// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016 Cavium, Inc. */ #include #include #include #include #include #include #include #include #include "cptpf.h" #define DRV_NAME "thunder-cpt" #define DRV_VERSION "1.0" static u32 num_vfs = 4; /* Default 4 VF enabled */ module_param(num_vfs, uint, 0444); MODULE_PARM_DESC(num_vfs, "Number of VFs to enable(1-16)"); /* * Disable cores specified by coremask */ static void cpt_disable_cores(struct cpt_device *cpt, u64 coremask, u8 type, u8 grp) { u64 pf_exe_ctl; u32 timeout = 100; u64 grpmask = 0; struct device *dev = &cpt->pdev->dev; if (type == AE_TYPES) coremask = (coremask << cpt->max_se_cores); /* Disengage the cores from groups */ grpmask = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp)); cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), (grpmask & ~coremask)); udelay(CSR_DELAY); grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0)); while (grp & coremask) { dev_err(dev, "Cores still busy %llx", coremask); grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0)); if (timeout--) break; udelay(CSR_DELAY); } /* Disable the cores */ pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0)); cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), (pf_exe_ctl & ~coremask)); udelay(CSR_DELAY); } /* * Enable cores specified by coremask */ static void cpt_enable_cores(struct cpt_device *cpt, u64 coremask, u8 type) { u64 pf_exe_ctl; if (type == AE_TYPES) coremask = (coremask << cpt->max_se_cores); pf_exe_ctl = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0)); cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), (pf_exe_ctl | coremask)); udelay(CSR_DELAY); } static void cpt_configure_group(struct cpt_device *cpt, u8 grp, u64 coremask, u8 type) { u64 pf_gx_en = 0; if (type == AE_TYPES) coremask = (coremask << cpt->max_se_cores); pf_gx_en = cpt_read_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp)); cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), (pf_gx_en | coremask)); udelay(CSR_DELAY); } static void cpt_disable_mbox_interrupts(struct cpt_device *cpt) { /* Clear mbox(0) interupts for all vfs */ cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1CX(0, 0), ~0ull); } static void cpt_disable_ecc_interrupts(struct cpt_device *cpt) { /* Clear ecc(0) interupts for all vfs */ cpt_write_csr64(cpt->reg_base, CPTX_PF_ECC0_ENA_W1C(0), ~0ull); } static void cpt_disable_exec_interrupts(struct cpt_device *cpt) { /* Clear exec interupts for all vfs */ cpt_write_csr64(cpt->reg_base, CPTX_PF_EXEC_ENA_W1C(0), ~0ull); } static void cpt_disable_all_interrupts(struct cpt_device *cpt) { cpt_disable_mbox_interrupts(cpt); cpt_disable_ecc_interrupts(cpt); cpt_disable_exec_interrupts(cpt); } static void cpt_enable_mbox_interrupts(struct cpt_device *cpt) { /* Set mbox(0) interupts for all vfs */ cpt_write_csr64(cpt->reg_base, CPTX_PF_MBOX_ENA_W1SX(0, 0), ~0ull); } static int cpt_load_microcode(struct cpt_device *cpt, struct microcode *mcode) { int ret = 0, core = 0, shift = 0; u32 total_cores = 0; struct device *dev = &cpt->pdev->dev; if (!mcode || !mcode->code) { dev_err(dev, "Either the mcode is null or data is NULL\n"); return -EINVAL; } if (mcode->code_size == 0) { dev_err(dev, "microcode size is 0\n"); return -EINVAL; } /* Assumes 0-9 are SE cores for UCODE_BASE registers and * AE core bases follow */ if (mcode->is_ae) { core = CPT_MAX_SE_CORES; /* start couting from 10 */ total_cores = CPT_MAX_TOTAL_CORES; /* upto 15 */ } else { core = 0; /* start couting from 0 */ total_cores = CPT_MAX_SE_CORES; /* upto 9 */ } /* Point to microcode for each core of the group */ for (; core < total_cores ; core++, shift++) { if (mcode->core_mask & (1 << shift)) { cpt_write_csr64(cpt->reg_base, CPTX_PF_ENGX_UCODE_BASE(0, core), (u64)mcode->phys_base); } } return ret; } static int do_cpt_init(struct cpt_device *cpt, struct microcode *mcode) { int ret = 0; struct device *dev = &cpt->pdev->dev; /* Make device not ready */ cpt->flags &= ~CPT_FLAG_DEVICE_READY; /* Disable All PF interrupts */ cpt_disable_all_interrupts(cpt); /* Calculate mcode group and coremasks */ if (mcode->is_ae) { if (mcode->num_cores > cpt->max_ae_cores) { dev_err(dev, "Requested for more cores than available AE cores\n"); ret = -EINVAL; goto cpt_init_fail; } if (cpt->next_group >= CPT_MAX_CORE_GROUPS) { dev_err(dev, "Can't load, all eight microcode groups in use"); return -ENFILE; } mcode->group = cpt->next_group; /* Convert requested cores to mask */ mcode->core_mask = GENMASK(mcode->num_cores, 0); cpt_disable_cores(cpt, mcode->core_mask, AE_TYPES, mcode->group); /* Load microcode for AE engines */ ret = cpt_load_microcode(cpt, mcode); if (ret) { dev_err(dev, "Microcode load Failed for %s\n", mcode->version); goto cpt_init_fail; } cpt->next_group++; /* Configure group mask for the mcode */ cpt_configure_group(cpt, mcode->group, mcode->core_mask, AE_TYPES); /* Enable AE cores for the group mask */ cpt_enable_cores(cpt, mcode->core_mask, AE_TYPES); } else { if (mcode->num_cores > cpt->max_se_cores) { dev_err(dev, "Requested for more cores than available SE cores\n"); ret = -EINVAL; goto cpt_init_fail; } if (cpt->next_group >= CPT_MAX_CORE_GROUPS) { dev_err(dev, "Can't load, all eight microcode groups in use"); return -ENFILE; } mcode->group = cpt->next_group; /* Covert requested cores to mask */ mcode->core_mask = GENMASK(mcode->num_cores, 0); cpt_disable_cores(cpt, mcode->core_mask, SE_TYPES, mcode->group); /* Load microcode for SE engines */ ret = cpt_load_microcode(cpt, mcode); if (ret) { dev_err(dev, "Microcode load Failed for %s\n", mcode->version); goto cpt_init_fail; } cpt->next_group++; /* Configure group mask for the mcode */ cpt_configure_group(cpt, mcode->group, mcode->core_mask, SE_TYPES); /* Enable SE cores for the group mask */ cpt_enable_cores(cpt, mcode->core_mask, SE_TYPES); } /* Enabled PF mailbox interrupts */ cpt_enable_mbox_interrupts(cpt); cpt->flags |= CPT_FLAG_DEVICE_READY; return ret; cpt_init_fail: /* Enabled PF mailbox interrupts */ cpt_enable_mbox_interrupts(cpt); return ret; } struct ucode_header { u8 version[CPT_UCODE_VERSION_SZ]; u32 code_length; u32 data_length; u64 sram_address; }; static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae) { const struct firmware *fw_entry; struct device *dev = &cpt->pdev->dev; struct ucode_header *ucode; struct microcode *mcode; int j, ret = 0; ret = request_firmware(&fw_entry, fw, dev); if (ret) return ret; ucode = (struct ucode_header *)fw_entry->data; mcode = &cpt->mcode[cpt->next_mc_idx]; memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ); mcode->code_size = ntohl(ucode->code_length) * 2; if (!mcode->code_size) { ret = -EINVAL; goto fw_release; } mcode->is_ae = is_ae; mcode->core_mask = 0ULL; mcode->num_cores = is_ae ? 6 : 10; /* Allocate DMAable space */ mcode->code = dma_alloc_coherent(&cpt->pdev->dev, mcode->code_size, &mcode->phys_base, GFP_KERNEL); if (!mcode->code) { dev_err(dev, "Unable to allocate space for microcode"); ret = -ENOMEM; goto fw_release; } memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)), mcode->code_size); /* Byte swap 64-bit */ for (j = 0; j < (mcode->code_size / 8); j++) ((u64 *)mcode->code)[j] = cpu_to_be64(((u64 *)mcode->code)[j]); /* MC needs 16-bit swap */ for (j = 0; j < (mcode->code_size / 2); j++) ((u16 *)mcode->code)[j] = cpu_to_be16(((u16 *)mcode->code)[j]); dev_dbg(dev, "mcode->code_size = %u\n", mcode->code_size); dev_dbg(dev, "mcode->is_ae = %u\n", mcode->is_ae); dev_dbg(dev, "mcode->num_cores = %u\n", mcode->num_cores); dev_dbg(dev, "mcode->code = %llx\n", (u64)mcode->code); dev_dbg(dev, "mcode->phys_base = %llx\n", mcode->phys_base); ret = do_cpt_init(cpt, mcode); if (ret) { dev_err(dev, "do_cpt_init failed with ret: %d\n", ret); goto fw_release; } dev_info(dev, "Microcode Loaded %s\n", mcode->version); mcode->is_mc_valid = 1; cpt->next_mc_idx++; fw_release: release_firmware(fw_entry); return ret; } static int cpt_ucode_load(struct cpt_device *cpt) { int ret = 0; struct device *dev = &cpt->pdev->dev; ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-ae.out", true); if (ret) { dev_err(dev, "ae:cpt_ucode_load failed with ret: %d\n", ret); return ret; } ret = cpt_ucode_load_fw(cpt, "cpt8x-mc-se.out", false); if (ret) { dev_err(dev, "se:cpt_ucode_load failed with ret: %d\n", ret); return ret; } return ret; } static irqreturn_t cpt_mbx0_intr_handler(int irq, void *cpt_irq) { struct cpt_device *cpt = (struct cpt_device *)cpt_irq; cpt_mbox_intr_handler(cpt, 0); return IRQ_HANDLED; } static void cpt_reset(struct cpt_device *cpt) { cpt_write_csr64(cpt->reg_base, CPTX_PF_RESET(0), 1); } static void cpt_find_max_enabled_cores(struct cpt_device *cpt) { union cptx_pf_constants pf_cnsts = {0}; pf_cnsts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_CONSTANTS(0)); cpt->max_se_cores = pf_cnsts.s.se; cpt->max_ae_cores = pf_cnsts.s.ae; } static u32 cpt_check_bist_status(struct cpt_device *cpt) { union cptx_pf_bist_status bist_sts = {0}; bist_sts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_BIST_STATUS(0)); return bist_sts.u; } static u64 cpt_check_exe_bist_status(struct cpt_device *cpt) { union cptx_pf_exe_bist_status bist_sts = {0}; bist_sts.u = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXE_BIST_STATUS(0)); return bist_sts.u; } static void cpt_disable_all_cores(struct cpt_device *cpt) { u32 grp, timeout = 100; struct device *dev = &cpt->pdev->dev; /* Disengage the cores from groups */ for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) { cpt_write_csr64(cpt->reg_base, CPTX_PF_GX_EN(0, grp), 0); udelay(CSR_DELAY); } grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0)); while (grp) { dev_err(dev, "Cores still busy"); grp = cpt_read_csr64(cpt->reg_base, CPTX_PF_EXEC_BUSY(0)); if (timeout--) break; udelay(CSR_DELAY); } /* Disable the cores */ cpt_write_csr64(cpt->reg_base, CPTX_PF_EXE_CTL(0), 0); } /** * Ensure all cores are disengaged from all groups by * calling cpt_disable_all_cores() before calling this * function. */ static void cpt_unload_microcode(struct cpt_device *cpt) { u32 grp = 0, core; /* Free microcode bases and reset group masks */ for (grp = 0; grp < CPT_MAX_CORE_GROUPS; grp++) { struct microcode *mcode = &cpt->mcode[grp]; if (cpt->mcode[grp].code) dma_free_coherent(&cpt->pdev->dev, mcode->code_size, mcode->code, mcode->phys_base); mcode->code = NULL; } /* Clear UCODE_BASE registers for all engines */ for (core = 0; core < CPT_MAX_TOTAL_CORES; core++) cpt_write_csr64(cpt->reg_base, CPTX_PF_ENGX_UCODE_BASE(0, core), 0ull); } static int cpt_device_init(struct cpt_device *cpt) { u64 bist; struct device *dev = &cpt->pdev->dev; /* Reset the PF when probed first */ cpt_reset(cpt); msleep(100); /*Check BIST status*/ bist = (u64)cpt_check_bist_status(cpt); if (bist) { dev_err(dev, "RAM BIST failed with code 0x%llx", bist); return -ENODEV; } bist = cpt_check_exe_bist_status(cpt); if (bist) { dev_err(dev, "Engine BIST failed with code 0x%llx", bist); return -ENODEV; } /*Get CLK frequency*/ /*Get max enabled cores */ cpt_find_max_enabled_cores(cpt); /*Disable all cores*/ cpt_disable_all_cores(cpt); /*Reset device parameters*/ cpt->next_mc_idx = 0; cpt->next_group = 0; /* PF is ready */ cpt->flags |= CPT_FLAG_DEVICE_READY; return 0; } static int cpt_register_interrupts(struct cpt_device *cpt) { int ret; struct device *dev = &cpt->pdev->dev; /* Enable MSI-X */ ret = pci_alloc_irq_vectors(cpt->pdev, CPT_PF_MSIX_VECTORS, CPT_PF_MSIX_VECTORS, PCI_IRQ_MSIX); if (ret < 0) { dev_err(&cpt->pdev->dev, "Request for #%d msix vectors failed\n", CPT_PF_MSIX_VECTORS); return ret; } /* Register mailbox interrupt handlers */ ret = request_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)), cpt_mbx0_intr_handler, 0, "CPT Mbox0", cpt); if (ret) goto fail; /* Enable mailbox interrupt */ cpt_enable_mbox_interrupts(cpt); return 0; fail: dev_err(dev, "Request irq failed\n"); pci_disable_msix(cpt->pdev); return ret; } static void cpt_unregister_interrupts(struct cpt_device *cpt) { free_irq(pci_irq_vector(cpt->pdev, CPT_PF_INT_VEC_E_MBOXX(0)), cpt); pci_disable_msix(cpt->pdev); } static int cpt_sriov_init(struct cpt_device *cpt, int num_vfs) { int pos = 0; int err; u16 total_vf_cnt; struct pci_dev *pdev = cpt->pdev; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (!pos) { dev_err(&pdev->dev, "SRIOV capability is not found in PCIe config space\n"); return -ENODEV; } cpt->num_vf_en = num_vfs; /* User requested VFs */ pci_read_config_word(pdev, (pos + PCI_SRIOV_TOTAL_VF), &total_vf_cnt); if (total_vf_cnt < cpt->num_vf_en) cpt->num_vf_en = total_vf_cnt; if (!total_vf_cnt) return 0; /*Enabled the available VFs */ err = pci_enable_sriov(pdev, cpt->num_vf_en); if (err) { dev_err(&pdev->dev, "SRIOV enable failed, num VF is %d\n", cpt->num_vf_en); cpt->num_vf_en = 0; return err; } /* TODO: Optionally enable static VQ priorities feature */ dev_info(&pdev->dev, "SRIOV enabled, number of VF available %d\n", cpt->num_vf_en); cpt->flags |= CPT_FLAG_SRIOV_ENABLED; return 0; } static int cpt_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct cpt_device *cpt; int err; if (num_vfs > 16 || num_vfs < 4) { dev_warn(dev, "Invalid vf count %d, Resetting it to 4(default)\n", num_vfs); num_vfs = 4; } cpt = devm_kzalloc(dev, sizeof(*cpt), GFP_KERNEL); if (!cpt) return -ENOMEM; pci_set_drvdata(pdev, cpt); cpt->pdev = pdev; err = pci_enable_device(pdev); if (err) { dev_err(dev, "Failed to enable PCI device\n"); pci_set_drvdata(pdev, NULL); return err; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto cpt_err_disable_device; } err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48)); if (err) { dev_err(dev, "Unable to get usable 48-bit DMA configuration\n"); goto cpt_err_release_regions; } /* MAP PF's configuration registers */ cpt->reg_base = pcim_iomap(pdev, 0, 0); if (!cpt->reg_base) { dev_err(dev, "Cannot map config register space, aborting\n"); err = -ENOMEM; goto cpt_err_release_regions; } /* CPT device HW initialization */ cpt_device_init(cpt); /* Register interrupts */ err = cpt_register_interrupts(cpt); if (err) goto cpt_err_release_regions; err = cpt_ucode_load(cpt); if (err) goto cpt_err_unregister_interrupts; /* Configure SRIOV */ err = cpt_sriov_init(cpt, num_vfs); if (err) goto cpt_err_unregister_interrupts; return 0; cpt_err_unregister_interrupts: cpt_unregister_interrupts(cpt); cpt_err_release_regions: pci_release_regions(pdev); cpt_err_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void cpt_remove(struct pci_dev *pdev) { struct cpt_device *cpt = pci_get_drvdata(pdev); /* Disengage SE and AE cores from all groups*/ cpt_disable_all_cores(cpt); /* Unload microcodes */ cpt_unload_microcode(cpt); cpt_unregister_interrupts(cpt); pci_disable_sriov(pdev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static void cpt_shutdown(struct pci_dev *pdev) { struct cpt_device *cpt = pci_get_drvdata(pdev); if (!cpt) return; dev_info(&pdev->dev, "Shutdown device %x:%x.\n", (u32)pdev->vendor, (u32)pdev->device); cpt_unregister_interrupts(cpt); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } /* Supported devices */ static const struct pci_device_id cpt_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, CPT_81XX_PCI_PF_DEVICE_ID) }, { 0, } /* end of table */ }; static struct pci_driver cpt_pci_driver = { .name = DRV_NAME, .id_table = cpt_id_table, .probe = cpt_probe, .remove = cpt_remove, .shutdown = cpt_shutdown, }; module_pci_driver(cpt_pci_driver); MODULE_AUTHOR("George Cherian "); MODULE_DESCRIPTION("Cavium Thunder CPT Physical Function Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, cpt_id_table);