dev, "%s:%s: cannot host %s:%s at %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos); return -ENXIO; } cxled_peer = p->targets[pos - distance]; cxlmd_peer = cxled_to_memdev(cxled_peer); ep_peer = cxl_ep_load(port, cxlmd_peer); if (ep->dport != ep_peer->dport) { dev_dbg(&cxlr->dev, "%s:%s: %s:%s pos %d mismatched peer %s:%s\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos, dev_name(&cxlmd_peer->dev), dev_name(&cxled_peer->cxld.dev)); return -ENXIO; } return 0; } static int check_interleave_cap(struct cxl_decoder *cxld, int iw, int ig) { struct cxl_port *port = to_cxl_port(cxld->dev.parent); struct cxl_hdm *cxlhdm = dev_get_drvdata(&port->dev); unsigned int interleave_mask; u8 eiw; u16 eig; int high_pos, low_pos; if (!test_bit(iw, &cxlhdm->iw_cap_mask)) return -ENXIO; /* * Per CXL specification r3.1(8.2.4.20.13 Decoder Protection), * if eiw < 8: * DPAOFFSET[51: eig + 8] = HPAOFFSET[51: eig + 8 + eiw] * DPAOFFSET[eig + 7: 0] = HPAOFFSET[eig + 7: 0] * * when the eiw is 0, all the bits of HPAOFFSET[51: 0] are used, the * interleave bits are none. * * if eiw >= 8: * DPAOFFSET[51: eig + 8] = HPAOFFSET[51: eig + eiw] / 3 * DPAOFFSET[eig + 7: 0] = HPAOFFSET[eig + 7: 0] * * when the eiw is 8, all the bits of HPAOFFSET[51: 0] are used, the * interleave bits are none. */ ways_to_eiw(iw, &eiw); if (eiw == 0 || eiw == 8) return 0; granularity_to_eig(ig, &eig); if (eiw > 8) high_pos = eiw + eig - 1; else high_pos = eiw + eig + 7; low_pos = eig + 8; interleave_mask = GENMASK(high_pos, low_pos); if (interleave_mask & ~cxlhdm->interleave_mask) return -ENXIO; return 0; } static int cxl_port_setup_targets(struct cxl_port *port, struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(cxlr->dev.parent); int parent_iw, parent_ig, ig, iw, rc, inc = 0, pos = cxled->pos; struct cxl_port *parent_port = to_cxl_port(port->dev.parent); struct cxl_region_ref *cxl_rr = cxl_rr_load(port, cxlr); struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_ep *ep = cxl_ep_load(port, cxlmd); struct cxl_region_params *p = &cxlr->params; struct cxl_decoder *cxld = cxl_rr->decoder; struct cxl_switch_decoder *cxlsd; u16 eig, peig; u8 eiw, peiw; /* * While root level decoders support x3, x6, x12, switch level * decoders only support powers of 2 up to x16. */ if (!is_power_of_2(cxl_rr->nr_targets)) { dev_dbg(&cxlr->dev, "%s:%s: invalid target count %d\n", dev_name(port->uport_dev), dev_name(&port->dev), cxl_rr->nr_targets); return -EINVAL; } cxlsd = to_cxl_switch_decoder(&cxld->dev); if (cxl_rr->nr_targets_set) { int i, distance; /* * Passthrough decoders impose no distance requirements between * peers */ if (cxl_rr->nr_targets == 1) distance = 0; else distance = p->nr_targets / cxl_rr->nr_targets; for (i = 0; i < cxl_rr->nr_targets_set; i++) if (ep->dport == cxlsd->target[i]) { rc = check_last_peer(cxled, ep, cxl_rr, distance); if (rc) return rc; goto out_target_set; } goto add_target; } if (is_cxl_root(parent_port)) { /* * Root decoder IG is always set to value in CFMWS which * may be different than this region's IG. We can use the * region's IG here since interleave_granularity_store() * does not allow interleaved host-bridges with * root IG != region IG. */ parent_ig = p->interleave_granularity; parent_iw = cxlrd->cxlsd.cxld.interleave_ways; /* * For purposes of address bit routing, use power-of-2 math for * switch ports. */ if (!is_power_of_2(parent_iw)) parent_iw /= 3; } else { struct cxl_region_ref *parent_rr; struct cxl_decoder *parent_cxld; parent_rr = cxl_rr_load(parent_port, cxlr); parent_cxld = parent_rr->decoder; parent_ig = parent_cxld->interleave_granularity; parent_iw = parent_cxld->interleave_ways; } rc = granularity_to_eig(parent_ig, &peig); if (rc) { dev_dbg(&cxlr->dev, "%s:%s: invalid parent granularity: %d\n", dev_name(parent_port->uport_dev), dev_name(&parent_port->dev), parent_ig); return rc; } rc = ways_to_eiw(parent_iw, &peiw); if (rc) { dev_dbg(&cxlr->dev, "%s:%s: invalid parent interleave: %d\n", dev_name(parent_port->uport_dev), dev_name(&parent_port->dev), parent_iw); return rc; } iw = cxl_rr->nr_targets; rc = ways_to_eiw(iw, &eiw); if (rc) { dev_dbg(&cxlr->dev, "%s:%s: invalid port interleave: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), iw); return rc; } /* * Interleave granularity is a multiple of @parent_port granularity. * Multiplier is the parent port interleave ways. */ rc = granularity_to_eig(parent_ig * parent_iw, &eig); if (rc) { dev_dbg(&cxlr->dev, "%s: invalid granularity calculation (%d * %d)\n", dev_name(&parent_port->dev), parent_ig, parent_iw); return rc; } rc = eig_to_granularity(eig, &ig); if (rc) { dev_dbg(&cxlr->dev, "%s:%s: invalid interleave: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), 256 << eig); return rc; } if (iw > 8 || iw > cxlsd->nr_targets) { dev_dbg(&cxlr->dev, "%s:%s:%s: ways: %d overflows targets: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxld->dev), iw, cxlsd->nr_targets); return -ENXIO; } if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) { if (cxld->interleave_ways != iw || cxld->interleave_granularity != ig || cxld->hpa_range.start != p->res->start || cxld->hpa_range.end != p->res->end || ((cxld->flags & CXL_DECODER_F_ENABLE) == 0)) { dev_err(&cxlr->dev, "%s:%s %s expected iw: %d ig: %d %pr\n", dev_name(port->uport_dev), dev_name(&port->dev), __func__, iw, ig, p->res); dev_err(&cxlr->dev, "%s:%s %s got iw: %d ig: %d state: %s %#llx:%#llx\n", dev_name(port->uport_dev), dev_name(&port->dev), __func__, cxld->interleave_ways, cxld->interleave_granularity, (cxld->flags & CXL_DECODER_F_ENABLE) ? "enabled" : "disabled", cxld->hpa_range.start, cxld->hpa_range.end); return -ENXIO; } } else { rc = check_interleave_cap(cxld, iw, ig); if (rc) { dev_dbg(&cxlr->dev, "%s:%s iw: %d ig: %d is not supported\n", dev_name(port->uport_dev), dev_name(&port->dev), iw, ig); return rc; } cxld->interleave_ways = iw; cxld->interleave_granularity = ig; cxld->hpa_range = (struct range) { .start = p->res->start, .end = p->res->end, }; } dev_dbg(&cxlr->dev, "%s:%s iw: %d ig: %d\n", dev_name(port->uport_dev), dev_name(&port->dev), iw, ig); add_target: if (cxl_rr->nr_targets_set == cxl_rr->nr_targets) { dev_dbg(&cxlr->dev, "%s:%s: targets full trying to add %s:%s at %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos); return -ENXIO; } if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) { if (cxlsd->target[cxl_rr->nr_targets_set] != ep->dport) { dev_dbg(&cxlr->dev, "%s:%s: %s expected %s at %d\n", dev_name(port->uport_dev), dev_name(&port->dev), dev_name(&cxlsd->cxld.dev), dev_name(ep->dport->dport_dev), cxl_rr->nr_targets_set); return -ENXIO; } } else cxlsd->target[cxl_rr->nr_targets_set] = ep->dport; inc = 1; out_target_set: cxl_rr->nr_targets_set += inc; dev_dbg(&cxlr->dev, "%s:%s target[%d] = %s for %s:%s @ %d\n", dev_name(port->uport_dev), dev_name(&port->dev), cxl_rr->nr_targets_set - 1, dev_name(ep->dport->dport_dev), dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), pos); return 0; } static void cxl_port_reset_targets(struct cxl_port *port, struct cxl_region *cxlr) { struct cxl_region_ref *cxl_rr = cxl_rr_load(port, cxlr); struct cxl_decoder *cxld; /* * After the last endpoint has been detached the entire cxl_rr may now * be gone. */ if (!cxl_rr) return; cxl_rr->nr_targets_set = 0; cxld = cxl_rr->decoder; cxld->hpa_range = (struct range) { .start = 0, .end = -1, }; } static void cxl_region_teardown_targets(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; struct cxl_endpoint_decoder *cxled; struct cxl_dev_state *cxlds; struct cxl_memdev *cxlmd; struct cxl_port *iter; struct cxl_ep *ep; int i; /* * In the auto-discovery case skip automatic teardown since the * address space is already active */ if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) return; for (i = 0; i < p->nr_targets; i++) { cxled = p->targets[i]; cxlmd = cxled_to_memdev(cxled); cxlds = cxlmd->cxlds; if (cxlds->rcd) continue; iter = cxled_to_port(cxled); while (!is_cxl_root(to_cxl_port(iter->dev.parent))) iter = to_cxl_port(iter->dev.parent); for (ep = cxl_ep_load(iter, cxlmd); iter; iter = ep->next, ep = cxl_ep_load(iter, cxlmd)) cxl_port_reset_targets(iter, cxlr); } } static int cxl_region_setup_targets(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; struct cxl_endpoint_decoder *cxled; struct cxl_dev_state *cxlds; int i, rc, rch = 0, vh = 0; struct cxl_memdev *cxlmd; struct cxl_port *iter; struct cxl_ep *ep; for (i = 0; i < p->nr_targets; i++) { cxled = p->targets[i]; cxlmd = cxled_to_memdev(cxled); cxlds = cxlmd->cxlds; /* validate that all targets agree on topology */ if (!cxlds->rcd) { vh++; } else { rch++; continue; } iter = cxled_to_port(cxled); while (!is_cxl_root(to_cxl_port(iter->dev.parent))) iter = to_cxl_port(iter->dev.parent); /* * Descend the topology tree programming / validating * targets while looking for conflicts. */ for (ep = cxl_ep_load(iter, cxlmd); iter; iter = ep->next, ep = cxl_ep_load(iter, cxlmd)) { rc = cxl_port_setup_targets(iter, cxlr, cxled); if (rc) { cxl_region_teardown_targets(cxlr); return rc; } } } if (rch && vh) { dev_err(&cxlr->dev, "mismatched CXL topologies detected\n"); cxl_region_teardown_targets(cxlr); return -ENXIO; } return 0; } static int cxl_region_validate_position(struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, int pos) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_region_params *p = &cxlr->params; int i; if (pos < 0 || pos >= p->interleave_ways) { dev_dbg(&cxlr->dev, "position %d out of range %d\n", pos, p->interleave_ways); return -ENXIO; } if (p->targets[pos] == cxled) return 0; if (p->targets[pos]) { struct cxl_endpoint_decoder *cxled_target = p->targets[pos]; struct cxl_memdev *cxlmd_target = cxled_to_memdev(cxled_target); dev_dbg(&cxlr->dev, "position %d already assigned to %s:%s\n", pos, dev_name(&cxlmd_target->dev), dev_name(&cxled_target->cxld.dev)); return -EBUSY; } for (i = 0; i < p->interleave_ways; i++) { struct cxl_endpoint_decoder *cxled_target; struct cxl_memdev *cxlmd_target; cxled_target = p->targets[i]; if (!cxled_target) continue; cxlmd_target = cxled_to_memdev(cxled_target); if (cxlmd_target == cxlmd) { dev_dbg(&cxlr->dev, "%s already specified at position %d via: %s\n", dev_name(&cxlmd->dev), pos, dev_name(&cxled_target->cxld.dev)); return -EBUSY; } } return 0; } static int cxl_region_attach_position(struct cxl_region *cxlr, struct cxl_root_decoder *cxlrd, struct cxl_endpoint_decoder *cxled, const struct cxl_dport *dport, int pos) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_switch_decoder *cxlsd = &cxlrd->cxlsd; struct cxl_decoder *cxld = &cxlsd->cxld; int iw = cxld->interleave_ways; struct cxl_port *iter; int rc; if (dport != cxlrd->cxlsd.target[pos % iw]) { dev_dbg(&cxlr->dev, "%s:%s invalid target position for %s\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), dev_name(&cxlrd->cxlsd.cxld.dev)); return -ENXIO; } for (iter = cxled_to_port(cxled); !is_cxl_root(iter); iter = to_cxl_port(iter->dev.parent)) { rc = cxl_port_attach_region(iter, cxlr, cxled, pos); if (rc) goto err; } return 0; err: for (iter = cxled_to_port(cxled); !is_cxl_root(iter); iter = to_cxl_port(iter->dev.parent)) cxl_port_detach_region(iter, cxlr, cxled); return rc; } static int cxl_region_attach_auto(struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, int pos) { struct cxl_region_params *p = &cxlr->params; if (cxled->state != CXL_DECODER_STATE_AUTO) { dev_err(&cxlr->dev, "%s: unable to add decoder to autodetected region\n", dev_name(&cxled->cxld.dev)); return -EINVAL; } if (pos >= 0) { dev_dbg(&cxlr->dev, "%s: expected auto position, not %d\n", dev_name(&cxled->cxld.dev), pos); return -EINVAL; } if (p->nr_targets >= p->interleave_ways) { dev_err(&cxlr->dev, "%s: no more target slots available\n", dev_name(&cxled->cxld.dev)); return -ENXIO; } /* * Temporarily record the endpoint decoder into the target array. Yes, * this means that userspace can view devices in the wrong position * before the region activates, and must be careful to understand when * it might be racing region autodiscovery. */ pos = p->nr_targets; p->targets[pos] = cxled; cxled->pos = pos; p->nr_targets++; return 0; } static int cmp_interleave_pos(const void *a, const void *b) { struct cxl_endpoint_decoder *cxled_a = *(typeof(cxled_a) *)a; struct cxl_endpoint_decoder *cxled_b = *(typeof(cxled_b) *)b; return cxled_a->pos - cxled_b->pos; } static struct cxl_port *next_port(struct cxl_port *port) { if (!port->parent_dport) return NULL; return port->parent_dport->port; } static int match_switch_decoder_by_range(struct device *dev, void *data) { struct cxl_switch_decoder *cxlsd; struct range *r1, *r2 = data; if (!is_switch_decoder(dev)) return 0; cxlsd = to_cxl_switch_decoder(dev); r1 = &cxlsd->cxld.hpa_range; if (is_root_decoder(dev)) return range_contains(r1, r2); return (r1->start == r2->start && r1->end == r2->end); } static int find_pos_and_ways(struct cxl_port *port, struct range *range, int *pos, int *ways) { struct cxl_switch_decoder *cxlsd; struct cxl_port *parent; struct device *dev; int rc = -ENXIO; parent = next_port(port); if (!parent) return rc; dev = device_find_child(&parent->dev, range, match_switch_decoder_by_range); if (!dev) { dev_err(port->uport_dev, "failed to find decoder mapping %#llx-%#llx\n", range->start, range->end); return rc; } cxlsd = to_cxl_switch_decoder(dev); *ways = cxlsd->cxld.interleave_ways; for (int i = 0; i < *ways; i++) { if (cxlsd->target[i] == port->parent_dport) { *pos = i; rc = 0; break; } } put_device(dev); return rc; } /** * cxl_calc_interleave_pos() - calculate an endpoint position in a region * @cxled: endpoint decoder member of given region * * The endpoint position is calculated by traversing the topology from * the endpoint to the root decoder and iteratively applying this * calculation: * * position = position * parent_ways + parent_pos; * * ...where @position is inferred from switch and root decoder target lists. * * Return: position >= 0 on success * -ENXIO on failure */ static int cxl_calc_interleave_pos(struct cxl_endpoint_decoder *cxled) { struct cxl_port *iter, *port = cxled_to_port(cxled); struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct range *range = &cxled->cxld.hpa_range; int parent_ways = 0, parent_pos = 0, pos = 0; int rc; /* * Example: the expected interleave order of the 4-way region shown * below is: mem0, mem2, mem1, mem3 * * root_port * / \ * host_bridge_0 host_bridge_1 * | | | | * mem0 mem1 mem2 mem3 * * In the example the calculator will iterate twice. The first iteration * uses the mem position in the host-bridge and the ways of the host- * bridge to generate the first, or local, position. The second * iteration uses the host-bridge position in the root_port and the ways * of the root_port to refine the position. * * A trace of the calculation per endpoint looks like this: * mem0: pos = 0 * 2 + 0 mem2: pos = 0 * 2 + 0 * pos = 0 * 2 + 0 pos = 0 * 2 + 1 * pos: 0 pos: 1 * * mem1: pos = 0 * 2 + 1 mem3: pos = 0 * 2 + 1 * pos = 1 * 2 + 0 pos = 1 * 2 + 1 * pos: 2 pos = 3 * * Note that while this example is simple, the method applies to more * complex topologies, including those with switches. */ /* Iterate from endpoint to root_port refining the position */ for (iter = port; iter; iter = next_port(iter)) { if (is_cxl_root(iter)) break; rc = find_pos_and_ways(iter, range, &parent_pos, &parent_ways); if (rc) return rc; pos = pos * parent_ways + parent_pos; } dev_dbg(&cxlmd->dev, "decoder:%s parent:%s port:%s range:%#llx-%#llx pos:%d\n", dev_name(&cxled->cxld.dev), dev_name(cxlmd->dev.parent), dev_name(&port->dev), range->start, range->end, pos); return pos; } static int cxl_region_sort_targets(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; int i, rc = 0; for (i = 0; i < p->nr_targets; i++) { struct cxl_endpoint_decoder *cxled = p->targets[i]; cxled->pos = cxl_calc_interleave_pos(cxled); /* * Record that sorting failed, but still continue to calc * cxled->pos so that follow-on code paths can reliably * do p->targets[cxled->pos] to self-reference their entry. */ if (cxled->pos < 0) rc = -ENXIO; } /* Keep the cxlr target list in interleave position order */ sort(p->targets, p->nr_targets, sizeof(p->targets[0]), cmp_interleave_pos, NULL); dev_dbg(&cxlr->dev, "region sort %s\n", rc ? "failed" : "successful"); return rc; } static int cxl_region_attach(struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, int pos) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(cxlr->dev.parent); struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_region_params *p = &cxlr->params; struct cxl_port *ep_port, *root_port; struct cxl_dport *dport; int rc = -ENXIO; rc = check_interleave_cap(&cxled->cxld, p->interleave_ways, p->interleave_granularity); if (rc) { dev_dbg(&cxlr->dev, "%s iw: %d ig: %d is not supported\n", dev_name(&cxled->cxld.dev), p->interleave_ways, p->interleave_granularity); return rc; } if (cxled->mode != cxlr->mode) { dev_dbg(&cxlr->dev, "%s region mode: %d mismatch: %d\n", dev_name(&cxled->cxld.dev), cxlr->mode, cxled->mode); return -EINVAL; } if (cxled->mode == CXL_DECODER_DEAD) { dev_dbg(&cxlr->dev, "%s dead\n", dev_name(&cxled->cxld.dev)); return -ENODEV; } /* all full of members, or interleave config not established? */ if (p->state > CXL_CONFIG_INTERLEAVE_ACTIVE) { dev_dbg(&cxlr->dev, "region already active\n"); return -EBUSY; } else if (p->state < CXL_CONFIG_INTERLEAVE_ACTIVE) { dev_dbg(&cxlr->dev, "interleave config missing\n"); return -ENXIO; } if (p->nr_targets >= p->interleave_ways) { dev_dbg(&cxlr->dev, "region already has %d endpoints\n", p->nr_targets); return -EINVAL; } ep_port = cxled_to_port(cxled); root_port = cxlrd_to_port(cxlrd); dport = cxl_find_dport_by_dev(root_port, ep_port->host_bridge); if (!dport) { dev_dbg(&cxlr->dev, "%s:%s invalid target for %s\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), dev_name(cxlr->dev.parent)); return -ENXIO; } if (cxled->cxld.target_type != cxlr->type) { dev_dbg(&cxlr->dev, "%s:%s type mismatch: %d vs %d\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), cxled->cxld.target_type, cxlr->type); return -ENXIO; } if (!cxled->dpa_res) { dev_dbg(&cxlr->dev, "%s:%s: missing DPA allocation.\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev)); return -ENXIO; } if (resource_size(cxled->dpa_res) * p->interleave_ways != resource_size(p->res)) { dev_dbg(&cxlr->dev, "%s:%s: decoder-size-%#llx * ways-%d != region-size-%#llx\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), (u64)resource_size(cxled->dpa_res), p->interleave_ways, (u64)resource_size(p->res)); return -EINVAL; } cxl_region_perf_data_calculate(cxlr, cxled); if (test_bit(CXL_REGION_F_AUTO, &cxlr->flags)) { int i; rc = cxl_region_attach_auto(cxlr, cxled, pos); if (rc) return rc; /* await more targets to arrive... */ if (p->nr_targets < p->interleave_ways) return 0; /* * All targets are here, which implies all PCI enumeration that * affects this region has been completed. Walk the topology to * sort the devices into their relative region decode position. */ rc = cxl_region_sort_targets(cxlr); if (rc) return rc; for (i = 0; i < p->nr_targets; i++) { cxled = p->targets[i]; ep_port = cxled_to_port(cxled); dport = cxl_find_dport_by_dev(root_port, ep_port->host_bridge); rc = cxl_region_attach_position(cxlr, cxlrd, cxled, dport, i); if (rc) return rc; } rc = cxl_region_setup_targets(cxlr); if (rc) return rc; /* * If target setup succeeds in the autodiscovery case * then the region is already committed. */ p->state = CXL_CONFIG_COMMIT; return 0; } rc = cxl_region_validate_position(cxlr, cxled, pos); if (rc) return rc; rc = cxl_region_attach_position(cxlr, cxlrd, cxled, dport, pos); if (rc) return rc; p->targets[pos] = cxled; cxled->pos = pos; p->nr_targets++; if (p->nr_targets == p->interleave_ways) { rc = cxl_region_setup_targets(cxlr); if (rc) return rc; p->state = CXL_CONFIG_ACTIVE; } cxled->cxld.interleave_ways = p->interleave_ways; cxled->cxld.interleave_granularity = p->interleave_granularity; cxled->cxld.hpa_range = (struct range) { .start = p->res->start, .end = p->res->end, }; if (p->nr_targets != p->interleave_ways) return 0; /* * Test the auto-discovery position calculator function * against this successfully created user-defined region. * A fail message here means that this interleave config * will fail when presented as CXL_REGION_F_AUTO. */ for (int i = 0; i < p->nr_targets; i++) { struct cxl_endpoint_decoder *cxled = p->targets[i]; int test_pos; test_pos = cxl_calc_interleave_pos(cxled); dev_dbg(&cxled->cxld.dev, "Test cxl_calc_interleave_pos(): %s test_pos:%d cxled->pos:%d\n", (test_pos == cxled->pos) ? "success" : "fail", test_pos, cxled->pos); } return 0; } static int cxl_region_detach(struct cxl_endpoint_decoder *cxled) { struct cxl_port *iter, *ep_port = cxled_to_port(cxled); struct cxl_region *cxlr = cxled->cxld.region; struct cxl_region_params *p; int rc = 0; lockdep_assert_held_write(&cxl_region_rwsem); if (!cxlr) return 0; p = &cxlr->params; get_device(&cxlr->dev); if (p->state > CXL_CONFIG_ACTIVE) { /* * TODO: tear down all impacted regions if a device is * removed out of order */ rc = cxl_region_decode_reset(cxlr, p->interleave_ways); if (rc) goto out; p->state = CXL_CONFIG_ACTIVE; } for (iter = ep_port; !is_cxl_root(iter); iter = to_cxl_port(iter->dev.parent)) cxl_port_detach_region(iter, cxlr, cxled); if (cxled->pos < 0 || cxled->pos >= p->interleave_ways || p->targets[cxled->pos] != cxled) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); dev_WARN_ONCE(&cxlr->dev, 1, "expected %s:%s at position %d\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), cxled->pos); goto out; } if (p->state == CXL_CONFIG_ACTIVE) { p->state = CXL_CONFIG_INTERLEAVE_ACTIVE; cxl_region_teardown_targets(cxlr); } p->targets[cxled->pos] = NULL; p->nr_targets--; cxled->cxld.hpa_range = (struct range) { .start = 0, .end = -1, }; /* notify the region driver that one of its targets has departed */ up_write(&cxl_region_rwsem); device_release_driver(&cxlr->dev); down_write(&cxl_region_rwsem); out: put_device(&cxlr->dev); return rc; } void cxl_decoder_kill_region(struct cxl_endpoint_decoder *cxled) { down_write(&cxl_region_rwsem); cxled->mode = CXL_DECODER_DEAD; cxl_region_detach(cxled); up_write(&cxl_region_rwsem); } static int attach_target(struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled, int pos, unsigned int state) { int rc = 0; if (state == TASK_INTERRUPTIBLE) rc = down_write_killable(&cxl_region_rwsem); else down_write(&cxl_region_rwsem); if (rc) return rc; down_read(&cxl_dpa_rwsem); rc = cxl_region_attach(cxlr, cxled, pos); up_read(&cxl_dpa_rwsem); up_write(&cxl_region_rwsem); return rc; } static int detach_target(struct cxl_region *cxlr, int pos) { struct cxl_region_params *p = &cxlr->params; int rc; rc = down_write_killable(&cxl_region_rwsem); if (rc) return rc; if (pos >= p->interleave_ways) { dev_dbg(&cxlr->dev, "position %d out of range %d\n", pos, p->interleave_ways); rc = -ENXIO; goto out; } if (!p->targets[pos]) { rc = 0; goto out; } rc = cxl_region_detach(p->targets[pos]); out: up_write(&cxl_region_rwsem); return rc; } static size_t store_targetN(struct cxl_region *cxlr, const char *buf, int pos, size_t len) { int rc; if (sysfs_streq(buf, "\n")) rc = detach_target(cxlr, pos); else { struct device *dev; dev = bus_find_device_by_name(&cxl_bus_type, NULL, buf); if (!dev) return -ENODEV; if (!is_endpoint_decoder(dev)) { rc = -EINVAL; goto out; } rc = attach_target(cxlr, to_cxl_endpoint_decoder(dev), pos, TASK_INTERRUPTIBLE); out: put_device(dev); } if (rc < 0) return rc; return len; } #define TARGET_ATTR_RW(n) \ static ssize_t target##n##_show( \ struct device *dev, struct device_attribute *attr, char *buf) \ { \ return show_targetN(to_cxl_region(dev), buf, (n)); \ } \ static ssize_t target##n##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t len) \ { \ return store_targetN(to_cxl_region(dev), buf, (n), len); \ } \ static DEVICE_ATTR_RW(target##n) TARGET_ATTR_RW(0); TARGET_ATTR_RW(1); TARGET_ATTR_RW(2); TARGET_ATTR_RW(3); TARGET_ATTR_RW(4); TARGET_ATTR_RW(5); TARGET_ATTR_RW(6); TARGET_ATTR_RW(7); TARGET_ATTR_RW(8); TARGET_ATTR_RW(9); TARGET_ATTR_RW(10); TARGET_ATTR_RW(11); TARGET_ATTR_RW(12); TARGET_ATTR_RW(13); TARGET_ATTR_RW(14); TARGET_ATTR_RW(15); static struct attribute *target_attrs[] = { &dev_attr_target0.attr, &dev_attr_target1.attr, &dev_attr_target2.attr, &dev_attr_target3.attr, &dev_attr_target4.attr, &dev_attr_target5.attr, &dev_attr_target6.attr, &dev_attr_target7.attr, &dev_attr_target8.attr, &dev_attr_target9.attr, &dev_attr_target10.attr, &dev_attr_target11.attr, &dev_attr_target12.attr, &dev_attr_target13.attr, &dev_attr_target14.attr, &dev_attr_target15.attr, NULL, }; static umode_t cxl_region_target_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = kobj_to_dev(kobj); struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; if (n < p->interleave_ways) return a->mode; return 0; } static const struct attribute_group cxl_region_target_group = { .attrs = target_attrs, .is_visible = cxl_region_target_visible, }; static const struct attribute_group *get_cxl_region_target_group(void) { return &cxl_region_target_group; } static const struct attribute_group *region_groups[] = { &cxl_base_attribute_group, &cxl_region_group, &cxl_region_target_group, &cxl_region_access0_coordinate_group, &cxl_region_access1_coordinate_group, NULL, }; static void cxl_region_release(struct device *dev) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev->parent); struct cxl_region *cxlr = to_cxl_region(dev); int id = atomic_read(&cxlrd->region_id); /* * Try to reuse the recently idled id rather than the cached * next id to prevent the region id space from increasing * unnecessarily. */ if (cxlr->id < id) if (atomic_try_cmpxchg(&cxlrd->region_id, &id, cxlr->id)) { memregion_free(id); goto out; } memregion_free(cxlr->id); out: put_device(dev->parent); kfree(cxlr); } const struct device_type cxl_region_type = { .name = "cxl_region", .release = cxl_region_release, .groups = region_groups }; bool is_cxl_region(struct device *dev) { return dev->type == &cxl_region_type; } EXPORT_SYMBOL_NS_GPL(is_cxl_region, CXL); static struct cxl_region *to_cxl_region(struct device *dev) { if (dev_WARN_ONCE(dev, dev->type != &cxl_region_type, "not a cxl_region device\n")) return NULL; return container_of(dev, struct cxl_region, dev); } static void unregister_region(void *_cxlr) { struct cxl_region *cxlr = _cxlr; struct cxl_region_params *p = &cxlr->params; int i; unregister_memory_notifier(&cxlr->memory_notifier); unregister_mt_adistance_algorithm(&cxlr->adist_notifier); device_del(&cxlr->dev); /* * Now that region sysfs is shutdown, the parameter block is now * read-only, so no need to hold the region rwsem to access the * region parameters. */ for (i = 0; i < p->interleave_ways; i++) detach_target(cxlr, i); cxl_region_iomem_release(cxlr); put_device(&cxlr->dev); } static struct lock_class_key cxl_region_key; static struct cxl_region *cxl_region_alloc(struct cxl_root_decoder *cxlrd, int id) { struct cxl_region *cxlr; struct device *dev; cxlr = kzalloc(sizeof(*cxlr), GFP_KERNEL); if (!cxlr) { memregion_free(id); return ERR_PTR(-ENOMEM); } dev = &cxlr->dev; device_initialize(dev); lockdep_set_class(&dev->mutex, &cxl_region_key); dev->parent = &cxlrd->cxlsd.cxld.dev; /* * Keep root decoder pinned through cxl_region_release to fixup * region id allocations */ get_device(dev->parent); device_set_pm_not_required(dev); dev->bus = &cxl_bus_type; dev->type = &cxl_region_type; cxlr->id = id; return cxlr; } static bool cxl_region_update_coordinates(struct cxl_region *cxlr, int nid) { int cset = 0; int rc; for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { if (cxlr->coord[i].read_bandwidth) { rc = 0; if (cxl_need_node_perf_attrs_update(nid)) node_set_perf_attrs(nid, &cxlr->coord[i], i); else rc = cxl_update_hmat_access_coordinates(nid, cxlr, i); if (rc == 0) cset++; } } if (!cset) return false; rc = sysfs_update_group(&cxlr->dev.kobj, get_cxl_region_access0_group()); if (rc) dev_dbg(&cxlr->dev, "Failed to update access0 group\n"); rc = sysfs_update_group(&cxlr->dev.kobj, get_cxl_region_access1_group()); if (rc) dev_dbg(&cxlr->dev, "Failed to update access1 group\n"); return true; } static int cxl_region_nid(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; struct resource *res; guard(rwsem_read)(&cxl_region_rwsem); res = p->res; if (!res) return NUMA_NO_NODE; return phys_to_target_node(res->start); } static int cxl_region_perf_attrs_callback(struct notifier_block *nb, unsigned long action, void *arg) { struct cxl_region *cxlr = container_of(nb, struct cxl_region, memory_notifier); struct memory_notify *mnb = arg; int nid = mnb->status_change_nid; int region_nid; if (nid == NUMA_NO_NODE || action != MEM_ONLINE) return NOTIFY_DONE; region_nid = cxl_region_nid(cxlr); if (nid != region_nid) return NOTIFY_DONE; if (!cxl_region_update_coordinates(cxlr, nid)) return NOTIFY_DONE; return NOTIFY_OK; } static int cxl_region_calculate_adistance(struct notifier_block *nb, unsigned long nid, void *data) { struct cxl_region *cxlr = container_of(nb, struct cxl_region, adist_notifier); struct access_coordinate *perf; int *adist = data; int region_nid; region_nid = cxl_region_nid(cxlr); if (nid != region_nid) return NOTIFY_OK; perf = &cxlr->coord[ACCESS_COORDINATE_CPU]; if (mt_perf_to_adistance(perf, adist)) return NOTIFY_OK; return NOTIFY_STOP; } /** * devm_cxl_add_region - Adds a region to a decoder * @cxlrd: root decoder * @id: memregion id to create, or memregion_free() on failure * @mode: mode for the endpoint decoders of this region * @type: select whether this is an expander or accelerator (type-2 or type-3) * * This is the second step of region initialization. Regions exist within an * address space which is mapped by a @cxlrd. * * Return: 0 if the region was added to the @cxlrd, else returns negative error * code. The region will be named "regionZ" where Z is the unique region number. */ static struct cxl_region *devm_cxl_add_region(struct cxl_root_decoder *cxlrd, int id, enum cxl_decoder_mode mode, enum cxl_decoder_type type) { struct cxl_port *port = to_cxl_port(cxlrd->cxlsd.cxld.dev.parent); struct cxl_region *cxlr; struct device *dev; int rc; cxlr = cxl_region_alloc(cxlrd, id); if (IS_ERR(cxlr)) return cxlr; cxlr->mode = mode; cxlr->type = type; dev = &cxlr->dev; rc = dev_set_name(dev, "region%d", id); if (rc) goto err; rc = device_add(dev); if (rc) goto err; cxlr->memory_notifier.notifier_call = cxl_region_perf_attrs_callback; cxlr->memory_notifier.priority = CXL_CALLBACK_PRI; register_memory_notifier(&cxlr->memory_notifier); cxlr->adist_notifier.notifier_call = cxl_region_calculate_adistance; cxlr->adist_notifier.priority = 100; register_mt_adistance_algorithm(&cxlr->adist_notifier); rc = devm_add_action_or_reset(port->uport_dev, unregister_region, cxlr); if (rc) return ERR_PTR(rc); dev_dbg(port->uport_dev, "%s: created %s\n", dev_name(&cxlrd->cxlsd.cxld.dev), dev_name(dev)); return cxlr; err: put_device(dev); return ERR_PTR(rc); } static ssize_t __create_region_show(struct cxl_root_decoder *cxlrd, char *buf) { return sysfs_emit(buf, "region%u\n", atomic_read(&cxlrd->region_id)); } static ssize_t create_pmem_region_show(struct device *dev, struct device_attribute *attr, char *buf) { return __create_region_show(to_cxl_root_decoder(dev), buf); } static ssize_t create_ram_region_show(struct device *dev, struct device_attribute *attr, char *buf) { return __create_region_show(to_cxl_root_decoder(dev), buf); } static struct cxl_region *__create_region(struct cxl_root_decoder *cxlrd, enum cxl_decoder_mode mode, int id) { int rc; switch (mode) { case CXL_DECODER_RAM: case CXL_DECODER_PMEM: break; default: dev_err(&cxlrd->cxlsd.cxld.dev, "unsupported mode %d\n", mode); return ERR_PTR(-EINVAL); } rc = memregion_alloc(GFP_KERNEL); if (rc < 0) return ERR_PTR(rc); if (atomic_cmpxchg(&cxlrd->region_id, id, rc) != id) { memregion_free(rc); return ERR_PTR(-EBUSY); } return devm_cxl_add_region(cxlrd, id, mode, CXL_DECODER_HOSTONLYMEM); } static ssize_t create_pmem_region_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev); struct cxl_region *cxlr; int rc, id; rc = sscanf(buf, "region%d\n", &id); if (rc != 1) return -EINVAL; cxlr = __create_region(cxlrd, CXL_DECODER_PMEM, id); if (IS_ERR(cxlr)) return PTR_ERR(cxlr); return len; } DEVICE_ATTR_RW(create_pmem_region); static ssize_t create_ram_region_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev); struct cxl_region *cxlr; int rc, id; rc = sscanf(buf, "region%d\n", &id); if (rc != 1) return -EINVAL; cxlr = __create_region(cxlrd, CXL_DECODER_RAM, id); if (IS_ERR(cxlr)) return PTR_ERR(cxlr); return len; } DEVICE_ATTR_RW(create_ram_region); static ssize_t region_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cxl_decoder *cxld = to_cxl_decoder(dev); ssize_t rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) return rc; if (cxld->region) rc = sysfs_emit(buf, "%s\n", dev_name(&cxld->region->dev)); else rc = sysfs_emit(buf, "\n"); up_read(&cxl_region_rwsem); return rc; } DEVICE_ATTR_RO(region); static struct cxl_region * cxl_find_region_by_name(struct cxl_root_decoder *cxlrd, const char *name) { struct cxl_decoder *cxld = &cxlrd->cxlsd.cxld; struct device *region_dev; region_dev = device_find_child_by_name(&cxld->dev, name); if (!region_dev) return ERR_PTR(-ENODEV); return to_cxl_region(region_dev); } static ssize_t delete_region_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(dev); struct cxl_port *port = to_cxl_port(dev->parent); struct cxl_region *cxlr; cxlr = cxl_find_region_by_name(cxlrd, buf); if (IS_ERR(cxlr)) return PTR_ERR(cxlr); devm_release_action(port->uport_dev, unregister_region, cxlr); put_device(&cxlr->dev); return len; } DEVICE_ATTR_WO(delete_region); static void cxl_pmem_region_release(struct device *dev) { struct cxl_pmem_region *cxlr_pmem = to_cxl_pmem_region(dev); int i; for (i = 0; i < cxlr_pmem->nr_mappings; i++) { struct cxl_memdev *cxlmd = cxlr_pmem->mapping[i].cxlmd; put_device(&cxlmd->dev); } kfree(cxlr_pmem); } static const struct attribute_group *cxl_pmem_region_attribute_groups[] = { &cxl_base_attribute_group, NULL, }; const struct device_type cxl_pmem_region_type = { .name = "cxl_pmem_region", .release = cxl_pmem_region_release, .groups = cxl_pmem_region_attribute_groups, }; bool is_cxl_pmem_region(struct device *dev) { return dev->type == &cxl_pmem_region_type; } EXPORT_SYMBOL_NS_GPL(is_cxl_pmem_region, CXL); struct cxl_pmem_region *to_cxl_pmem_region(struct device *dev) { if (dev_WARN_ONCE(dev, !is_cxl_pmem_region(dev), "not a cxl_pmem_region device\n")) return NULL; return container_of(dev, struct cxl_pmem_region, dev); } EXPORT_SYMBOL_NS_GPL(to_cxl_pmem_region, CXL); struct cxl_poison_context { struct cxl_port *port; enum cxl_decoder_mode mode; u64 offset; }; static int cxl_get_poison_unmapped(struct cxl_memdev *cxlmd, struct cxl_poison_context *ctx) { struct cxl_dev_state *cxlds = cxlmd->cxlds; u64 offset, length; int rc = 0; /* * Collect poison for the remaining unmapped resources * after poison is collected by committed endpoints. * * Knowing that PMEM must always follow RAM, get poison * for unmapped resources based on the last decoder's mode: * ram: scan remains of ram range, then any pmem range * pmem: scan remains of pmem range */ if (ctx->mode == CXL_DECODER_RAM) { offset = ctx->offset; length = resource_size(&cxlds->ram_res) - offset; rc = cxl_mem_get_poison(cxlmd, offset, length, NULL); if (rc == -EFAULT) rc = 0; if (rc) return rc; } if (ctx->mode == CXL_DECODER_PMEM) { offset = ctx->offset; length = resource_size(&cxlds->dpa_res) - offset; if (!length) return 0; } else if (resource_size(&cxlds->pmem_res)) { offset = cxlds->pmem_res.start; length = resource_size(&cxlds->pmem_res); } else { return 0; } return cxl_mem_get_poison(cxlmd, offset, length, NULL); } static int poison_by_decoder(struct device *dev, void *arg) { struct cxl_poison_context *ctx = arg; struct cxl_endpoint_decoder *cxled; struct cxl_memdev *cxlmd; u64 offset, length; int rc = 0; if (!is_endpoint_decoder(dev)) return rc; cxled = to_cxl_endpoint_decoder(dev); if (!cxled->dpa_res || !resource_size(cxled->dpa_res)) return rc; /* * Regions are only created with single mode decoders: pmem or ram. * Linux does not support mixed mode decoders. This means that * reading poison per endpoint decoder adheres to the requirement * that poison reads of pmem and ram must be separated. * CXL 3.0 Spec 8.2.9.8.4.1 */ if (cxled->mode == CXL_DECODER_MIXED) { dev_dbg(dev, "poison list read unsupported in mixed mode\n"); return rc; } cxlmd = cxled_to_memdev(cxled); if (cxled->skip) { offset = cxled->dpa_res->start - cxled->skip; length = cxled->skip; rc = cxl_mem_get_poison(cxlmd, offset, length, NULL); if (rc == -EFAULT && cxled->mode == CXL_DECODER_RAM) rc = 0; if (rc) return rc; } offset = cxled->dpa_res->start; length = cxled->dpa_res->end - offset + 1; rc = cxl_mem_get_poison(cxlmd, offset, length, cxled->cxld.region); if (rc == -EFAULT && cxled->mode == CXL_DECODER_RAM) rc = 0; if (rc) return rc; /* Iterate until commit_end is reached */ if (cxled->cxld.id == ctx->port->commit_end) { ctx->offset = cxled->dpa_res->end + 1; ctx->mode = cxled->mode; return 1; } return 0; } int cxl_get_poison_by_endpoint(struct cxl_port *port) { struct cxl_poison_context ctx; int rc = 0; ctx = (struct cxl_poison_context) { .port = port }; rc = device_for_each_child(&port->dev, &ctx, poison_by_decoder); if (rc == 1) rc = cxl_get_poison_unmapped(to_cxl_memdev(port->uport_dev), &ctx); return rc; } struct cxl_dpa_to_region_context { struct cxl_region *cxlr; u64 dpa; }; static int __cxl_dpa_to_region(struct device *dev, void *arg) { struct cxl_dpa_to_region_context *ctx = arg; struct cxl_endpoint_decoder *cxled; struct cxl_region *cxlr; u64 dpa = ctx->dpa; if (!is_endpoint_decoder(dev)) return 0; cxled = to_cxl_endpoint_decoder(dev); if (!cxled || !cxled->dpa_res || !resource_size(cxled->dpa_res)) return 0; if (dpa > cxled->dpa_res->end || dpa < cxled->dpa_res->start) return 0; /* * Stop the region search (return 1) when an endpoint mapping is * found. The region may not be fully constructed so offering * the cxlr in the context structure is not guaranteed. */ cxlr = cxled->cxld.region; if (cxlr) dev_dbg(dev, "dpa:0x%llx mapped in region:%s\n", dpa, dev_name(&cxlr->dev)); else dev_dbg(dev, "dpa:0x%llx mapped in endpoint:%s\n", dpa, dev_name(dev)); ctx->cxlr = cxlr; return 1; } struct cxl_region *cxl_dpa_to_region(const struct cxl_memdev *cxlmd, u64 dpa) { struct cxl_dpa_to_region_context ctx; struct cxl_port *port; ctx = (struct cxl_dpa_to_region_context) { .dpa = dpa, }; port = cxlmd->endpoint; if (port && is_cxl_endpoint(port) && cxl_num_decoders_committed(port)) device_for_each_child(&port->dev, &ctx, __cxl_dpa_to_region); return ctx.cxlr; } static bool cxl_is_hpa_in_chunk(u64 hpa, struct cxl_region *cxlr, int pos) { struct cxl_region_params *p = &cxlr->params; int gran = p->interleave_granularity; int ways = p->interleave_ways; u64 offset; /* Is the hpa in an expected chunk for its pos(-ition) */ offset = hpa - p->res->start; offset = do_div(offset, gran * ways); if ((offset >= pos * gran) && (offset < (pos + 1) * gran)) return true; dev_dbg(&cxlr->dev, "Addr trans fail: hpa 0x%llx not in expected chunk\n", hpa); return false; } u64 cxl_dpa_to_hpa(struct cxl_region *cxlr, const struct cxl_memdev *cxlmd, u64 dpa) { struct cxl_root_decoder *cxlrd = to_cxl_root_decoder(cxlr->dev.parent); u64 dpa_offset, hpa_offset, bits_upper, mask_upper, hpa; struct cxl_region_params *p = &cxlr->params; struct cxl_endpoint_decoder *cxled = NULL; u16 eig = 0; u8 eiw = 0; int pos; for (int i = 0; i < p->nr_targets; i++) { cxled = p->targets[i]; if (cxlmd == cxled_to_memdev(cxled)) break; } if (!cxled || cxlmd != cxled_to_memdev(cxled)) return ULLONG_MAX; pos = cxled->pos; ways_to_eiw(p->interleave_ways, &eiw); granularity_to_eig(p->interleave_granularity, &eig); /* * The device position in the region interleave set was removed * from the offset at HPA->DPA translation. To reconstruct the * HPA, place the 'pos' in the offset. * * The placement of 'pos' in the HPA is determined by interleave * ways and granularity and is defined in the CXL Spec 3.0 Section * 8.2.4.19.13 Implementation Note: Device Decode Logic */ /* Remove the dpa base */ dpa_offset = dpa - cxl_dpa_resource_start(cxled); mask_upper = GENMASK_ULL(51, eig + 8); if (eiw < 8) { hpa_offset = (dpa_offset & mask_upper) << eiw; hpa_offset |= pos << (eig + 8); } else { bits_upper = (dpa_offset & mask_upper) >> (eig + 8); bits_upper = bits_upper * 3; hpa_offset = ((bits_upper << (eiw - 8)) + pos) << (eig + 8); } /* The lower bits remain unchanged */ hpa_offset |= dpa_offset & GENMASK_ULL(eig + 7, 0); /* Apply the hpa_offset to the region base address */ hpa = hpa_offset + p->res->start; /* Root decoder translation overrides typical modulo decode */ if (cxlrd->hpa_to_spa) hpa = cxlrd->hpa_to_spa(cxlrd, hpa); if (hpa < p->res->start || hpa > p->res->end) { dev_dbg(&cxlr->dev, "Addr trans fail: hpa 0x%llx not in region\n", hpa); return ULLONG_MAX; } /* Simple chunk check, by pos & gran, only applies to modulo decodes */ if (!cxlrd->hpa_to_spa && (!cxl_is_hpa_in_chunk(hpa, cxlr, pos))) return ULLONG_MAX; return hpa; } static struct lock_class_key cxl_pmem_region_key; static int cxl_pmem_region_alloc(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; struct cxl_nvdimm_bridge *cxl_nvb; struct device *dev; int i; guard(rwsem_read)(&cxl_region_rwsem); if (p->state != CXL_CONFIG_COMMIT) return -ENXIO; struct cxl_pmem_region *cxlr_pmem __free(kfree) = kzalloc(struct_size(cxlr_pmem, mapping, p->nr_targets), GFP_KERNEL); if (!cxlr_pmem) return -ENOMEM; cxlr_pmem->hpa_range.start = p->res->start; cxlr_pmem->hpa_range.end = p->res->end; /* Snapshot the region configuration underneath the cxl_region_rwsem */ cxlr_pmem->nr_mappings = p->nr_targets; for (i = 0; i < p->nr_targets; i++) { struct cxl_endpoint_decoder *cxled = p->targets[i]; struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_pmem_region_mapping *m = &cxlr_pmem->mapping[i]; /* * Regions never span CXL root devices, so by definition the * bridge for one device is the same for all. */ if (i == 0) { cxl_nvb = cxl_find_nvdimm_bridge(cxlmd->endpoint); if (!cxl_nvb) return -ENODEV; cxlr->cxl_nvb = cxl_nvb; } m->cxlmd = cxlmd; get_device(&cxlmd->dev); m->start = cxled->dpa_res->start; m->size = resource_size(cxled->dpa_res); m->position = i; } dev = &cxlr_pmem->dev; device_initialize(dev); lockdep_set_class(&dev->mutex, &cxl_pmem_region_key); device_set_pm_not_required(dev); dev->parent = &cxlr->dev; dev->bus = &cxl_bus_type; dev->type = &cxl_pmem_region_type; cxlr_pmem->cxlr = cxlr; cxlr->cxlr_pmem = no_free_ptr(cxlr_pmem); return 0; } static void cxl_dax_region_release(struct device *dev) { struct cxl_dax_region *cxlr_dax = to_cxl_dax_region(dev); kfree(cxlr_dax); } static const struct attribute_group *cxl_dax_region_attribute_groups[] = { &cxl_base_attribute_group, NULL, }; const struct device_type cxl_dax_region_type = { .name = "cxl_dax_region", .release = cxl_dax_region_release, .groups = cxl_dax_region_attribute_groups, }; static bool is_cxl_dax_region(struct device *dev) { return dev->type == &cxl_dax_region_type; } struct cxl_dax_region *to_cxl_dax_region(struct device *dev) { if (dev_WARN_ONCE(dev, !is_cxl_dax_region(dev), "not a cxl_dax_region device\n")) return NULL; return container_of(dev, struct cxl_dax_region, dev); } EXPORT_SYMBOL_NS_GPL(to_cxl_dax_region, CXL); static struct lock_class_key cxl_dax_region_key; static struct cxl_dax_region *cxl_dax_region_alloc(struct cxl_region *cxlr) { struct cxl_region_params *p = &cxlr->params; struct cxl_dax_region *cxlr_dax; struct device *dev; down_read(&cxl_region_rwsem); if (p->state != CXL_CONFIG_COMMIT) { cxlr_dax = ERR_PTR(-ENXIO); goto out; } cxlr_dax = kzalloc(sizeof(*cxlr_dax), GFP_KERNEL); if (!cxlr_dax) { cxlr_dax = ERR_PTR(-ENOMEM); goto out; } cxlr_dax->hpa_range.start = p->res->start; cxlr_dax->hpa_range.end = p->res->end; dev = &cxlr_dax->dev; cxlr_dax->cxlr = cxlr; device_initialize(dev); lockdep_set_class(&dev->mutex, &cxl_dax_region_key); device_set_pm_not_required(dev); dev->parent = &cxlr->dev; dev->bus = &cxl_bus_type; dev->type = &cxl_dax_region_type; out: up_read(&cxl_region_rwsem); return cxlr_dax; } static void cxlr_pmem_unregister(void *_cxlr_pmem) { struct cxl_pmem_region *cxlr_pmem = _cxlr_pmem; struct cxl_region *cxlr = cxlr_pmem->cxlr; struct cxl_nvdimm_bridge *cxl_nvb = cxlr->cxl_nvb; /* * Either the bridge is in ->remove() context under the device_lock(), * or cxlr_release_nvdimm() is cancelling the bridge's release action * for @cxlr_pmem and doing it itself (while manually holding the bridge * lock). */ device_lock_assert(&cxl_nvb->dev); cxlr->cxlr_pmem = NULL; cxlr_pmem->cxlr = NULL; device_unregister(&cxlr_pmem->dev); } static void cxlr_release_nvdimm(void *_cxlr) { struct cxl_region *cxlr = _cxlr; struct cxl_nvdimm_bridge *cxl_nvb = cxlr->cxl_nvb; device_lock(&cxl_nvb->dev); if (cxlr->cxlr_pmem) devm_release_action(&cxl_nvb->dev, cxlr_pmem_unregister, cxlr->cxlr_pmem); device_unlock(&cxl_nvb->dev); cxlr->cxl_nvb = NULL; put_device(&cxl_nvb->dev); } /** * devm_cxl_add_pmem_region() - add a cxl_region-to-nd_region bridge * @cxlr: parent CXL region for this pmem region bridge device * * Return: 0 on success negative error code on failure. */ static int devm_cxl_add_pmem_region(struct cxl_region *cxlr) { struct cxl_pmem_region *cxlr_pmem; struct cxl_nvdimm_bridge *cxl_nvb; struct device *dev; int rc; rc = cxl_pmem_region_alloc(cxlr); if (rc) return rc; cxlr_pmem = cxlr->cxlr_pmem; cxl_nvb = cxlr->cxl_nvb; dev = &cxlr_pmem->dev; rc = dev_set_name(dev, "pmem_region%d", cxlr->id); if (rc) goto err; rc = device_add(dev); if (rc) goto err; dev_dbg(&cxlr->dev, "%s: register %s\n", dev_name(dev->parent), dev_name(dev)); device_lock(&cxl_nvb->dev); if (cxl_nvb->dev.driver) rc = devm_add_action_or_reset(&cxl_nvb->dev, cxlr_pmem_unregister, cxlr_pmem); else rc = -ENXIO; device_unlock(&cxl_nvb->dev); if (rc) goto err_bridge; /* @cxlr carries a reference on @cxl_nvb until cxlr_release_nvdimm */ return devm_add_action_or_reset(&cxlr->dev, cxlr_release_nvdimm, cxlr); err: put_device(dev); err_bridge: put_device(&cxl_nvb->dev); cxlr->cxl_nvb = NULL; return rc; } static void cxlr_dax_unregister(void *_cxlr_dax) { struct cxl_dax_region *cxlr_dax = _cxlr_dax; device_unregister(&cxlr_dax->dev); } static int devm_cxl_add_dax_region(struct cxl_region *cxlr) { struct cxl_dax_region *cxlr_dax; struct device *dev; int rc; cxlr_dax = cxl_dax_region_alloc(cxlr); if (IS_ERR(cxlr_dax)) return PTR_ERR(cxlr_dax); dev = &cxlr_dax->dev; rc = dev_set_name(dev, "dax_region%d", cxlr->id); if (rc) goto err; rc = device_add(dev); if (rc) goto err; dev_dbg(&cxlr->dev, "%s: register %s\n", dev_name(dev->parent), dev_name(dev)); return devm_add_action_or_reset(&cxlr->dev, cxlr_dax_unregister, cxlr_dax); err: put_device(dev); return rc; } static int match_root_decoder_by_range(struct device *dev, void *data) { struct range *r1, *r2 = data; struct cxl_root_decoder *cxlrd; if (!is_root_decoder(dev)) return 0; cxlrd = to_cxl_root_decoder(dev); r1 = &cxlrd->cxlsd.cxld.hpa_range; return range_contains(r1, r2); } static int match_region_by_range(struct device *dev, void *data) { struct cxl_region_params *p; struct cxl_region *cxlr; struct range *r = data; int rc = 0; if (!is_cxl_region(dev)) return 0; cxlr = to_cxl_region(dev); p = &cxlr->params; down_read(&cxl_region_rwsem); if (p->res && p->res->start == r->start && p->res->end == r->end) rc = 1; up_read(&cxl_region_rwsem); return rc; } /* Establish an empty region covering the given HPA range */ static struct cxl_region *construct_region(struct cxl_root_decoder *cxlrd, struct cxl_endpoint_decoder *cxled) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_port *port = cxlrd_to_port(cxlrd); struct range *hpa = &cxled->cxld.hpa_range; struct cxl_region_params *p; struct cxl_region *cxlr; struct resource *res; int rc; do { cxlr = __create_region(cxlrd, cxled->mode, atomic_read(&cxlrd->region_id)); } while (IS_ERR(cxlr) && PTR_ERR(cxlr) == -EBUSY); if (IS_ERR(cxlr)) { dev_err(cxlmd->dev.parent, "%s:%s: %s failed assign region: %ld\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), __func__, PTR_ERR(cxlr)); return cxlr; } down_write(&cxl_region_rwsem); p = &cxlr->params; if (p->state >= CXL_CONFIG_INTERLEAVE_ACTIVE) { dev_err(cxlmd->dev.parent, "%s:%s: %s autodiscovery interrupted\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), __func__); rc = -EBUSY; goto err; } set_bit(CXL_REGION_F_AUTO, &cxlr->flags); res = kmalloc(sizeof(*res), GFP_KERNEL); if (!res) { rc = -ENOMEM; goto err; } *res = DEFINE_RES_MEM_NAMED(hpa->start, range_len(hpa), dev_name(&cxlr->dev)); rc = insert_resource(cxlrd->res, res); if (rc) { /* * Platform-firmware may not have split resources like "System * RAM" on CXL window boundaries see cxl_region_iomem_release() */ dev_warn(cxlmd->dev.parent, "%s:%s: %s %s cannot insert resource\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), __func__, dev_name(&cxlr->dev)); } p->res = res; p->interleave_ways = cxled->cxld.interleave_ways; p->interleave_granularity = cxled->cxld.interleave_granularity; p->state = CXL_CONFIG_INTERLEAVE_ACTIVE; rc = sysfs_update_group(&cxlr->dev.kobj, get_cxl_region_target_group()); if (rc) goto err; dev_dbg(cxlmd->dev.parent, "%s:%s: %s %s res: %pr iw: %d ig: %d\n", dev_name(&cxlmd->dev), dev_name(&cxled->cxld.dev), __func__, dev_name(&cxlr->dev), p->res, p->interleave_ways, p->interleave_granularity); /* ...to match put_device() in cxl_add_to_region() */ get_device(&cxlr->dev); up_write(&cxl_region_rwsem); return cxlr; err: up_write(&cxl_region_rwsem); devm_release_action(port->uport_dev, unregister_region, cxlr); return ERR_PTR(rc); } int cxl_add_to_region(struct cxl_port *root, struct cxl_endpoint_decoder *cxled) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct range *hpa = &cxled->cxld.hpa_range; struct cxl_decoder *cxld = &cxled->cxld; struct device *cxlrd_dev, *region_dev; struct cxl_root_decoder *cxlrd; struct cxl_region_params *p; struct cxl_region *cxlr; bool attach = false; int rc; cxlrd_dev = device_find_child(&root->dev, &cxld->hpa_range, match_root_decoder_by_range); if (!cxlrd_dev) { dev_err(cxlmd->dev.parent, "%s:%s no CXL window for range %#llx:%#llx\n", dev_name(&cxlmd->dev), dev_name(&cxld->dev), cxld->hpa_range.start, cxld->hpa_range.end); return -ENXIO; } cxlrd = to_cxl_root_decoder(cxlrd_dev); /* * Ensure that if multiple threads race to construct_region() for @hpa * one does the construction and the others add to that. */ mutex_lock(&cxlrd->range_lock); region_dev = device_find_child(&cxlrd->cxlsd.cxld.dev, hpa, match_region_by_range); if (!region_dev) { cxlr = construct_region(cxlrd, cxled); region_dev = &cxlr->dev; } else cxlr = to_cxl_region(region_dev); mutex_unlock(&cxlrd->range_lock); rc = PTR_ERR_OR_ZERO(cxlr); if (rc) goto out; attach_target(cxlr, cxled, -1, TASK_UNINTERRUPTIBLE); down_read(&cxl_region_rwsem); p = &cxlr->params; attach = p->state == CXL_CONFIG_COMMIT; up_read(&cxl_region_rwsem); if (attach) { /* * If device_attach() fails the range may still be active via * the platform-firmware memory map, otherwise the driver for * regions is local to this file, so driver matching can't fail. */ if (device_attach(&cxlr->dev) < 0) dev_err(&cxlr->dev, "failed to enable, range: %pr\n", p->res); } put_device(region_dev); out: put_device(cxlrd_dev); return rc; } EXPORT_SYMBOL_NS_GPL(cxl_add_to_region, CXL); static int is_system_ram(struct resource *res, void *arg) { struct cxl_region *cxlr = arg; struct cxl_region_params *p = &cxlr->params; dev_dbg(&cxlr->dev, "%pr has System RAM: %pr\n", p->res, res); return 1; } static int cxl_region_probe(struct device *dev) { struct cxl_region *cxlr = to_cxl_region(dev); struct cxl_region_params *p = &cxlr->params; int rc; rc = down_read_interruptible(&cxl_region_rwsem); if (rc) { dev_dbg(&cxlr->dev, "probe interrupted\n"); return rc; } if (p->state < CXL_CONFIG_COMMIT) { dev_dbg(&cxlr->dev, "config state: %d\n", p->state); rc = -ENXIO; goto out; } if (test_bit(CXL_REGION_F_NEEDS_RESET, &cxlr->flags)) { dev_err(&cxlr->dev, "failed to activate, re-commit region and retry\n"); rc = -ENXIO; goto out; } /* * From this point on any path that changes the region's state away from * CXL_CONFIG_COMMIT is also responsible for releasing the driver. */ out: up_read(&cxl_region_rwsem); if (rc) return rc; switch (cxlr->mode) { case CXL_DECODER_PMEM: return devm_cxl_add_pmem_region(cxlr); case CXL_DECODER_RAM: /* * The region can not be manged by CXL if any portion of * it is already online as 'System RAM' */ if (walk_iomem_res_desc(IORES_DESC_NONE, IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, p->res->start, p->res->end, cxlr, is_system_ram) > 0) return 0; return devm_cxl_add_dax_region(cxlr); default: dev_dbg(&cxlr->dev, "unsupported region mode: %d\n", cxlr->mode); return -ENXIO; } } static struct cxl_driver cxl_region_driver = { .name = "cxl_region", .probe = cxl_region_probe, .id = CXL_DEVICE_REGION, }; int cxl_region_init(void) { return cxl_driver_register(&cxl_region_driver); } void cxl_region_exit(void) { cxl_driver_unregister(&cxl_region_driver); } MODULE_IMPORT_NS(CXL); MODULE_IMPORT_NS(DEVMEM); MODULE_ALIAS_CXL(CXL_DEVICE_REGION);