// SPDX-License-Identifier: GPL-2.0+ /* * caam - Freescale FSL CAAM support for ahash functions of crypto API * * Copyright 2011 Freescale Semiconductor, Inc. * Copyright 2018-2019, 2023 NXP * * Based on caamalg.c crypto API driver. * * relationship of digest job descriptor or first job descriptor after init to * shared descriptors: * * --------------- --------------- * | JobDesc #1 |-------------------->| ShareDesc | * | *(packet 1) | | (hashKey) | * --------------- | (operation) | * --------------- * * relationship of subsequent job descriptors to shared descriptors: * * --------------- --------------- * | JobDesc #2 |-------------------->| ShareDesc | * | *(packet 2) | |------------->| (hashKey) | * --------------- | |-------->| (operation) | * . | | | (load ctx2) | * . | | --------------- * --------------- | | * | JobDesc #3 |------| | * | *(packet 3) | | * --------------- | * . | * . | * --------------- | * | JobDesc #4 |------------ * | *(packet 4) | * --------------- * * The SharedDesc never changes for a connection unless rekeyed, but * each packet will likely be in a different place. So all we need * to know to process the packet is where the input is, where the * output goes, and what context we want to process with. Context is * in the SharedDesc, packet references in the JobDesc. * * So, a job desc looks like: * * --------------------- * | Header | * | ShareDesc Pointer | * | SEQ_OUT_PTR | * | (output buffer) | * | (output length) | * | SEQ_IN_PTR | * | (input buffer) | * | (input length) | * --------------------- */ #include "compat.h" #include "regs.h" #include "intern.h" #include "desc_constr.h" #include "jr.h" #include "error.h" #include "sg_sw_sec4.h" #include "key_gen.h" #include "caamhash_desc.h" #include #include #include #include #include #include #include #define CAAM_CRA_PRIORITY 3000 /* max hash key is max split key size */ #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2) #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \ CAAM_MAX_HASH_KEY_SIZE) #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ) /* caam context sizes for hashes: running digest + 8 */ #define HASH_MSG_LEN 8 #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE) static struct list_head hash_list; /* ahash per-session context */ struct caam_hash_ctx { u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned; u8 key[CAAM_MAX_HASH_KEY_SIZE] ____cacheline_aligned; dma_addr_t sh_desc_update_dma ____cacheline_aligned; dma_addr_t sh_desc_update_first_dma; dma_addr_t sh_desc_fin_dma; dma_addr_t sh_desc_digest_dma; enum dma_data_direction dir; enum dma_data_direction key_dir; struct device *jrdev; int ctx_len; struct alginfo adata; }; /* ahash state */ struct caam_hash_state { dma_addr_t buf_dma; dma_addr_t ctx_dma; int ctx_dma_len; u8 buf[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned; int buflen; int next_buflen; u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned; int (*update)(struct ahash_request *req) ____cacheline_aligned; int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); struct ahash_edesc *edesc; void (*ahash_op_done)(struct device *jrdev, u32 *desc, u32 err, void *context); }; struct caam_export_state { u8 buf[CAAM_MAX_HASH_BLOCK_SIZE]; u8 caam_ctx[MAX_CTX_LEN]; int buflen; int (*update)(struct ahash_request *req); int (*final)(struct ahash_request *req); int (*finup)(struct ahash_request *req); }; static inline bool is_cmac_aes(u32 algtype) { return (algtype & (OP_ALG_ALGSEL_MASK | OP_ALG_AAI_MASK)) == (OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC); } /* Common job descriptor seq in/out ptr routines */ /* Map state->caam_ctx, and append seq_out_ptr command that points to it */ static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev, struct caam_hash_state *state, int ctx_len) { state->ctx_dma_len = ctx_len; state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, DMA_FROM_DEVICE); if (dma_mapping_error(jrdev, state->ctx_dma)) { dev_err(jrdev, "unable to map ctx\n"); state->ctx_dma = 0; return -ENOMEM; } append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0); return 0; } /* Map current buffer in state (if length > 0) and put it in link table */ static inline int buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg, struct caam_hash_state *state) { int buflen = state->buflen; if (!buflen) return 0; state->buf_dma = dma_map_single(jrdev, state->buf, buflen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, state->buf_dma)) { dev_err(jrdev, "unable to map buf\n"); state->buf_dma = 0; return -ENOMEM; } dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0); return 0; } /* Map state->caam_ctx, and add it to link table */ static inline int ctx_map_to_sec4_sg(struct device *jrdev, struct caam_hash_state *state, int ctx_len, struct sec4_sg_entry *sec4_sg, u32 flag) { state->ctx_dma_len = ctx_len; state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag); if (dma_mapping_error(jrdev, state->ctx_dma)) { dev_err(jrdev, "unable to map ctx\n"); state->ctx_dma = 0; return -ENOMEM; } dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0); return 0; } static int ahash_set_sh_desc(struct crypto_ahash *ahash) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); int digestsize = crypto_ahash_digestsize(ahash); struct device *jrdev = ctx->jrdev; struct caam_drv_private *ctrlpriv = dev_get_drvdata(jrdev->parent); u32 *desc; ctx->adata.key_virt = ctx->key; /* ahash_update shared descriptor */ desc = ctx->sh_desc_update; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx->ctx_len, true, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("ahash update shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_update_first shared descriptor */ desc = ctx->sh_desc_update_first; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, ctx->ctx_len, false, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("ahash update first shdesc@"__stringify(__LINE__) ": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_final shared descriptor */ desc = ctx->sh_desc_fin; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, ctx->ctx_len, true, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("ahash final shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* ahash_digest shared descriptor */ desc = ctx->sh_desc_digest; cnstr_shdsc_ahash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, ctx->ctx_len, false, ctrlpriv->era); dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("ahash digest shdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return 0; } static int axcbc_set_sh_desc(struct crypto_ahash *ahash) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); int digestsize = crypto_ahash_digestsize(ahash); struct device *jrdev = ctx->jrdev; u32 *desc; /* shared descriptor for ahash_update */ desc = ctx->sh_desc_update; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("axcbc update shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* shared descriptor for ahash_{final,finup} */ desc = ctx->sh_desc_fin; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("axcbc finup shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* key is immediate data for INIT and INITFINAL states */ ctx->adata.key_virt = ctx->key; /* shared descriptor for first invocation of ahash_update */ desc = ctx->sh_desc_update_first; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("axcbc update first shdesc@" __stringify(__LINE__) " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* shared descriptor for ahash_digest */ desc = ctx->sh_desc_digest; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("axcbc digest shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return 0; } static int acmac_set_sh_desc(struct crypto_ahash *ahash) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); int digestsize = crypto_ahash_digestsize(ahash); struct device *jrdev = ctx->jrdev; u32 *desc; /* shared descriptor for ahash_update */ desc = ctx->sh_desc_update; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("acmac update shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* shared descriptor for ahash_{final,finup} */ desc = ctx->sh_desc_fin; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_FINALIZE, digestsize, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("acmac finup shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* shared descriptor for first invocation of ahash_update */ desc = ctx->sh_desc_update_first; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INIT, ctx->ctx_len, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("acmac update first shdesc@" __stringify(__LINE__) " : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); /* shared descriptor for ahash_digest */ desc = ctx->sh_desc_digest; cnstr_shdsc_sk_hash(desc, &ctx->adata, OP_ALG_AS_INITFINAL, digestsize, ctx->ctx_len); dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma, desc_bytes(desc), ctx->dir); print_hex_dump_debug("acmac digest shdesc@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return 0; } /* Digest hash size if it is too large */ static int hash_digest_key(struct caam_hash_ctx *ctx, u32 *keylen, u8 *key, u32 digestsize) { struct device *jrdev = ctx->jrdev; u32 *desc; struct split_key_result result; dma_addr_t key_dma; int ret; desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL); if (!desc) return -ENOMEM; init_job_desc(desc, 0); key_dma = dma_map_single(jrdev, key, *keylen, DMA_BIDIRECTIONAL); if (dma_mapping_error(jrdev, key_dma)) { dev_err(jrdev, "unable to map key memory\n"); kfree(desc); return -ENOMEM; } /* Job descriptor to perform unkeyed hash on key_in */ append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT | OP_ALG_AS_INITFINAL); append_seq_in_ptr(desc, key_dma, *keylen, 0); append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG); append_seq_out_ptr(desc, key_dma, digestsize, 0); append_seq_store(desc, digestsize, LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT); print_hex_dump_debug("key_in@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, *keylen, 1); print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); result.err = 0; init_completion(&result.completion); ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result); if (ret == -EINPROGRESS) { /* in progress */ wait_for_completion(&result.completion); ret = result.err; print_hex_dump_debug("digested key@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, key, digestsize, 1); } dma_unmap_single(jrdev, key_dma, *keylen, DMA_BIDIRECTIONAL); *keylen = digestsize; kfree(desc); return ret; } static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct device *jrdev = ctx->jrdev; int blocksize = crypto_tfm_alg_blocksize(&ahash->base); int digestsize = crypto_ahash_digestsize(ahash); struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctx->jrdev->parent); int ret; u8 *hashed_key = NULL; dev_dbg(jrdev, "keylen %d\n", keylen); if (keylen > blocksize) { unsigned int aligned_len = ALIGN(keylen, dma_get_cache_alignment()); if (aligned_len < keylen) return -EOVERFLOW; hashed_key = kmemdup(key, keylen, GFP_KERNEL); if (!hashed_key) return -ENOMEM; ret = hash_digest_key(ctx, &keylen, hashed_key, digestsize); if (ret) goto bad_free_key; key = hashed_key; } /* * If DKP is supported, use it in the shared descriptor to generate * the split key. */ if (ctrlpriv->era >= 6) { ctx->adata.key_inline = true; ctx->adata.keylen = keylen; ctx->adata.keylen_pad = split_key_len(ctx->adata.algtype & OP_ALG_ALGSEL_MASK); if (ctx->adata.keylen_pad > CAAM_MAX_HASH_KEY_SIZE) goto bad_free_key; memcpy(ctx->key, key, keylen); /* * In case |user key| > |derived key|, using DKP * would result in invalid opcodes (last bytes of user key) in * the resulting descriptor. Use DKP instead => both * virtual and dma key addresses are needed. */ if (keylen > ctx->adata.keylen_pad) dma_sync_single_for_device(ctx->jrdev, ctx->adata.key_dma, ctx->adata.keylen_pad, DMA_TO_DEVICE); } else { ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen, CAAM_MAX_HASH_KEY_SIZE); if (ret) goto bad_free_key; } kfree(hashed_key); return ahash_set_sh_desc(ahash); bad_free_key: kfree(hashed_key); return -EINVAL; } static int axcbc_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct device *jrdev = ctx->jrdev; if (keylen != AES_KEYSIZE_128) return -EINVAL; memcpy(ctx->key, key, keylen); dma_sync_single_for_device(jrdev, ctx->adata.key_dma, keylen, DMA_TO_DEVICE); ctx->adata.keylen = keylen; print_hex_dump_debug("axcbc ctx.key@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, ctx->key, keylen, 1); return axcbc_set_sh_desc(ahash); } static int acmac_setkey(struct crypto_ahash *ahash, const u8 *key, unsigned int keylen) { struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); int err; err = aes_check_keylen(keylen); if (err) return err; /* key is immediate data for all cmac shared descriptors */ ctx->adata.key_virt = key; ctx->adata.keylen = keylen; print_hex_dump_debug("acmac ctx.key@" __stringify(__LINE__)" : ", DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1); return acmac_set_sh_desc(ahash); } /* * ahash_edesc - s/w-extended ahash descriptor * @sec4_sg_dma: physical mapped address of h/w link table * @src_nents: number of segments in input scatterlist * @sec4_sg_bytes: length of dma mapped sec4_sg space * @bklog: stored to determine if the request needs backlog * @hw_desc: the h/w job descriptor followed by any referenced link tables * @sec4_sg: h/w link table */ struct ahash_edesc { dma_addr_t sec4_sg_dma; int src_nents; int sec4_sg_bytes; bool bklog; u32 hw_desc[DESC_JOB_IO_LEN_MAX / sizeof(u32)] ____cacheline_aligned; struct sec4_sg_entry sec4_sg[]; }; static inline void ahash_unmap(struct device *dev, struct ahash_edesc *edesc, struct ahash_request *req, int dst_len) { struct caam_hash_state *state = ahash_request_ctx_dma(req); if (edesc->src_nents) dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); if (edesc->sec4_sg_bytes) dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, DMA_TO_DEVICE); if (state->buf_dma) { dma_unmap_single(dev, state->buf_dma, state->buflen, DMA_TO_DEVICE); state->buf_dma = 0; } } static inline void ahash_unmap_ctx(struct device *dev, struct ahash_edesc *edesc, struct ahash_request *req, int dst_len, u32 flag) { struct caam_hash_state *state = ahash_request_ctx_dma(req); if (state->ctx_dma) { dma_unmap_single(dev, state->ctx_dma, state->ctx_dma_len, flag); state->ctx_dma = 0; } ahash_unmap(dev, edesc, req, dst_len); } static inline void ahash_done_cpy(struct device *jrdev, u32 *desc, u32 err, void *context, enum dma_data_direction dir) { struct ahash_request *req = context; struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); struct ahash_edesc *edesc; struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); int digestsize = crypto_ahash_digestsize(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); int ecode = 0; bool has_bklog; dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); edesc = state->edesc; has_bklog = edesc->bklog; if (err) ecode = caam_jr_strstatus(jrdev, err); ahash_unmap_ctx(jrdev, edesc, req, digestsize, dir); memcpy(req->result, state->caam_ctx, digestsize); kfree(edesc); print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) ahash_request_complete(req, ecode); else crypto_finalize_hash_request(jrp->engine, req, ecode); } static void ahash_done(struct device *jrdev, u32 *desc, u32 err, void *context) { ahash_done_cpy(jrdev, desc, err, context, DMA_FROM_DEVICE); } static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err, void *context) { ahash_done_cpy(jrdev, desc, err, context, DMA_BIDIRECTIONAL); } static inline void ahash_done_switch(struct device *jrdev, u32 *desc, u32 err, void *context, enum dma_data_direction dir) { struct ahash_request *req = context; struct caam_drv_private_jr *jrp = dev_get_drvdata(jrdev); struct ahash_edesc *edesc; struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); int digestsize = crypto_ahash_digestsize(ahash); int ecode = 0; bool has_bklog; dev_dbg(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err); edesc = state->edesc; has_bklog = edesc->bklog; if (err) ecode = caam_jr_strstatus(jrdev, err); ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, dir); kfree(edesc); scatterwalk_map_and_copy(state->buf, req->src, req->nbytes - state->next_buflen, state->next_buflen, 0); state->buflen = state->next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->buf, state->buflen, 1); print_hex_dump_debug("ctx@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx, ctx->ctx_len, 1); if (req->result) print_hex_dump_debug("result@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, req->result, digestsize, 1); /* * If no backlog flag, the completion of the request is done * by CAAM, not crypto engine. */ if (!has_bklog) ahash_request_complete(req, ecode); else crypto_finalize_hash_request(jrp->engine, req, ecode); } static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err, void *context) { ahash_done_switch(jrdev, desc, err, context, DMA_BIDIRECTIONAL); } static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err, void *context) { ahash_done_switch(jrdev, desc, err, context, DMA_FROM_DEVICE); } /* * Allocate an enhanced descriptor, which contains the hardware descriptor * and space for hardware scatter table containing sg_num entries. */ static struct ahash_edesc *ahash_edesc_alloc(struct ahash_request *req, int sg_num, u32 *sh_desc, dma_addr_t sh_desc_dma) { struct caam_hash_state *state = ahash_request_ctx_dma(req); gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : GFP_ATOMIC; struct ahash_edesc *edesc; sg_num = pad_sg_nents(sg_num); edesc = kzalloc(struct_size(edesc, sec4_sg, sg_num), flags); if (!edesc) return NULL; state->edesc = edesc; init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc), HDR_SHARE_DEFER | HDR_REVERSE); return edesc; } static int ahash_edesc_add_src(struct caam_hash_ctx *ctx, struct ahash_edesc *edesc, struct ahash_request *req, int nents, unsigned int first_sg, unsigned int first_bytes, size_t to_hash) { dma_addr_t src_dma; u32 options; if (nents > 1 || first_sg) { struct sec4_sg_entry *sg = edesc->sec4_sg; unsigned int sgsize = sizeof(*sg) * pad_sg_nents(first_sg + nents); sg_to_sec4_sg_last(req->src, to_hash, sg + first_sg, 0); src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE); if (dma_mapping_error(ctx->jrdev, src_dma)) { dev_err(ctx->jrdev, "unable to map S/G table\n"); return -ENOMEM; } edesc->sec4_sg_bytes = sgsize; edesc->sec4_sg_dma = src_dma; options = LDST_SGF; } else { src_dma = sg_dma_address(req->src); options = 0; } append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash, options); return 0; } static int ahash_do_one_req(struct crypto_engine *engine, void *areq) { struct ahash_request *req = ahash_request_cast(areq); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(crypto_ahash_reqtfm(req)); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u32 *desc = state->edesc->hw_desc; int ret; state->edesc->bklog = true; ret = caam_jr_enqueue(jrdev, desc, state->ahash_op_done, req); if (ret == -ENOSPC && engine->retry_support) return ret; if (ret != -EINPROGRESS) { ahash_unmap(jrdev, state->edesc, req, 0); kfree(state->edesc); } else { ret = 0; } return ret; } static int ahash_enqueue_req(struct device *jrdev, void (*cbk)(struct device *jrdev, u32 *desc, u32 err, void *context), struct ahash_request *req, int dst_len, enum dma_data_direction dir) { struct caam_drv_private_jr *jrpriv = dev_get_drvdata(jrdev); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct ahash_edesc *edesc = state->edesc; u32 *desc = edesc->hw_desc; int ret; state->ahash_op_done = cbk; /* * Only the backlog request are sent to crypto-engine since the others * can be handled by CAAM, if free, especially since JR has up to 1024 * entries (more than the 10 entries from crypto-engine). */ if (req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG) ret = crypto_transfer_hash_request_to_engine(jrpriv->engine, req); else ret = caam_jr_enqueue(jrdev, desc, cbk, req); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) { ahash_unmap_ctx(jrdev, edesc, req, dst_len, dir); kfree(edesc); } return ret; } /* submit update job descriptor */ static int ahash_update_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int blocksize = crypto_ahash_blocksize(ahash); int in_len = *buflen + req->nbytes, to_hash; u32 *desc; int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index; struct ahash_edesc *edesc; int ret = 0; *next_buflen = in_len & (blocksize - 1); to_hash = in_len - *next_buflen; /* * For XCBC and CMAC, if to_hash is multiple of block size, * keep last block in internal buffer */ if ((is_xcbc_aes(ctx->adata.algtype) || is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && (*next_buflen == 0)) { *next_buflen = blocksize; to_hash -= blocksize; } if (to_hash) { int pad_nents; int src_len = req->nbytes - *next_buflen; src_nents = sg_nents_for_len(req->src, src_len); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } sec4_sg_src_index = 1 + (*buflen ? 1 : 0); pad_nents = pad_sg_nents(sec4_sg_src_index + mapped_nents); sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); /* * allocate space for base edesc and hw desc commands, * link tables */ edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update, ctx->sh_desc_update_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; edesc->sec4_sg_bytes = sec4_sg_bytes; ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, edesc->sec4_sg, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); if (ret) goto unmap_ctx; if (mapped_nents) sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + sec4_sg_src_index, 0); else sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1); desc = edesc->hw_desc; edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { dev_err(jrdev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + to_hash, LDST_SGF); append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0); print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); ret = ahash_enqueue_req(jrdev, ahash_done_bi, req, ctx->ctx_len, DMA_BIDIRECTIONAL); } else if (*next_buflen) { scatterwalk_map_and_copy(buf + *buflen, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL); kfree(edesc); return ret; } static int ahash_final_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; int buflen = state->buflen; u32 *desc; int sec4_sg_bytes; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; int ret; sec4_sg_bytes = pad_sg_nents(1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = ahash_edesc_alloc(req, 4, ctx->sh_desc_fin, ctx->sh_desc_fin_dma); if (!edesc) return -ENOMEM; desc = edesc->hw_desc; edesc->sec4_sg_bytes = sec4_sg_bytes; ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, edesc->sec4_sg, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); if (ret) goto unmap_ctx; sg_to_sec4_set_last(edesc->sec4_sg + (buflen ? 1 : 0)); edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { dev_err(jrdev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen, LDST_SGF); append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, digestsize, DMA_BIDIRECTIONAL); unmap_ctx: ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); kfree(edesc); return ret; } static int ahash_finup_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; int buflen = state->buflen; u32 *desc; int sec4_sg_src_index; int src_nents, mapped_nents; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; int ret; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } sec4_sg_src_index = 1 + (buflen ? 1 : 0); /* allocate space for base edesc and hw desc commands, link tables */ edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, ctx->sh_desc_fin, ctx->sh_desc_fin_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } desc = edesc->hw_desc; edesc->src_nents = src_nents; ret = ctx_map_to_sec4_sg(jrdev, state, ctx->ctx_len, edesc->sec4_sg, DMA_BIDIRECTIONAL); if (ret) goto unmap_ctx; ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state); if (ret) goto unmap_ctx; ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, sec4_sg_src_index, ctx->ctx_len + buflen, req->nbytes); if (ret) goto unmap_ctx; append_seq_out_ptr(desc, state->ctx_dma, digestsize, 0); print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return ahash_enqueue_req(jrdev, ahash_done_ctx_src, req, digestsize, DMA_BIDIRECTIONAL); unmap_ctx: ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_BIDIRECTIONAL); kfree(edesc); return ret; } static int ahash_digest(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u32 *desc; int digestsize = crypto_ahash_digestsize(ahash); int src_nents, mapped_nents; struct ahash_edesc *edesc; int ret; state->buf_dma = 0; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to map source for DMA\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* allocate space for base edesc and hw desc commands, link tables */ edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, ctx->sh_desc_digest, ctx->sh_desc_digest_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, req->nbytes); if (ret) { ahash_unmap(jrdev, edesc, req, digestsize); kfree(edesc); return ret; } desc = edesc->hw_desc; ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); if (ret) { ahash_unmap(jrdev, edesc, req, digestsize); kfree(edesc); return -ENOMEM; } print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, DMA_FROM_DEVICE); } /* submit ahash final if it the first job descriptor */ static int ahash_final_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u8 *buf = state->buf; int buflen = state->buflen; u32 *desc; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; int ret; /* allocate space for base edesc and hw desc commands, link tables */ edesc = ahash_edesc_alloc(req, 0, ctx->sh_desc_digest, ctx->sh_desc_digest_dma); if (!edesc) return -ENOMEM; desc = edesc->hw_desc; if (buflen) { state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, state->buf_dma)) { dev_err(jrdev, "unable to map src\n"); goto unmap; } append_seq_in_ptr(desc, state->buf_dma, buflen, 0); } ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); if (ret) goto unmap; print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, DMA_FROM_DEVICE); unmap: ahash_unmap(jrdev, edesc, req, digestsize); kfree(edesc); return -ENOMEM; } /* submit ahash update if it the first job descriptor after update */ static int ahash_update_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int blocksize = crypto_ahash_blocksize(ahash); int in_len = *buflen + req->nbytes, to_hash; int sec4_sg_bytes, src_nents, mapped_nents; struct ahash_edesc *edesc; u32 *desc; int ret = 0; *next_buflen = in_len & (blocksize - 1); to_hash = in_len - *next_buflen; /* * For XCBC and CMAC, if to_hash is multiple of block size, * keep last block in internal buffer */ if ((is_xcbc_aes(ctx->adata.algtype) || is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && (*next_buflen == 0)) { *next_buflen = blocksize; to_hash -= blocksize; } if (to_hash) { int pad_nents; int src_len = req->nbytes - *next_buflen; src_nents = sg_nents_for_len(req->src, src_len); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } pad_nents = pad_sg_nents(1 + mapped_nents); sec4_sg_bytes = pad_nents * sizeof(struct sec4_sg_entry); /* * allocate space for base edesc and hw desc commands, * link tables */ edesc = ahash_edesc_alloc(req, pad_nents, ctx->sh_desc_update_first, ctx->sh_desc_update_first_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; edesc->sec4_sg_bytes = sec4_sg_bytes; ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); if (ret) goto unmap_ctx; sg_to_sec4_sg_last(req->src, src_len, edesc->sec4_sg + 1, 0); desc = edesc->hw_desc; edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg, sec4_sg_bytes, DMA_TO_DEVICE); if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) { dev_err(jrdev, "unable to map S/G table\n"); ret = -ENOMEM; goto unmap_ctx; } append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF); ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); if (ret) goto unmap_ctx; print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, ctx->ctx_len, DMA_TO_DEVICE); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) return ret; state->update = ahash_update_ctx; state->finup = ahash_finup_ctx; state->final = ahash_final_ctx; } else if (*next_buflen) { scatterwalk_map_and_copy(buf + *buflen, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); kfree(edesc); return ret; } /* submit ahash finup if it the first job descriptor after update */ static int ahash_finup_no_ctx(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; int buflen = state->buflen; u32 *desc; int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents; int digestsize = crypto_ahash_digestsize(ahash); struct ahash_edesc *edesc; int ret; src_nents = sg_nents_for_len(req->src, req->nbytes); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to DMA map source\n"); return -ENOMEM; } } else { mapped_nents = 0; } sec4_sg_src_index = 2; sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) * sizeof(struct sec4_sg_entry); /* allocate space for base edesc and hw desc commands, link tables */ edesc = ahash_edesc_alloc(req, sec4_sg_src_index + mapped_nents, ctx->sh_desc_digest, ctx->sh_desc_digest_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } desc = edesc->hw_desc; edesc->src_nents = src_nents; edesc->sec4_sg_bytes = sec4_sg_bytes; ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state); if (ret) goto unmap; ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen, req->nbytes); if (ret) { dev_err(jrdev, "unable to map S/G table\n"); goto unmap; } ret = map_seq_out_ptr_ctx(desc, jrdev, state, digestsize); if (ret) goto unmap; print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); return ahash_enqueue_req(jrdev, ahash_done, req, digestsize, DMA_FROM_DEVICE); unmap: ahash_unmap(jrdev, edesc, req, digestsize); kfree(edesc); return -ENOMEM; } /* submit first update job descriptor after init */ static int ahash_update_first(struct ahash_request *req) { struct crypto_ahash *ahash = crypto_ahash_reqtfm(req); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); struct caam_hash_state *state = ahash_request_ctx_dma(req); struct device *jrdev = ctx->jrdev; u8 *buf = state->buf; int *buflen = &state->buflen; int *next_buflen = &state->next_buflen; int to_hash; int blocksize = crypto_ahash_blocksize(ahash); u32 *desc; int src_nents, mapped_nents; struct ahash_edesc *edesc; int ret = 0; *next_buflen = req->nbytes & (blocksize - 1); to_hash = req->nbytes - *next_buflen; /* * For XCBC and CMAC, if to_hash is multiple of block size, * keep last block in internal buffer */ if ((is_xcbc_aes(ctx->adata.algtype) || is_cmac_aes(ctx->adata.algtype)) && to_hash >= blocksize && (*next_buflen == 0)) { *next_buflen = blocksize; to_hash -= blocksize; } if (to_hash) { src_nents = sg_nents_for_len(req->src, req->nbytes - *next_buflen); if (src_nents < 0) { dev_err(jrdev, "Invalid number of src SG.\n"); return src_nents; } if (src_nents) { mapped_nents = dma_map_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); if (!mapped_nents) { dev_err(jrdev, "unable to map source for DMA\n"); return -ENOMEM; } } else { mapped_nents = 0; } /* * allocate space for base edesc and hw desc commands, * link tables */ edesc = ahash_edesc_alloc(req, mapped_nents > 1 ? mapped_nents : 0, ctx->sh_desc_update_first, ctx->sh_desc_update_first_dma); if (!edesc) { dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE); return -ENOMEM; } edesc->src_nents = src_nents; ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0, to_hash); if (ret) goto unmap_ctx; desc = edesc->hw_desc; ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len); if (ret) goto unmap_ctx; print_hex_dump_debug("jobdesc@"__stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1); ret = ahash_enqueue_req(jrdev, ahash_done_ctx_dst, req, ctx->ctx_len, DMA_TO_DEVICE); if ((ret != -EINPROGRESS) && (ret != -EBUSY)) return ret; state->update = ahash_update_ctx; state->finup = ahash_finup_ctx; state->final = ahash_final_ctx; } else if (*next_buflen) { state->update = ahash_update_no_ctx; state->finup = ahash_finup_no_ctx; state->final = ahash_final_no_ctx; scatterwalk_map_and_copy(buf, req->src, 0, req->nbytes, 0); *buflen = *next_buflen; print_hex_dump_debug("buf@" __stringify(__LINE__)": ", DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1); } return ret; unmap_ctx: ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE); kfree(edesc); return ret; } static int ahash_finup_first(struct ahash_request *req) { return ahash_digest(req); } static int ahash_init(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx_dma(req); state->update = ahash_update_first; state->finup = ahash_finup_first; state->final = ahash_final_no_ctx; state->ctx_dma = 0; state->ctx_dma_len = 0; state->buf_dma = 0; state->buflen = 0; state->next_buflen = 0; return 0; } static int ahash_update(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx_dma(req); return state->update(req); } static int ahash_finup(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx_dma(req); return state->finup(req); } static int ahash_final(struct ahash_request *req) { struct caam_hash_state *state = ahash_request_ctx_dma(req); return state->final(req); } static int ahash_export(struct ahash_request *req, void *out) { struct caam_hash_state *state = ahash_request_ctx_dma(req); struct caam_export_state *export = out; u8 *buf = state->buf; int len = state->buflen; memcpy(export->buf, buf, len); memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx)); export->buflen = len; export->update = state->update; export->final = state->final; export->finup = state->finup; return 0; } static int ahash_import(struct ahash_request *req, const void *in) { struct caam_hash_state *state = ahash_request_ctx_dma(req); const struct caam_export_state *export = in; memset(state, 0, sizeof(*state)); memcpy(state->buf, export->buf, export->buflen); memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx)); state->buflen = export->buflen; state->update = export->update; state->final = export->final; state->finup = export->finup; return 0; } struct caam_hash_template { char name[CRYPTO_MAX_ALG_NAME]; char driver_name[CRYPTO_MAX_ALG_NAME]; char hmac_name[CRYPTO_MAX_ALG_NAME]; char hmac_driver_name[CRYPTO_MAX_ALG_NAME]; unsigned int blocksize; struct ahash_alg template_ahash; u32 alg_type; }; /* ahash descriptors */ static struct caam_hash_template driver_hash[] = { { .name = "sha1", .driver_name = "sha1-caam", .hmac_name = "hmac(sha1)", .hmac_driver_name = "hmac-sha1-caam", .blocksize = SHA1_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA1, }, { .name = "sha224", .driver_name = "sha224-caam", .hmac_name = "hmac(sha224)", .hmac_driver_name = "hmac-sha224-caam", .blocksize = SHA224_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA224, }, { .name = "sha256", .driver_name = "sha256-caam", .hmac_name = "hmac(sha256)", .hmac_driver_name = "hmac-sha256-caam", .blocksize = SHA256_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA256, }, { .name = "sha384", .driver_name = "sha384-caam", .hmac_name = "hmac(sha384)", .hmac_driver_name = "hmac-sha384-caam", .blocksize = SHA384_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA384_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA384, }, { .name = "sha512", .driver_name = "sha512-caam", .hmac_name = "hmac(sha512)", .hmac_driver_name = "hmac-sha512-caam", .blocksize = SHA512_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = SHA512_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_SHA512, }, { .name = "md5", .driver_name = "md5-caam", .hmac_name = "hmac(md5)", .hmac_driver_name = "hmac-md5-caam", .blocksize = MD5_BLOCK_WORDS * 4, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = ahash_setkey, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_MD5, }, { .hmac_name = "xcbc(aes)", .hmac_driver_name = "xcbc-aes-caam", .blocksize = AES_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = axcbc_setkey, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_XCBC_MAC, }, { .hmac_name = "cmac(aes)", .hmac_driver_name = "cmac-aes-caam", .blocksize = AES_BLOCK_SIZE, .template_ahash = { .init = ahash_init, .update = ahash_update, .final = ahash_final, .finup = ahash_finup, .digest = ahash_digest, .export = ahash_export, .import = ahash_import, .setkey = acmac_setkey, .halg = { .digestsize = AES_BLOCK_SIZE, .statesize = sizeof(struct caam_export_state), }, }, .alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CMAC, }, }; struct caam_hash_alg { struct list_head entry; int alg_type; bool is_hmac; struct ahash_engine_alg ahash_alg; }; static int caam_hash_cra_init(struct crypto_tfm *tfm) { struct crypto_ahash *ahash = __crypto_ahash_cast(tfm); struct crypto_alg *base = tfm->__crt_alg; struct hash_alg_common *halg = container_of(base, struct hash_alg_common, base); struct ahash_alg *alg = container_of(halg, struct ahash_alg, halg); struct caam_hash_alg *caam_hash = container_of(alg, struct caam_hash_alg, ahash_alg.base); struct caam_hash_ctx *ctx = crypto_ahash_ctx_dma(ahash); /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */ static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE, HASH_MSG_LEN + SHA1_DIGEST_SIZE, HASH_MSG_LEN + 32, HASH_MSG_LEN + SHA256_DIGEST_SIZE, HASH_MSG_LEN + 64, HASH_MSG_LEN + SHA512_DIGEST_SIZE }; const size_t sh_desc_update_offset = offsetof(struct caam_hash_ctx, sh_desc_update); dma_addr_t dma_addr; struct caam_drv_private *priv; /* * Get a Job ring from Job Ring driver to ensure in-order * crypto request processing per tfm */ ctx->jrdev = caam_jr_alloc(); if (IS_ERR(ctx->jrdev)) { pr_err("Job Ring Device allocation for transform failed\n"); return PTR_ERR(ctx->jrdev); } priv = dev_get_drvdata(ctx->jrdev->parent); if (is_xcbc_aes(caam_hash->alg_type)) { ctx->dir = DMA_TO_DEVICE; ctx->key_dir = DMA_BIDIRECTIONAL; ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; ctx->ctx_len = 48; } else if (is_cmac_aes(caam_hash->alg_type)) { ctx->dir = DMA_TO_DEVICE; ctx->key_dir = DMA_NONE; ctx->adata.algtype = OP_TYPE_CLASS1_ALG | caam_hash->alg_type; ctx->ctx_len = 32; } else { if (priv->era >= 6) { ctx->dir = DMA_BIDIRECTIONAL; ctx->key_dir = caam_hash->is_hmac ? DMA_TO_DEVICE : DMA_NONE; } else { ctx->dir = DMA_TO_DEVICE; ctx->key_dir = DMA_NONE; } ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type; ctx->ctx_len = runninglen[(ctx->adata.algtype & OP_ALG_ALGSEL_SUBMASK) >> OP_ALG_ALGSEL_SHIFT]; } if (ctx->key_dir != DMA_NONE) { ctx->adata.key_dma = dma_map_single_attrs(ctx->jrdev, ctx->key, ARRAY_SIZE(ctx->key), ctx->key_dir, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->jrdev, ctx->adata.key_dma)) { dev_err(ctx->jrdev, "unable to map key\n"); caam_jr_free(ctx->jrdev); return -ENOMEM; } } dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update, offsetof(struct caam_hash_ctx, key) - sh_desc_update_offset, ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); if (dma_mapping_error(ctx->jrdev, dma_addr)) { dev_err(ctx->jrdev, "unable to map shared descriptors\n"); if (ctx->key_dir != DMA_NONE) dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, ARRAY_SIZE(ctx->key), ctx->key_dir, DMA_ATTR_SKIP_CPU_SYNC); caam_jr_free(ctx->jrdev); return -ENOMEM; } ctx->sh_desc_update_dma = dma_addr; ctx->sh_desc_update_first_dma = dma_addr + offsetof(struct caam_hash_ctx, sh_desc_update_first) - sh_desc_update_offset; ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx, sh_desc_fin) - sh_desc_update_offset; ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx, sh_desc_digest) - sh_desc_update_offset; crypto_ahash_set_reqsize_dma(ahash, sizeof(struct caam_hash_state)); /* * For keyed hash algorithms shared descriptors * will be created later in setkey() callback */ return caam_hash->is_hmac ? 0 : ahash_set_sh_desc(ahash); } static void caam_hash_cra_exit(struct crypto_tfm *tfm) { struct caam_hash_ctx *ctx = crypto_tfm_ctx_dma(tfm); dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma, offsetof(struct caam_hash_ctx, key) - offsetof(struct caam_hash_ctx, sh_desc_update), ctx->dir, DMA_ATTR_SKIP_CPU_SYNC); if (ctx->key_dir != DMA_NONE) dma_unmap_single_attrs(ctx->jrdev, ctx->adata.key_dma, ARRAY_SIZE(ctx->key), ctx->key_dir, DMA_ATTR_SKIP_CPU_SYNC); caam_jr_free(ctx->jrdev); } void caam_algapi_hash_exit(void) { struct caam_hash_alg *t_alg, *n; if (!hash_list.next) return; list_for_each_entry_safe(t_alg, n, &hash_list, entry) { crypto_engine_unregister_ahash(&t_alg->ahash_alg); list_del(&t_alg->entry); kfree(t_alg); } } static struct caam_hash_alg * caam_hash_alloc(struct caam_hash_template *template, bool keyed) { struct caam_hash_alg *t_alg; struct ahash_alg *halg; struct crypto_alg *alg; t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL); if (!t_alg) return ERR_PTR(-ENOMEM); t_alg->ahash_alg.base = template->template_ahash; halg = &t_alg->ahash_alg.base; alg = &halg->halg.base; if (keyed) { snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->hmac_name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->hmac_driver_name); t_alg->is_hmac = true; } else { snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name); snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", template->driver_name); halg->setkey = NULL; t_alg->is_hmac = false; } alg->cra_module = THIS_MODULE; alg->cra_init = caam_hash_cra_init; alg->cra_exit = caam_hash_cra_exit; alg->cra_ctxsize = sizeof(struct caam_hash_ctx) + crypto_dma_padding(); alg->cra_priority = CAAM_CRA_PRIORITY; alg->cra_blocksize = template->blocksize; alg->cra_alignmask = 0; alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY; t_alg->alg_type = template->alg_type; t_alg->ahash_alg.op.do_one_request = ahash_do_one_req; return t_alg; } int caam_algapi_hash_init(struct device *ctrldev) { int i = 0, err = 0; struct caam_drv_private *priv = dev_get_drvdata(ctrldev); unsigned int md_limit = SHA512_DIGEST_SIZE; u32 md_inst, md_vid; /* * Register crypto algorithms the device supports. First, identify * presence and attributes of MD block. */ if (priv->era < 10) { struct caam_perfmon __iomem *perfmon = &priv->jr[0]->perfmon; md_vid = (rd_reg32(&perfmon->cha_id_ls) & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; md_inst = (rd_reg32(&perfmon->cha_num_ls) & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT; } else { u32 mdha = rd_reg32(&priv->jr[0]->vreg.mdha); md_vid = (mdha & CHA_VER_VID_MASK) >> CHA_VER_VID_SHIFT; md_inst = mdha & CHA_VER_NUM_MASK; } /* * Skip registration of any hashing algorithms if MD block * is not present. */ if (!md_inst) return 0; /* Limit digest size based on LP256 */ if (md_vid == CHA_VER_VID_MD_LP256) md_limit = SHA256_DIGEST_SIZE; INIT_LIST_HEAD(&hash_list); /* register crypto algorithms the device supports */ for (i = 0; i < ARRAY_SIZE(driver_hash); i++) { struct caam_hash_alg *t_alg; struct caam_hash_template *alg = driver_hash + i; /* If MD size is not supported by device, skip registration */ if (is_mdha(alg->alg_type) && alg->template_ahash.halg.digestsize > md_limit) continue; /* register hmac version */ t_alg = caam_hash_alloc(alg, true); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); pr_warn("%s alg allocation failed\n", alg->hmac_driver_name); continue; } err = crypto_engine_register_ahash(&t_alg->ahash_alg); if (err) { pr_warn("%s alg registration failed: %d\n", t_alg->ahash_alg.base.halg.base.cra_driver_name, err); kfree(t_alg); } else list_add_tail(&t_alg->entry, &hash_list); if ((alg->alg_type & OP_ALG_ALGSEL_MASK) == OP_ALG_ALGSEL_AES) continue; /* register unkeyed version */ t_alg = caam_hash_alloc(alg, false); if (IS_ERR(t_alg)) { err = PTR_ERR(t_alg); pr_warn("%s alg allocation failed\n", alg->driver_name); continue; } err = crypto_engine_register_ahash(&t_alg->ahash_alg); if (err) { pr_warn("%s alg registration failed: %d\n", t_alg->ahash_alg.base.halg.base.cra_driver_name, err); kfree(t_alg); } else list_add_tail(&t_alg->entry, &hash_list); } return err; }