// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2023 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include "cxlpci.h" #include "cxlmem.h" #include "core.h" #include "cxl.h" #include "core.h" struct dsmas_entry { struct range dpa_range; u8 handle; struct access_coordinate coord; int entries; int qos_class; }; static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg, const unsigned long end) { struct acpi_cdat_header *hdr = &header->cdat; struct acpi_cdat_dsmas *dsmas; int size = sizeof(*hdr) + sizeof(*dsmas); struct xarray *dsmas_xa = arg; struct dsmas_entry *dent; u16 len; int rc; len = le16_to_cpu((__force __le16)hdr->length); if (len != size || (unsigned long)hdr + len > end) { pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len); return -EINVAL; } /* Skip common header */ dsmas = (struct acpi_cdat_dsmas *)(hdr + 1); dent = kzalloc(sizeof(*dent), GFP_KERNEL); if (!dent) return -ENOMEM; dent->handle = dsmas->dsmad_handle; dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address); dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) + le64_to_cpu((__force __le64)dsmas->dpa_length) - 1; rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL); if (rc) { kfree(dent); return rc; } return 0; } static void cxl_access_coordinate_set(struct access_coordinate *coord, int access, unsigned int val) { switch (access) { case ACPI_HMAT_ACCESS_LATENCY: coord->read_latency = val; coord->write_latency = val; break; case ACPI_HMAT_READ_LATENCY: coord->read_latency = val; break; case ACPI_HMAT_WRITE_LATENCY: coord->write_latency = val; break; case ACPI_HMAT_ACCESS_BANDWIDTH: coord->read_bandwidth = val; coord->write_bandwidth = val; break; case ACPI_HMAT_READ_BANDWIDTH: coord->read_bandwidth = val; break; case ACPI_HMAT_WRITE_BANDWIDTH: coord->write_bandwidth = val; break; } } static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg, const unsigned long end) { struct acpi_cdat_header *hdr = &header->cdat; struct acpi_cdat_dslbis *dslbis; int size = sizeof(*hdr) + sizeof(*dslbis); struct xarray *dsmas_xa = arg; struct dsmas_entry *dent; __le64 le_base; __le16 le_val; u64 val; u16 len; int rc; len = le16_to_cpu((__force __le16)hdr->length); if (len != size || (unsigned long)hdr + len > end) { pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len); return -EINVAL; } /* Skip common header */ dslbis = (struct acpi_cdat_dslbis *)(hdr + 1); /* Skip unrecognized data type */ if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) return 0; /* Not a memory type, skip */ if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY) return 0; dent = xa_load(dsmas_xa, dslbis->handle); if (!dent) { pr_warn("No matching DSMAS entry for DSLBIS entry.\n"); return 0; } le_base = (__force __le64)dslbis->entry_base_unit; le_val = (__force __le16)dslbis->entry[0]; rc = check_mul_overflow(le64_to_cpu(le_base), le16_to_cpu(le_val), &val); if (rc) pr_warn("DSLBIS value overflowed.\n"); cxl_access_coordinate_set(&dent->coord, dslbis->data_type, val); return 0; } static int cdat_table_parse_output(int rc) { if (rc < 0) return rc; if (rc == 0) return -ENOENT; return 0; } static int cxl_cdat_endpoint_process(struct cxl_port *port, struct xarray *dsmas_xa) { int rc; rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler, dsmas_xa, port->cdat.table); rc = cdat_table_parse_output(rc); if (rc) return rc; rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler, dsmas_xa, port->cdat.table); return cdat_table_parse_output(rc); } static int cxl_port_perf_data_calculate(struct cxl_port *port, struct xarray *dsmas_xa) { struct access_coordinate ep_c; struct access_coordinate coord[ACCESS_COORDINATE_MAX]; struct dsmas_entry *dent; int valid_entries = 0; unsigned long index; int rc; rc = cxl_endpoint_get_perf_coordinates(port, &ep_c); if (rc) { dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n"); return rc; } rc = cxl_hb_get_perf_coordinates(port, coord); if (rc) { dev_dbg(&port->dev, "Failed to retrieve hb perf coordinates.\n"); return rc; } struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port); if (!cxl_root) return -ENODEV; if (!cxl_root->ops || !cxl_root->ops->qos_class) return -EOPNOTSUPP; xa_for_each(dsmas_xa, index, dent) { int qos_class; cxl_coordinates_combine(&dent->coord, &dent->coord, &ep_c); /* * Keeping the host bridge coordinates separate from the dsmas * coordinates in order to allow calculation of access class * 0 and 1 for region later. */ cxl_coordinates_combine(&coord[ACCESS_COORDINATE_CPU], &coord[ACCESS_COORDINATE_CPU], &dent->coord); dent->entries = 1; rc = cxl_root->ops->qos_class(cxl_root, &coord[ACCESS_COORDINATE_CPU], 1, &qos_class); if (rc != 1) continue; valid_entries++; dent->qos_class = qos_class; } if (!valid_entries) return -ENOENT; return 0; } static void update_perf_entry(struct device *dev, struct dsmas_entry *dent, struct cxl_dpa_perf *dpa_perf) { dpa_perf->dpa_range = dent->dpa_range; dpa_perf->coord = dent->coord; dpa_perf->qos_class = dent->qos_class; dev_dbg(dev, "DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n", dent->dpa_range.start, dpa_perf->qos_class, dent->coord.read_bandwidth, dent->coord.write_bandwidth, dent->coord.read_latency, dent->coord.write_latency); } static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds, struct xarray *dsmas_xa) { struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds); struct device *dev = cxlds->dev; struct range pmem_range = { .start = cxlds->pmem_res.start, .end = cxlds->pmem_res.end, }; struct range ram_range = { .start = cxlds->ram_res.start, .end = cxlds->ram_res.end, }; struct dsmas_entry *dent; unsigned long index; xa_for_each(dsmas_xa, index, dent) { if (resource_size(&cxlds->ram_res) && range_contains(&ram_range, &dent->dpa_range)) update_perf_entry(dev, dent, &mds->ram_perf); else if (resource_size(&cxlds->pmem_res) && range_contains(&pmem_range, &dent->dpa_range)) update_perf_entry(dev, dent, &mds->pmem_perf); else dev_dbg(dev, "no partition for dsmas dpa: %#llx\n", dent->dpa_range.start); } } static int match_cxlrd_qos_class(struct device *dev, void *data) { int dev_qos_class = *(int *)data; struct cxl_root_decoder *cxlrd; if (!is_root_decoder(dev)) return 0; cxlrd = to_cxl_root_decoder(dev); if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID) return 0; if (cxlrd->qos_class == dev_qos_class) return 1; return 0; } static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf) { *dpa_perf = (struct cxl_dpa_perf) { .qos_class = CXL_QOS_CLASS_INVALID, }; } static bool cxl_qos_match(struct cxl_port *root_port, struct cxl_dpa_perf *dpa_perf) { if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID) return false; if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class, match_cxlrd_qos_class)) return false; return true; } static int match_cxlrd_hb(struct device *dev, void *data) { struct device *host_bridge = data; struct cxl_switch_decoder *cxlsd; struct cxl_root_decoder *cxlrd; if (!is_root_decoder(dev)) return 0; cxlrd = to_cxl_root_decoder(dev); cxlsd = &cxlrd->cxlsd; guard(rwsem_read)(&cxl_region_rwsem); for (int i = 0; i < cxlsd->nr_targets; i++) { if (host_bridge == cxlsd->target[i]->dport_dev) return 1; } return 0; } static int cxl_qos_class_verify(struct cxl_memdev *cxlmd) { struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds); struct cxl_port *root_port; int rc; struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(cxlmd->endpoint); if (!cxl_root) return -ENODEV; root_port = &cxl_root->port; /* Check that the QTG IDs are all sane between end device and root decoders */ if (!cxl_qos_match(root_port, &mds->ram_perf)) reset_dpa_perf(&mds->ram_perf); if (!cxl_qos_match(root_port, &mds->pmem_perf)) reset_dpa_perf(&mds->pmem_perf); /* Check to make sure that the device's host bridge is under a root decoder */ rc = device_for_each_child(&root_port->dev, cxlmd->endpoint->host_bridge, match_cxlrd_hb); if (!rc) { reset_dpa_perf(&mds->ram_perf); reset_dpa_perf(&mds->pmem_perf); } return rc; } static void discard_dsmas(struct xarray *xa) { unsigned long index; void *ent; xa_for_each(xa, index, ent) { xa_erase(xa, index); kfree(ent); } xa_destroy(xa); } DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T)) void cxl_endpoint_parse_cdat(struct cxl_port *port) { struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev); struct cxl_dev_state *cxlds = cxlmd->cxlds; struct xarray __dsmas_xa; struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa; int rc; xa_init(&__dsmas_xa); if (!port->cdat.table) return; rc = cxl_cdat_endpoint_process(port, dsmas_xa); if (rc < 0) { dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc); return; } rc = cxl_port_perf_data_calculate(port, dsmas_xa); if (rc) { dev_dbg(&port->dev, "Failed to do perf coord calculations.\n"); return; } cxl_memdev_set_qos_class(cxlds, dsmas_xa); cxl_qos_class_verify(cxlmd); cxl_memdev_update_perf(cxlmd); } EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL); static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg, const unsigned long end) { struct acpi_cdat_sslbis *sslbis; int size = sizeof(header->cdat) + sizeof(*sslbis); struct cxl_port *port = arg; struct device *dev = &port->dev; struct acpi_cdat_sslbe *entry; int remain, entries, i; u16 len; len = le16_to_cpu((__force __le16)header->cdat.length); remain = len - size; if (!remain || remain % sizeof(*entry) || (unsigned long)header + len > end) { dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len); return -EINVAL; } /* Skip common header */ sslbis = (struct acpi_cdat_sslbis *)((unsigned long)header + sizeof(header->cdat)); /* Unrecognized data type, we can skip */ if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) return 0; entries = remain / sizeof(*entry); entry = (struct acpi_cdat_sslbe *)((unsigned long)header + sizeof(*sslbis)); for (i = 0; i < entries; i++) { u16 x = le16_to_cpu((__force __le16)entry->portx_id); u16 y = le16_to_cpu((__force __le16)entry->porty_id); __le64 le_base; __le16 le_val; struct cxl_dport *dport; unsigned long index; u16 dsp_id; u64 val; switch (x) { case ACPI_CDAT_SSLBIS_US_PORT: dsp_id = y; break; case ACPI_CDAT_SSLBIS_ANY_PORT: switch (y) { case ACPI_CDAT_SSLBIS_US_PORT: dsp_id = x; break; case ACPI_CDAT_SSLBIS_ANY_PORT: dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT; break; default: dsp_id = y; break; } break; default: dsp_id = x; break; } le_base = (__force __le64)sslbis->entry_base_unit; le_val = (__force __le16)entry->latency_or_bandwidth; if (check_mul_overflow(le64_to_cpu(le_base), le16_to_cpu(le_val), &val)) dev_warn(dev, "SSLBIS value overflowed!\n"); xa_for_each(&port->dports, index, dport) { if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT || dsp_id == dport->port_id) cxl_access_coordinate_set(&dport->sw_coord, sslbis->data_type, val); } entry++; } return 0; } void cxl_switch_parse_cdat(struct cxl_port *port) { int rc; if (!port->cdat.table) return; rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler, port, port->cdat.table); rc = cdat_table_parse_output(rc); if (rc) dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc); } EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL); /** * cxl_coordinates_combine - Combine the two input coordinates * * @out: Output coordinate of c1 and c2 combined * @c1: input coordinates * @c2: input coordinates */ void cxl_coordinates_combine(struct access_coordinate *out, struct access_coordinate *c1, struct access_coordinate *c2) { if (c1->write_bandwidth && c2->write_bandwidth) out->write_bandwidth = min(c1->write_bandwidth, c2->write_bandwidth); out->write_latency = c1->write_latency + c2->write_latency; if (c1->read_bandwidth && c2->read_bandwidth) out->read_bandwidth = min(c1->read_bandwidth, c2->read_bandwidth); out->read_latency = c1->read_latency + c2->read_latency; } MODULE_IMPORT_NS(CXL); void cxl_region_perf_data_calculate(struct cxl_region *cxlr, struct cxl_endpoint_decoder *cxled) { struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); struct cxl_port *port = cxlmd->endpoint; struct cxl_dev_state *cxlds = cxlmd->cxlds; struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds); struct access_coordinate hb_coord[ACCESS_COORDINATE_MAX]; struct access_coordinate coord; struct range dpa = { .start = cxled->dpa_res->start, .end = cxled->dpa_res->end, }; struct cxl_dpa_perf *perf; int rc; switch (cxlr->mode) { case CXL_DECODER_RAM: perf = &mds->ram_perf; break; case CXL_DECODER_PMEM: perf = &mds->pmem_perf; break; default: return; } lockdep_assert_held(&cxl_dpa_rwsem); if (!range_contains(&perf->dpa_range, &dpa)) return; rc = cxl_hb_get_perf_coordinates(port, hb_coord); if (rc) { dev_dbg(&port->dev, "Failed to retrieve hb perf coordinates.\n"); return; } for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { /* Pickup the host bridge coords */ cxl_coordinates_combine(&coord, &hb_coord[i], &perf->coord); /* Get total bandwidth and the worst latency for the cxl region */ cxlr->coord[i].read_latency = max_t(unsigned int, cxlr->coord[i].read_latency, coord.read_latency); cxlr->coord[i].write_latency = max_t(unsigned int, cxlr->coord[i].write_latency, coord.write_latency); cxlr->coord[i].read_bandwidth += coord.read_bandwidth; cxlr->coord[i].write_bandwidth += coord.write_bandwidth; /* * Convert latency to nanosec from picosec to be consistent * with the resulting latency coordinates computed by the * HMAT_REPORTING code. */ cxlr->coord[i].read_latency = DIV_ROUND_UP(cxlr->coord[i].read_latency, 1000); cxlr->coord[i].write_latency = DIV_ROUND_UP(cxlr->coord[i].write_latency, 1000); } } int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr, enum access_coordinate_class access) { return hmat_update_target_coordinates(nid, &cxlr->coord[access], access); } bool cxl_need_node_perf_attrs_update(int nid) { return !acpi_node_backed_by_real_pxm(nid); }