// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include "sec.h" #include "sec_crypto.h" #define SEC_PRIORITY 4001 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE) #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE) #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE) #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE) /* SEC sqe(bd) bit operational relative MACRO */ #define SEC_DE_OFFSET 1 #define SEC_CIPHER_OFFSET 4 #define SEC_SCENE_OFFSET 3 #define SEC_DST_SGL_OFFSET 2 #define SEC_SRC_SGL_OFFSET 7 #define SEC_CKEY_OFFSET 9 #define SEC_CMODE_OFFSET 12 #define SEC_FLAG_OFFSET 7 #define SEC_FLAG_MASK 0x0780 #define SEC_TYPE_MASK 0x0F #define SEC_DONE_MASK 0x0001 #define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH) #define SEC_SGL_SGE_NR 128 #define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev) static DEFINE_MUTEX(sec_algs_lock); static unsigned int sec_active_devs; /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */ static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req) { if (req->c_req.encrypt) return (u32)atomic_inc_return(&ctx->enc_qcyclic) % ctx->hlf_q_num; return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num + ctx->hlf_q_num; } static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req) { if (req->c_req.encrypt) atomic_dec(&ctx->enc_qcyclic); else atomic_dec(&ctx->dec_qcyclic); } static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx) { int req_id; mutex_lock(&qp_ctx->req_lock); req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, QM_Q_DEPTH, GFP_ATOMIC); mutex_unlock(&qp_ctx->req_lock); if (req_id < 0) { dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n"); return req_id; } req->qp_ctx = qp_ctx; qp_ctx->req_list[req_id] = req; return req_id; } static void sec_free_req_id(struct sec_req *req) { struct sec_qp_ctx *qp_ctx = req->qp_ctx; int req_id = req->req_id; if (req_id < 0 || req_id >= QM_Q_DEPTH) { dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n"); return; } qp_ctx->req_list[req_id] = NULL; req->qp_ctx = NULL; mutex_lock(&qp_ctx->req_lock); idr_remove(&qp_ctx->req_idr, req_id); mutex_unlock(&qp_ctx->req_lock); } static void sec_req_cb(struct hisi_qp *qp, void *resp) { struct sec_qp_ctx *qp_ctx = qp->qp_ctx; struct sec_sqe *bd = resp; u16 done, flag; u8 type; struct sec_req *req; type = bd->type_cipher_auth & SEC_TYPE_MASK; if (type == SEC_BD_TYPE2) { req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)]; req->err_type = bd->type2.error_type; done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK; flag = (le16_to_cpu(bd->type2.done_flag) & SEC_FLAG_MASK) >> SEC_FLAG_OFFSET; if (req->err_type || done != 0x1 || flag != 0x2) dev_err(SEC_CTX_DEV(req->ctx), "err_type[%d],done[%d],flag[%d]\n", req->err_type, done, flag); } else { pr_err("err bd type [%d]\n", type); return; } atomic64_inc(&req->ctx->sec->debug.dfx.recv_cnt); req->ctx->req_op->buf_unmap(req->ctx, req); req->ctx->req_op->callback(req->ctx, req); } static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req) { struct sec_qp_ctx *qp_ctx = req->qp_ctx; int ret; mutex_lock(&qp_ctx->req_lock); ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe); mutex_unlock(&qp_ctx->req_lock); atomic64_inc(&ctx->sec->debug.dfx.send_cnt); if (ret == -EBUSY) return -ENOBUFS; if (!ret) { if (req->fake_busy) ret = -EBUSY; else ret = -EINPROGRESS; } return ret; } /* Get DMA memory resources */ static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res) { int i; res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ, &res->c_ivin_dma, GFP_KERNEL); if (!res->c_ivin) return -ENOMEM; for (i = 1; i < QM_Q_DEPTH; i++) { res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE; res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE; } return 0; } static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res) { if (res->c_ivin) dma_free_coherent(dev, SEC_TOTAL_IV_SZ, res->c_ivin, res->c_ivin_dma); } static int sec_alg_resource_alloc(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct device *dev = SEC_CTX_DEV(ctx); return sec_alloc_civ_resource(dev, qp_ctx->res); } static void sec_alg_resource_free(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct device *dev = SEC_CTX_DEV(ctx); sec_free_civ_resource(dev, qp_ctx->res); } static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx, int qp_ctx_id, int alg_type) { struct device *dev = SEC_CTX_DEV(ctx); struct sec_qp_ctx *qp_ctx; struct hisi_qp *qp; int ret = -ENOMEM; qp = hisi_qm_create_qp(qm, alg_type); if (IS_ERR(qp)) return PTR_ERR(qp); qp_ctx = &ctx->qp_ctx[qp_ctx_id]; qp->req_type = 0; qp->qp_ctx = qp_ctx; qp->req_cb = sec_req_cb; qp_ctx->qp = qp; qp_ctx->ctx = ctx; mutex_init(&qp_ctx->req_lock); atomic_set(&qp_ctx->pending_reqs, 0); idr_init(&qp_ctx->req_idr); qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH, SEC_SGL_SGE_NR); if (IS_ERR(qp_ctx->c_in_pool)) { dev_err(dev, "fail to create sgl pool for input!\n"); goto err_destroy_idr; } qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH, SEC_SGL_SGE_NR); if (IS_ERR(qp_ctx->c_out_pool)) { dev_err(dev, "fail to create sgl pool for output!\n"); goto err_free_c_in_pool; } ret = sec_alg_resource_alloc(ctx, qp_ctx); if (ret) goto err_free_c_out_pool; ret = hisi_qm_start_qp(qp, 0); if (ret < 0) goto err_queue_free; return 0; err_queue_free: sec_alg_resource_free(ctx, qp_ctx); err_free_c_out_pool: hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); err_free_c_in_pool: hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); err_destroy_idr: idr_destroy(&qp_ctx->req_idr); hisi_qm_release_qp(qp); return ret; } static void sec_release_qp_ctx(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx) { struct device *dev = SEC_CTX_DEV(ctx); hisi_qm_stop_qp(qp_ctx->qp); sec_alg_resource_free(ctx, qp_ctx); hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool); hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool); idr_destroy(&qp_ctx->req_idr); hisi_qm_release_qp(qp_ctx->qp); } static int sec_skcipher_init(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx; struct sec_dev *sec; struct device *dev; struct hisi_qm *qm; int i, ret; crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req)); sec = sec_find_device(cpu_to_node(smp_processor_id())); if (!sec) { pr_err("Can not find proper Hisilicon SEC device!\n"); return -ENODEV; } ctx->sec = sec; qm = &sec->qm; dev = &qm->pdev->dev; ctx->hlf_q_num = sec->ctx_q_num >> 1; /* Half of queue depth is taken as fake requests limit in the queue. */ ctx->fake_req_limit = QM_Q_DEPTH >> 1; ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx), GFP_KERNEL); if (!ctx->qp_ctx) return -ENOMEM; for (i = 0; i < sec->ctx_q_num; i++) { ret = sec_create_qp_ctx(qm, ctx, i, 0); if (ret) goto err_sec_release_qp_ctx; } c_ctx = &ctx->c_ctx; c_ctx->ivsize = crypto_skcipher_ivsize(tfm); if (c_ctx->ivsize > SEC_IV_SIZE) { dev_err(dev, "get error iv size!\n"); ret = -EINVAL; goto err_sec_release_qp_ctx; } c_ctx->c_key = dma_alloc_coherent(dev, SEC_MAX_KEY_SIZE, &c_ctx->c_key_dma, GFP_KERNEL); if (!c_ctx->c_key) { ret = -ENOMEM; goto err_sec_release_qp_ctx; } return 0; err_sec_release_qp_ctx: for (i = i - 1; i >= 0; i--) sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); kfree(ctx->qp_ctx); return ret; } static void sec_skcipher_uninit(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; int i = 0; if (c_ctx->c_key) { dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE, c_ctx->c_key, c_ctx->c_key_dma); c_ctx->c_key = NULL; } for (i = 0; i < ctx->sec->ctx_q_num; i++) sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]); kfree(ctx->qp_ctx); } static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx, const u32 keylen, const enum sec_cmode c_mode) { switch (keylen) { case SEC_DES3_2KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_3DES_2KEY; break; case SEC_DES3_3KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_3DES_3KEY; break; default: return -EINVAL; } return 0; } static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx, const u32 keylen, const enum sec_cmode c_mode) { if (c_mode == SEC_CMODE_XTS) { switch (keylen) { case SEC_XTS_MIN_KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_128BIT; break; case SEC_XTS_MAX_KEY_SIZE: c_ctx->c_key_len = SEC_CKEY_256BIT; break; default: pr_err("hisi_sec2: xts mode key error!\n"); return -EINVAL; } } else { switch (keylen) { case AES_KEYSIZE_128: c_ctx->c_key_len = SEC_CKEY_128BIT; break; case AES_KEYSIZE_192: c_ctx->c_key_len = SEC_CKEY_192BIT; break; case AES_KEYSIZE_256: c_ctx->c_key_len = SEC_CKEY_256BIT; break; default: pr_err("hisi_sec2: aes key error!\n"); return -EINVAL; } } return 0; } static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, const u32 keylen, const enum sec_calg c_alg, const enum sec_cmode c_mode) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; int ret; if (c_mode == SEC_CMODE_XTS) { ret = xts_verify_key(tfm, key, keylen); if (ret) { dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n"); return ret; } } c_ctx->c_alg = c_alg; c_ctx->c_mode = c_mode; switch (c_alg) { case SEC_CALG_3DES: ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode); break; case SEC_CALG_AES: case SEC_CALG_SM4: ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode); break; default: return -EINVAL; } if (ret) { dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n"); return ret; } memcpy(c_ctx->c_key, key, keylen); return 0; } #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \ static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\ u32 keylen) \ { \ return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \ } GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB) GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC) GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS) GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB) GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC) GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS) GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC) static int sec_cipher_map(struct device *dev, struct sec_req *req, struct scatterlist *src, struct scatterlist *dst) { struct sec_cipher_req *c_req = &req->c_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src, qp_ctx->c_in_pool, req->req_id, &c_req->c_in_dma); if (IS_ERR(c_req->c_in)) { dev_err(dev, "fail to dma map input sgl buffers!\n"); return PTR_ERR(c_req->c_in); } if (dst == src) { c_req->c_out = c_req->c_in; c_req->c_out_dma = c_req->c_in_dma; } else { c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst, qp_ctx->c_out_pool, req->req_id, &c_req->c_out_dma); if (IS_ERR(c_req->c_out)) { dev_err(dev, "fail to dma map output sgl buffers!\n"); hisi_acc_sg_buf_unmap(dev, src, c_req->c_in); return PTR_ERR(c_req->c_out); } } return 0; } static void sec_cipher_unmap(struct device *dev, struct sec_cipher_req *req, struct scatterlist *src, struct scatterlist *dst) { if (dst != src) hisi_acc_sg_buf_unmap(dev, src, req->c_in); hisi_acc_sg_buf_unmap(dev, dst, req->c_out); } static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sq = req->c_req.sk_req; return sec_cipher_map(SEC_CTX_DEV(ctx), req, sq->src, sq->dst); } static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req) { struct device *dev = SEC_CTX_DEV(ctx); struct sec_cipher_req *c_req = &req->c_req; struct skcipher_request *sk_req = c_req->sk_req; sec_cipher_unmap(dev, c_req, sk_req->src, sk_req->dst); } static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req) { int ret; ret = ctx->req_op->buf_map(ctx, req); if (ret) return ret; ctx->req_op->do_transfer(ctx, req); ret = ctx->req_op->bd_fill(ctx, req); if (ret) goto unmap_req_buf; return ret; unmap_req_buf: ctx->req_op->buf_unmap(ctx, req); return ret; } static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req) { ctx->req_op->buf_unmap(ctx, req); } static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sk_req = req->c_req.sk_req; u8 *c_ivin = req->qp_ctx->res[req->req_id].c_ivin; struct sec_cipher_req *c_req = &req->c_req; c_req->c_len = sk_req->cryptlen; memcpy(c_ivin, sk_req->iv, ctx->c_ctx.ivsize); } static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req) { struct sec_cipher_ctx *c_ctx = &ctx->c_ctx; struct sec_cipher_req *c_req = &req->c_req; struct sec_sqe *sec_sqe = &req->sec_sqe; u8 scene, sa_type, da_type; u8 bd_type, cipher; u8 de = 0; memset(sec_sqe, 0, sizeof(struct sec_sqe)); sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma); sec_sqe->type2.c_ivin_addr = cpu_to_le64(req->qp_ctx->res[req->req_id].c_ivin_dma); sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma); sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma); sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) << SEC_CMODE_OFFSET); sec_sqe->type2.c_alg = c_ctx->c_alg; sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) << SEC_CKEY_OFFSET); bd_type = SEC_BD_TYPE2; if (c_req->encrypt) cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET; else cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET; sec_sqe->type_cipher_auth = bd_type | cipher; sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET; scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET; if (c_req->c_in_dma != c_req->c_out_dma) de = 0x1 << SEC_DE_OFFSET; sec_sqe->sds_sa_type = (de | scene | sa_type); /* Just set DST address type */ da_type = SEC_SGL << SEC_DST_SGL_OFFSET; sec_sqe->sdm_addr_type |= da_type; sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len); sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id); return 0; } static void sec_update_iv(struct sec_req *req) { struct skcipher_request *sk_req = req->c_req.sk_req; u32 iv_size = req->ctx->c_ctx.ivsize; struct scatterlist *sgl; size_t sz; if (req->c_req.encrypt) sgl = sk_req->dst; else sgl = sk_req->src; sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), sk_req->iv, iv_size, sk_req->cryptlen - iv_size); if (sz != iv_size) dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n"); } static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req) { struct skcipher_request *sk_req = req->c_req.sk_req; struct sec_qp_ctx *qp_ctx = req->qp_ctx; atomic_dec(&qp_ctx->pending_reqs); sec_free_req_id(req); /* IV output at encrypto of CBC mode */ if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt) sec_update_iv(req); if (req->fake_busy) sk_req->base.complete(&sk_req->base, -EINPROGRESS); sk_req->base.complete(&sk_req->base, req->err_type); } static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req) { struct sec_qp_ctx *qp_ctx = req->qp_ctx; atomic_dec(&qp_ctx->pending_reqs); sec_free_req_id(req); sec_free_queue_id(ctx, req); } static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req) { struct sec_qp_ctx *qp_ctx; int queue_id; /* To load balance */ queue_id = sec_alloc_queue_id(ctx, req); qp_ctx = &ctx->qp_ctx[queue_id]; req->req_id = sec_alloc_req_id(req, qp_ctx); if (req->req_id < 0) { sec_free_queue_id(ctx, req); return req->req_id; } if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs)) req->fake_busy = true; else req->fake_busy = false; return 0; } static int sec_process(struct sec_ctx *ctx, struct sec_req *req) { int ret; ret = sec_request_init(ctx, req); if (ret) return ret; ret = sec_request_transfer(ctx, req); if (ret) goto err_uninit_req; /* Output IV as decrypto */ if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) sec_update_iv(req); ret = ctx->req_op->bd_send(ctx, req); if (ret != -EBUSY && ret != -EINPROGRESS) { dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n"); goto err_send_req; } return ret; err_send_req: /* As failing, restore the IV from user */ if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) memcpy(req->c_req.sk_req->iv, req->qp_ctx->res[req->req_id].c_ivin, ctx->c_ctx.ivsize); sec_request_untransfer(ctx, req); err_uninit_req: sec_request_uninit(ctx, req); return ret; } static const struct sec_req_op sec_skcipher_req_ops = { .buf_map = sec_skcipher_sgl_map, .buf_unmap = sec_skcipher_sgl_unmap, .do_transfer = sec_skcipher_copy_iv, .bd_fill = sec_skcipher_bd_fill, .bd_send = sec_bd_send, .callback = sec_skcipher_callback, .process = sec_process, }; static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm) { struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); ctx->req_op = &sec_skcipher_req_ops; return sec_skcipher_init(tfm); } static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm) { sec_skcipher_uninit(tfm); } static int sec_skcipher_param_check(struct sec_ctx *ctx, struct skcipher_request *sk_req) { u8 c_alg = ctx->c_ctx.c_alg; struct device *dev = SEC_CTX_DEV(ctx); if (!sk_req->src || !sk_req->dst) { dev_err(dev, "skcipher input param error!\n"); return -EINVAL; } if (c_alg == SEC_CALG_3DES) { if (sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1)) { dev_err(dev, "skcipher 3des input length error!\n"); return -EINVAL; } return 0; } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) { if (sk_req->cryptlen & (AES_BLOCK_SIZE - 1)) { dev_err(dev, "skcipher aes input length error!\n"); return -EINVAL; } return 0; } dev_err(dev, "skcipher algorithm error!\n"); return -EINVAL; } static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req); struct sec_req *req = skcipher_request_ctx(sk_req); struct sec_ctx *ctx = crypto_skcipher_ctx(tfm); int ret; if (!sk_req->cryptlen) return 0; ret = sec_skcipher_param_check(ctx, sk_req); if (ret) return ret; req->c_req.sk_req = sk_req; req->c_req.encrypt = encrypt; req->ctx = ctx; return ctx->req_op->process(ctx, req); } static int sec_skcipher_encrypt(struct skcipher_request *sk_req) { return sec_skcipher_crypto(sk_req, true); } static int sec_skcipher_decrypt(struct skcipher_request *sk_req) { return sec_skcipher_crypto(sk_req, false); } #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \ sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\ {\ .base = {\ .cra_name = sec_cra_name,\ .cra_driver_name = "hisi_sec_"sec_cra_name,\ .cra_priority = SEC_PRIORITY,\ .cra_flags = CRYPTO_ALG_ASYNC,\ .cra_blocksize = blk_size,\ .cra_ctxsize = sizeof(struct sec_ctx),\ .cra_module = THIS_MODULE,\ },\ .init = ctx_init,\ .exit = ctx_exit,\ .setkey = sec_set_key,\ .decrypt = sec_skcipher_decrypt,\ .encrypt = sec_skcipher_encrypt,\ .min_keysize = sec_min_key_size,\ .max_keysize = sec_max_key_size,\ .ivsize = iv_size,\ }, #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \ max_key_size, blk_size, iv_size) \ SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \ sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size) static struct skcipher_alg sec_skciphers[] = { SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0) SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE) SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE) SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0) SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE) SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE) SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE) }; int sec_register_to_crypto(void) { int ret = 0; /* To avoid repeat register */ mutex_lock(&sec_algs_lock); if (++sec_active_devs == 1) ret = crypto_register_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers)); mutex_unlock(&sec_algs_lock); return ret; } void sec_unregister_from_crypto(void) { mutex_lock(&sec_algs_lock); if (--sec_active_devs == 0) crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers)); mutex_unlock(&sec_algs_lock); }