// SPDX-License-Identifier: GPL-2.0-only /* * intel_pstate.c: Native P state management for Intel processors * * (C) Copyright 2012 Intel Corporation * Author: Dirk Brandewie */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../drivers/thermal/intel/thermal_interrupt.h" #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 #ifdef CONFIG_ACPI #include #include #endif #define FRAC_BITS 8 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) #define fp_toint(X) ((X) >> FRAC_BITS) #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) #define EXT_BITS 6 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) static inline int32_t mul_fp(int32_t x, int32_t y) { return ((int64_t)x * (int64_t)y) >> FRAC_BITS; } static inline int32_t div_fp(s64 x, s64 y) { return div64_s64((int64_t)x << FRAC_BITS, y); } static inline int ceiling_fp(int32_t x) { int mask, ret; ret = fp_toint(x); mask = (1 << FRAC_BITS) - 1; if (x & mask) ret += 1; return ret; } static inline u64 mul_ext_fp(u64 x, u64 y) { return (x * y) >> EXT_FRAC_BITS; } static inline u64 div_ext_fp(u64 x, u64 y) { return div64_u64(x << EXT_FRAC_BITS, y); } /** * struct sample - Store performance sample * @core_avg_perf: Ratio of APERF/MPERF which is the actual average * performance during last sample period * @busy_scaled: Scaled busy value which is used to calculate next * P state. This can be different than core_avg_perf * to account for cpu idle period * @aperf: Difference of actual performance frequency clock count * read from APERF MSR between last and current sample * @mperf: Difference of maximum performance frequency clock count * read from MPERF MSR between last and current sample * @tsc: Difference of time stamp counter between last and * current sample * @time: Current time from scheduler * * This structure is used in the cpudata structure to store performance sample * data for choosing next P State. */ struct sample { int32_t core_avg_perf; int32_t busy_scaled; u64 aperf; u64 mperf; u64 tsc; u64 time; }; /** * struct pstate_data - Store P state data * @current_pstate: Current requested P state * @min_pstate: Min P state possible for this platform * @max_pstate: Max P state possible for this platform * @max_pstate_physical:This is physical Max P state for a processor * This can be higher than the max_pstate which can * be limited by platform thermal design power limits * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor * @scaling: Scaling factor between performance and frequency * @turbo_pstate: Max Turbo P state possible for this platform * @min_freq: @min_pstate frequency in cpufreq units * @max_freq: @max_pstate frequency in cpufreq units * @turbo_freq: @turbo_pstate frequency in cpufreq units * * Stores the per cpu model P state limits and current P state. */ struct pstate_data { int current_pstate; int min_pstate; int max_pstate; int max_pstate_physical; int perf_ctl_scaling; int scaling; int turbo_pstate; unsigned int min_freq; unsigned int max_freq; unsigned int turbo_freq; }; /** * struct vid_data - Stores voltage information data * @min: VID data for this platform corresponding to * the lowest P state * @max: VID data corresponding to the highest P State. * @turbo: VID data for turbo P state * @ratio: Ratio of (vid max - vid min) / * (max P state - Min P State) * * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) * This data is used in Atom platforms, where in addition to target P state, * the voltage data needs to be specified to select next P State. */ struct vid_data { int min; int max; int turbo; int32_t ratio; }; /** * struct global_params - Global parameters, mostly tunable via sysfs. * @no_turbo: Whether or not to use turbo P-states. * @turbo_disabled: Whether or not turbo P-states are available at all, * based on the MSR_IA32_MISC_ENABLE value and whether or * not the maximum reported turbo P-state is different from * the maximum reported non-turbo one. * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo * P-state capacity. * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo * P-state capacity. */ struct global_params { bool no_turbo; bool turbo_disabled; int max_perf_pct; int min_perf_pct; }; /** * struct cpudata - Per CPU instance data storage * @cpu: CPU number for this instance data * @policy: CPUFreq policy value * @update_util: CPUFreq utility callback information * @update_util_set: CPUFreq utility callback is set * @iowait_boost: iowait-related boost fraction * @last_update: Time of the last update. * @pstate: Stores P state limits for this CPU * @vid: Stores VID limits for this CPU * @last_sample_time: Last Sample time * @aperf_mperf_shift: APERF vs MPERF counting frequency difference * @prev_aperf: Last APERF value read from APERF MSR * @prev_mperf: Last MPERF value read from MPERF MSR * @prev_tsc: Last timestamp counter (TSC) value * @sample: Storage for storing last Sample data * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios * @acpi_perf_data: Stores ACPI perf information read from _PSS * @valid_pss_table: Set to true for valid ACPI _PSS entries found * @epp_powersave: Last saved HWP energy performance preference * (EPP) or energy performance bias (EPB), * when policy switched to performance * @epp_policy: Last saved policy used to set EPP/EPB * @epp_default: Power on default HWP energy performance * preference/bias * @epp_cached: Cached HWP energy-performance preference value * @hwp_req_cached: Cached value of the last HWP Request MSR * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR * @last_io_update: Last time when IO wake flag was set * @sched_flags: Store scheduler flags for possible cross CPU update * @hwp_boost_min: Last HWP boosted min performance * @suspended: Whether or not the driver has been suspended. * @hwp_notify_work: workqueue for HWP notifications. * * This structure stores per CPU instance data for all CPUs. */ struct cpudata { int cpu; unsigned int policy; struct update_util_data update_util; bool update_util_set; struct pstate_data pstate; struct vid_data vid; u64 last_update; u64 last_sample_time; u64 aperf_mperf_shift; u64 prev_aperf; u64 prev_mperf; u64 prev_tsc; struct sample sample; int32_t min_perf_ratio; int32_t max_perf_ratio; #ifdef CONFIG_ACPI struct acpi_processor_performance acpi_perf_data; bool valid_pss_table; #endif unsigned int iowait_boost; s16 epp_powersave; s16 epp_policy; s16 epp_default; s16 epp_cached; u64 hwp_req_cached; u64 hwp_cap_cached; u64 last_io_update; unsigned int sched_flags; u32 hwp_boost_min; bool suspended; struct delayed_work hwp_notify_work; }; static struct cpudata **all_cpu_data; /** * struct pstate_funcs - Per CPU model specific callbacks * @get_max: Callback to get maximum non turbo effective P state * @get_max_physical: Callback to get maximum non turbo physical P state * @get_min: Callback to get minimum P state * @get_turbo: Callback to get turbo P state * @get_scaling: Callback to get frequency scaling factor * @get_cpu_scaling: Get frequency scaling factor for a given cpu * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference * @get_val: Callback to convert P state to actual MSR write value * @get_vid: Callback to get VID data for Atom platforms * * Core and Atom CPU models have different way to get P State limits. This * structure is used to store those callbacks. */ struct pstate_funcs { int (*get_max)(int cpu); int (*get_max_physical)(int cpu); int (*get_min)(int cpu); int (*get_turbo)(int cpu); int (*get_scaling)(void); int (*get_cpu_scaling)(int cpu); int (*get_aperf_mperf_shift)(void); u64 (*get_val)(struct cpudata*, int pstate); void (*get_vid)(struct cpudata *); }; static struct pstate_funcs pstate_funcs __read_mostly; static bool hwp_active __ro_after_init; static int hwp_mode_bdw __ro_after_init; static bool per_cpu_limits __ro_after_init; static bool hwp_forced __ro_after_init; static bool hwp_boost __read_mostly; static struct cpufreq_driver *intel_pstate_driver __read_mostly; #define HYBRID_SCALING_FACTOR 78741 #define HYBRID_SCALING_FACTOR_MTL 80000 #define HYBRID_SCALING_FACTOR_LNL 86957 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR; static inline int core_get_scaling(void) { return 100000; } #ifdef CONFIG_ACPI static bool acpi_ppc; #endif static struct global_params global; static DEFINE_MUTEX(intel_pstate_driver_lock); static DEFINE_MUTEX(intel_pstate_limits_lock); #ifdef CONFIG_ACPI static bool intel_pstate_acpi_pm_profile_server(void) { if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) return true; return false; } static bool intel_pstate_get_ppc_enable_status(void) { if (intel_pstate_acpi_pm_profile_server()) return true; return acpi_ppc; } #ifdef CONFIG_ACPI_CPPC_LIB /* The work item is needed to avoid CPU hotplug locking issues */ static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) { sched_set_itmt_support(); } static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); #define CPPC_MAX_PERF U8_MAX static void intel_pstate_set_itmt_prio(int cpu) { struct cppc_perf_caps cppc_perf; static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; int ret; ret = cppc_get_perf_caps(cpu, &cppc_perf); /* * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0]. * * Also, on some systems with overclocking enabled, CPPC.highest_perf is * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT. * Fall back to MSR_HWP_CAPABILITIES then too. */ if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF) cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); /* * The priorities can be set regardless of whether or not * sched_set_itmt_support(true) has been called and it is valid to * update them at any time after it has been called. */ sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); if (max_highest_perf <= min_highest_perf) { if (cppc_perf.highest_perf > max_highest_perf) max_highest_perf = cppc_perf.highest_perf; if (cppc_perf.highest_perf < min_highest_perf) min_highest_perf = cppc_perf.highest_perf; if (max_highest_perf > min_highest_perf) { /* * This code can be run during CPU online under the * CPU hotplug locks, so sched_set_itmt_support() * cannot be called from here. Queue up a work item * to invoke it. */ schedule_work(&sched_itmt_work); } } } static int intel_pstate_get_cppc_guaranteed(int cpu) { struct cppc_perf_caps cppc_perf; int ret; ret = cppc_get_perf_caps(cpu, &cppc_perf); if (ret) return ret; if (cppc_perf.guaranteed_perf) return cppc_perf.guaranteed_perf; return cppc_perf.nominal_perf; } static int intel_pstate_cppc_get_scaling(int cpu) { struct cppc_perf_caps cppc_perf; int ret; ret = cppc_get_perf_caps(cpu, &cppc_perf); /* * If the nominal frequency and the nominal performance are not * zero and the ratio between them is not 100, return the hybrid * scaling factor. */ if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) return hybrid_scaling_factor; return core_get_scaling(); } #else /* CONFIG_ACPI_CPPC_LIB */ static inline void intel_pstate_set_itmt_prio(int cpu) { } #endif /* CONFIG_ACPI_CPPC_LIB */ static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) { struct cpudata *cpu; int ret; int i; if (hwp_active) { intel_pstate_set_itmt_prio(policy->cpu); return; } if (!intel_pstate_get_ppc_enable_status()) return; cpu = all_cpu_data[policy->cpu]; ret = acpi_processor_register_performance(&cpu->acpi_perf_data, policy->cpu); if (ret) return; /* * Check if the control value in _PSS is for PERF_CTL MSR, which should * guarantee that the states returned by it map to the states in our * list directly. */ if (cpu->acpi_perf_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) goto err; /* * If there is only one entry _PSS, simply ignore _PSS and continue as * usual without taking _PSS into account */ if (cpu->acpi_perf_data.state_count < 2) goto err; pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", (i == cpu->acpi_perf_data.state ? '*' : ' '), i, (u32) cpu->acpi_perf_data.states[i].core_frequency, (u32) cpu->acpi_perf_data.states[i].power, (u32) cpu->acpi_perf_data.states[i].control); } cpu->valid_pss_table = true; pr_debug("_PPC limits will be enforced\n"); return; err: cpu->valid_pss_table = false; acpi_processor_unregister_performance(policy->cpu); } static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) { struct cpudata *cpu; cpu = all_cpu_data[policy->cpu]; if (!cpu->valid_pss_table) return; acpi_processor_unregister_performance(policy->cpu); } #else /* CONFIG_ACPI */ static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) { } static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) { } static inline bool intel_pstate_acpi_pm_profile_server(void) { return false; } #endif /* CONFIG_ACPI */ #ifndef CONFIG_ACPI_CPPC_LIB static inline int intel_pstate_get_cppc_guaranteed(int cpu) { return -ENOTSUPP; } static int intel_pstate_cppc_get_scaling(int cpu) { return core_get_scaling(); } #endif /* CONFIG_ACPI_CPPC_LIB */ static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, unsigned int relation) { if (freq == cpu->pstate.turbo_freq) return cpu->pstate.turbo_pstate; if (freq == cpu->pstate.max_freq) return cpu->pstate.max_pstate; switch (relation) { case CPUFREQ_RELATION_H: return freq / cpu->pstate.scaling; case CPUFREQ_RELATION_C: return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); } return DIV_ROUND_UP(freq, cpu->pstate.scaling); } static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) { return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); } /** * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. * @cpu: Target CPU. * * On hybrid processors, HWP may expose more performance levels than there are * P-states accessible through the PERF_CTL interface. If that happens, the * scaling factor between HWP performance levels and CPU frequency will be less * than the scaling factor between P-state values and CPU frequency. * * In that case, adjust the CPU parameters used in computations accordingly. */ static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) { int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); int scaling = cpu->pstate.scaling; int freq; pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, perf_ctl_scaling); cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, perf_ctl_scaling); freq = perf_ctl_max_phys * perf_ctl_scaling; cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); freq = cpu->pstate.min_pstate * perf_ctl_scaling; cpu->pstate.min_freq = freq; /* * Cast the min P-state value retrieved via pstate_funcs.get_min() to * the effective range of HWP performance levels. */ cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); } static bool turbo_is_disabled(void) { u64 misc_en; rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); } static int min_perf_pct_min(void) { struct cpudata *cpu = all_cpu_data[0]; int turbo_pstate = cpu->pstate.turbo_pstate; return turbo_pstate ? (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; } static s16 intel_pstate_get_epb(struct cpudata *cpu_data) { u64 epb; int ret; if (!boot_cpu_has(X86_FEATURE_EPB)) return -ENXIO; ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); if (ret) return (s16)ret; return (s16)(epb & 0x0f); } static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) { s16 epp; if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { /* * When hwp_req_data is 0, means that caller didn't read * MSR_HWP_REQUEST, so need to read and get EPP. */ if (!hwp_req_data) { epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &hwp_req_data); if (epp) return epp; } epp = (hwp_req_data >> 24) & 0xff; } else { /* When there is no EPP present, HWP uses EPB settings */ epp = intel_pstate_get_epb(cpu_data); } return epp; } static int intel_pstate_set_epb(int cpu, s16 pref) { u64 epb; int ret; if (!boot_cpu_has(X86_FEATURE_EPB)) return -ENXIO; ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); if (ret) return ret; epb = (epb & ~0x0f) | pref; wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); return 0; } /* * EPP/EPB display strings corresponding to EPP index in the * energy_perf_strings[] * index String *------------------------------------- * 0 default * 1 performance * 2 balance_performance * 3 balance_power * 4 power */ enum energy_perf_value_index { EPP_INDEX_DEFAULT = 0, EPP_INDEX_PERFORMANCE, EPP_INDEX_BALANCE_PERFORMANCE, EPP_INDEX_BALANCE_POWERSAVE, EPP_INDEX_POWERSAVE, }; static const char * const energy_perf_strings[] = { [EPP_INDEX_DEFAULT] = "default", [EPP_INDEX_PERFORMANCE] = "performance", [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", [EPP_INDEX_POWERSAVE] = "power", NULL }; static unsigned int epp_values[] = { [EPP_INDEX_DEFAULT] = 0, /* Unused index */ [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, }; static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) { s16 epp; int index = -EINVAL; *raw_epp = 0; epp = intel_pstate_get_epp(cpu_data, 0); if (epp < 0) return epp; if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { if (epp == epp_values[EPP_INDEX_PERFORMANCE]) return EPP_INDEX_PERFORMANCE; if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) return EPP_INDEX_BALANCE_PERFORMANCE; if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) return EPP_INDEX_BALANCE_POWERSAVE; if (epp == epp_values[EPP_INDEX_POWERSAVE]) return EPP_INDEX_POWERSAVE; *raw_epp = epp; return 0; } else if (boot_cpu_has(X86_FEATURE_EPB)) { /* * Range: * 0x00-0x03 : Performance * 0x04-0x07 : Balance performance * 0x08-0x0B : Balance power * 0x0C-0x0F : Power * The EPB is a 4 bit value, but our ranges restrict the * value which can be set. Here only using top two bits * effectively. */ index = (epp >> 2) + 1; } return index; } static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) { int ret; /* * Use the cached HWP Request MSR value, because in the active mode the * register itself may be updated by intel_pstate_hwp_boost_up() or * intel_pstate_hwp_boost_down() at any time. */ u64 value = READ_ONCE(cpu->hwp_req_cached); value &= ~GENMASK_ULL(31, 24); value |= (u64)epp << 24; /* * The only other updater of hwp_req_cached in the active mode, * intel_pstate_hwp_set(), is called under the same lock as this * function, so it cannot run in parallel with the update below. */ WRITE_ONCE(cpu->hwp_req_cached, value); ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); if (!ret) cpu->epp_cached = epp; return ret; } static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, int pref_index, bool use_raw, u32 raw_epp) { int epp = -EINVAL; int ret; if (!pref_index) epp = cpu_data->epp_default; if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { if (use_raw) epp = raw_epp; else if (epp == -EINVAL) epp = epp_values[pref_index]; /* * To avoid confusion, refuse to set EPP to any values different * from 0 (performance) if the current policy is "performance", * because those values would be overridden. */ if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) return -EBUSY; ret = intel_pstate_set_epp(cpu_data, epp); } else { if (epp == -EINVAL) epp = (pref_index - 1) << 2; ret = intel_pstate_set_epb(cpu_data->cpu, epp); } return ret; } static ssize_t show_energy_performance_available_preferences( struct cpufreq_policy *policy, char *buf) { int i = 0; int ret = 0; while (energy_perf_strings[i] != NULL) ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); ret += sprintf(&buf[ret], "\n"); return ret; } cpufreq_freq_attr_ro(energy_performance_available_preferences); static struct cpufreq_driver intel_pstate; static ssize_t store_energy_performance_preference( struct cpufreq_policy *policy, const char *buf, size_t count) { struct cpudata *cpu = all_cpu_data[policy->cpu]; char str_preference[21]; bool raw = false; ssize_t ret; u32 epp = 0; ret = sscanf(buf, "%20s", str_preference); if (ret != 1) return -EINVAL; ret = match_string(energy_perf_strings, -1, str_preference); if (ret < 0) { if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) return ret; ret = kstrtouint(buf, 10, &epp); if (ret) return ret; if (epp > 255) return -EINVAL; raw = true; } /* * This function runs with the policy R/W semaphore held, which * guarantees that the driver pointer will not change while it is * running. */ if (!intel_pstate_driver) return -EAGAIN; mutex_lock(&intel_pstate_limits_lock); if (intel_pstate_driver == &intel_pstate) { ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); } else { /* * In the passive mode the governor needs to be stopped on the * target CPU before the EPP update and restarted after it, * which is super-heavy-weight, so make sure it is worth doing * upfront. */ if (!raw) epp = ret ? epp_values[ret] : cpu->epp_default; if (cpu->epp_cached != epp) { int err; cpufreq_stop_governor(policy); ret = intel_pstate_set_epp(cpu, epp); err = cpufreq_start_governor(policy); if (!ret) ret = err; } else { ret = 0; } } mutex_unlock(&intel_pstate_limits_lock); return ret ?: count; } static ssize_t show_energy_performance_preference( struct cpufreq_policy *policy, char *buf) { struct cpudata *cpu_data = all_cpu_data[policy->cpu]; int preference, raw_epp; preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); if (preference < 0) return preference; if (raw_epp) return sprintf(buf, "%d\n", raw_epp); else return sprintf(buf, "%s\n", energy_perf_strings[preference]); } cpufreq_freq_attr_rw(energy_performance_preference); static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) { struct cpudata *cpu = all_cpu_data[policy->cpu]; int ratio, freq; ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); if (ratio <= 0) { u64 cap; rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); ratio = HWP_GUARANTEED_PERF(cap); } freq = ratio * cpu->pstate.scaling; if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); return sprintf(buf, "%d\n", freq); } cpufreq_freq_attr_ro(base_frequency); static struct freq_attr *hwp_cpufreq_attrs[] = { &energy_performance_preference, &energy_performance_available_preferences, &base_frequency, NULL, }; static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) { u64 cap; rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); WRITE_ONCE(cpu->hwp_cap_cached, cap); cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); } static void intel_pstate_get_hwp_cap(struct cpudata *cpu) { int scaling = cpu->pstate.scaling; __intel_pstate_get_hwp_cap(cpu); cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; if (scaling != cpu->pstate.perf_ctl_scaling) { int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, perf_ctl_scaling); cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, perf_ctl_scaling); } } static void intel_pstate_hwp_set(unsigned int cpu) { struct cpudata *cpu_data = all_cpu_data[cpu]; int max, min; u64 value; s16 epp; max = cpu_data->max_perf_ratio; min = cpu_data->min_perf_ratio; if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) min = max; rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); value &= ~HWP_MIN_PERF(~0L); value |= HWP_MIN_PERF(min); value &= ~HWP_MAX_PERF(~0L); value |= HWP_MAX_PERF(max); if (cpu_data->epp_policy == cpu_data->policy) goto skip_epp; cpu_data->epp_policy = cpu_data->policy; if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { epp = intel_pstate_get_epp(cpu_data, value); cpu_data->epp_powersave = epp; /* If EPP read was failed, then don't try to write */ if (epp < 0) goto skip_epp; epp = 0; } else { /* skip setting EPP, when saved value is invalid */ if (cpu_data->epp_powersave < 0) goto skip_epp; /* * No need to restore EPP when it is not zero. This * means: * - Policy is not changed * - user has manually changed * - Error reading EPB */ epp = intel_pstate_get_epp(cpu_data, value); if (epp) goto skip_epp; epp = cpu_data->epp_powersave; } if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { value &= ~GENMASK_ULL(31, 24); value |= (u64)epp << 24; } else { intel_pstate_set_epb(cpu, epp); } skip_epp: WRITE_ONCE(cpu_data->hwp_req_cached, value); wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); } static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); static void intel_pstate_hwp_offline(struct cpudata *cpu) { u64 value = READ_ONCE(cpu->hwp_req_cached); int min_perf; intel_pstate_disable_hwp_interrupt(cpu); if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { /* * In case the EPP has been set to "performance" by the * active mode "performance" scaling algorithm, replace that * temporary value with the cached EPP one. */ value &= ~GENMASK_ULL(31, 24); value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); /* * However, make sure that EPP will be set to "performance" when * the CPU is brought back online again and the "performance" * scaling algorithm is still in effect. */ cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; } /* * Clear the desired perf field in the cached HWP request value to * prevent nonzero desired values from being leaked into the active * mode. */ value &= ~HWP_DESIRED_PERF(~0L); WRITE_ONCE(cpu->hwp_req_cached, value); value &= ~GENMASK_ULL(31, 0); min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); /* Set hwp_max = hwp_min */ value |= HWP_MAX_PERF(min_perf); value |= HWP_MIN_PERF(min_perf); /* Set EPP to min */ if (boot_cpu_has(X86_FEATURE_HWP_EPP)) value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); } #define POWER_CTL_EE_ENABLE 1 #define POWER_CTL_EE_DISABLE 2 static int power_ctl_ee_state; static void set_power_ctl_ee_state(bool input) { u64 power_ctl; mutex_lock(&intel_pstate_driver_lock); rdmsrl(MSR_IA32_POWER_CTL, power_ctl); if (input) { power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); power_ctl_ee_state = POWER_CTL_EE_ENABLE; } else { power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); power_ctl_ee_state = POWER_CTL_EE_DISABLE; } wrmsrl(MSR_IA32_POWER_CTL, power_ctl); mutex_unlock(&intel_pstate_driver_lock); } static void intel_pstate_hwp_enable(struct cpudata *cpudata); static void intel_pstate_hwp_reenable(struct cpudata *cpu) { intel_pstate_hwp_enable(cpu); wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); } static int intel_pstate_suspend(struct cpufreq_policy *policy) { struct cpudata *cpu = all_cpu_data[policy->cpu]; pr_debug("CPU %d suspending\n", cpu->cpu); cpu->suspended = true; /* disable HWP interrupt and cancel any pending work */ intel_pstate_disable_hwp_interrupt(cpu); return 0; } static int intel_pstate_resume(struct cpufreq_policy *policy) { struct cpudata *cpu = all_cpu_data[policy->cpu]; pr_debug("CPU %d resuming\n", cpu->cpu); /* Only restore if the system default is changed */ if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) set_power_ctl_ee_state(true); else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) set_power_ctl_ee_state(false); if (cpu->suspended && hwp_active) { mutex_lock(&intel_pstate_limits_lock); /* Re-enable HWP, because "online" has not done that. */ intel_pstate_hwp_reenable(cpu); mutex_unlock(&intel_pstate_limits_lock); } cpu->suspended = false; return 0; } static void intel_pstate_update_policies(void) { int cpu; for_each_possible_cpu(cpu) cpufreq_update_policy(cpu); } static void __intel_pstate_update_max_freq(struct cpudata *cpudata, struct cpufreq_policy *policy) { if (hwp_active) intel_pstate_get_hwp_cap(cpudata); policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; refresh_frequency_limits(policy); } static void intel_pstate_update_limits(unsigned int cpu) { struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); if (!policy) return; __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); cpufreq_cpu_release(policy); } static void intel_pstate_update_limits_for_all(void) { int cpu; for_each_possible_cpu(cpu) intel_pstate_update_limits(cpu); } /************************** sysfs begin ************************/ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", global.object); \ } static ssize_t intel_pstate_show_status(char *buf); static int intel_pstate_update_status(const char *buf, size_t size); static ssize_t show_status(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret; mutex_lock(&intel_pstate_driver_lock); ret = intel_pstate_show_status(buf); mutex_unlock(&intel_pstate_driver_lock); return ret; } static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { char *p = memchr(buf, '\n', count); int ret; mutex_lock(&intel_pstate_driver_lock); ret = intel_pstate_update_status(buf, p ? p - buf : count); mutex_unlock(&intel_pstate_driver_lock); return ret < 0 ? ret : count; } static ssize_t show_turbo_pct(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct cpudata *cpu; int total, no_turbo, turbo_pct; uint32_t turbo_fp; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { mutex_unlock(&intel_pstate_driver_lock); return -EAGAIN; } cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; turbo_fp = div_fp(no_turbo, total); turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); mutex_unlock(&intel_pstate_driver_lock); return sprintf(buf, "%u\n", turbo_pct); } static ssize_t show_num_pstates(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct cpudata *cpu; int total; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { mutex_unlock(&intel_pstate_driver_lock); return -EAGAIN; } cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; mutex_unlock(&intel_pstate_driver_lock); return sprintf(buf, "%u\n", total); } static ssize_t show_no_turbo(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { ssize_t ret; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { mutex_unlock(&intel_pstate_driver_lock); return -EAGAIN; } ret = sprintf(buf, "%u\n", global.no_turbo); mutex_unlock(&intel_pstate_driver_lock); return ret; } static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { unsigned int input; bool no_turbo; if (sscanf(buf, "%u", &input) != 1) return -EINVAL; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { count = -EAGAIN; goto unlock_driver; } no_turbo = !!clamp_t(int, input, 0, 1); WRITE_ONCE(global.turbo_disabled, turbo_is_disabled()); if (global.turbo_disabled && !no_turbo) { pr_notice("Turbo disabled by BIOS or unavailable on processor\n"); count = -EPERM; if (global.no_turbo) goto unlock_driver; else no_turbo = 1; } if (no_turbo == global.no_turbo) { goto unlock_driver; } WRITE_ONCE(global.no_turbo, no_turbo); mutex_lock(&intel_pstate_limits_lock); if (no_turbo) { struct cpudata *cpu = all_cpu_data[0]; int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; /* Squash the global minimum into the permitted range. */ if (global.min_perf_pct > pct) global.min_perf_pct = pct; } mutex_unlock(&intel_pstate_limits_lock); intel_pstate_update_limits_for_all(); arch_set_max_freq_ratio(no_turbo); unlock_driver: mutex_unlock(&intel_pstate_driver_lock); return count; } static void update_qos_request(enum freq_qos_req_type type) { struct freq_qos_request *req; struct cpufreq_policy *policy; int i; for_each_possible_cpu(i) { struct cpudata *cpu = all_cpu_data[i]; unsigned int freq, perf_pct; policy = cpufreq_cpu_get(i); if (!policy) continue; req = policy->driver_data; cpufreq_cpu_put(policy); if (!req) continue; if (hwp_active) intel_pstate_get_hwp_cap(cpu); if (type == FREQ_QOS_MIN) { perf_pct = global.min_perf_pct; } else { req++; perf_pct = global.max_perf_pct; } freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); if (freq_qos_update_request(req, freq) < 0) pr_warn("Failed to update freq constraint: CPU%d\n", i); } } static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { mutex_unlock(&intel_pstate_driver_lock); return -EAGAIN; } mutex_lock(&intel_pstate_limits_lock); global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); mutex_unlock(&intel_pstate_limits_lock); if (intel_pstate_driver == &intel_pstate) intel_pstate_update_policies(); else update_qos_request(FREQ_QOS_MAX); mutex_unlock(&intel_pstate_driver_lock); return count; } static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; mutex_lock(&intel_pstate_driver_lock); if (!intel_pstate_driver) { mutex_unlock(&intel_pstate_driver_lock); return -EAGAIN; } mutex_lock(&intel_pstate_limits_lock); global.min_perf_pct = clamp_t(int, input, min_perf_pct_min(), global.max_perf_pct); mutex_unlock(&intel_pstate_limits_lock); if (intel_pstate_driver == &intel_pstate) intel_pstate_update_policies(); else update_qos_request(FREQ_QOS_MIN); mutex_unlock(&intel_pstate_driver_lock); return count; } static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return sprintf(buf, "%u\n", hwp_boost); } static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = kstrtouint(buf, 10, &input); if (ret) return ret; mutex_lock(&intel_pstate_driver_lock); hwp_boost = !!input; intel_pstate_update_policies(); mutex_unlock(&intel_pstate_driver_lock); return count; } static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { u64 power_ctl; int enable; rdmsrl(MSR_IA32_POWER_CTL, power_ctl); enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); return sprintf(buf, "%d\n", !enable); } static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, const char *buf, size_t count) { bool input; int ret; ret = kstrtobool(buf, &input); if (ret) return ret; set_power_ctl_ee_state(input); return count; } show_one(max_perf_pct, max_perf_pct); show_one(min_perf_pct, min_perf_pct); define_one_global_rw(status); define_one_global_rw(no_turbo); define_one_global_rw(max_perf_pct); define_one_global_rw(min_perf_pct); define_one_global_ro(turbo_pct); define_one_global_ro(num_pstates); define_one_global_rw(hwp_dynamic_boost); define_one_global_rw(energy_efficiency); static struct attribute *intel_pstate_attributes[] = { &status.attr, &no_turbo.attr, NULL }; static const struct attribute_group intel_pstate_attr_group = { .attrs = intel_pstate_attributes, }; static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; static struct kobject *intel_pstate_kobject; static void __init intel_pstate_sysfs_expose_params(void) { struct device *dev_root = bus_get_dev_root(&cpu_subsys); int rc; if (dev_root) { intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); put_device(dev_root); } if (WARN_ON(!intel_pstate_kobject)) return; rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); if (WARN_ON(rc)) return; if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); WARN_ON(rc); rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); WARN_ON(rc); } /* * If per cpu limits are enforced there are no global limits, so * return without creating max/min_perf_pct attributes */ if (per_cpu_limits) return; rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); WARN_ON(rc); rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); WARN_ON(rc); if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); WARN_ON(rc); } } static void __init intel_pstate_sysfs_remove(void) { if (!intel_pstate_kobject) return; sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); } if (!per_cpu_limits) { sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); } kobject_put(intel_pstate_kobject); } static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) { int rc; if (!hwp_active) return; rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); WARN_ON_ONCE(rc); } static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) { if (!hwp_active) return; sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); } /************************** sysfs end ************************/ static void intel_pstate_notify_work(struct work_struct *work) { struct cpudata *cpudata = container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); if (policy) { __intel_pstate_update_max_freq(cpudata, policy); cpufreq_cpu_release(policy); } wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); } static DEFINE_SPINLOCK(hwp_notify_lock); static cpumask_t hwp_intr_enable_mask; #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0) #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3) void notify_hwp_interrupt(void) { unsigned int this_cpu = smp_processor_id(); u64 value, status_mask; unsigned long flags; if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) return; status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS; if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS; rdmsrl_safe(MSR_HWP_STATUS, &value); if (!(value & status_mask)) return; spin_lock_irqsave(&hwp_notify_lock, flags); if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) goto ack_intr; schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work, msecs_to_jiffies(10)); spin_unlock_irqrestore(&hwp_notify_lock, flags); return; ack_intr: wrmsrl_safe(MSR_HWP_STATUS, 0); spin_unlock_irqrestore(&hwp_notify_lock, flags); } static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) { bool cancel_work; if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY)) return; /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); spin_lock_irq(&hwp_notify_lock); cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask); spin_unlock_irq(&hwp_notify_lock); if (cancel_work) cancel_delayed_work_sync(&cpudata->hwp_notify_work); } #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0) #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2) static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) { /* Enable HWP notification interrupt for performance change */ if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ; spin_lock_irq(&hwp_notify_lock); INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); spin_unlock_irq(&hwp_notify_lock); if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE)) interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ; /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask); wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); } } static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) { cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); /* * If the EPP is set by firmware, which means that firmware enabled HWP * - Is equal or less than 0x80 (default balance_perf EPP) * - But less performance oriented than performance EPP * then use this as new balance_perf EPP. */ if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && cpudata->epp_default > HWP_EPP_PERFORMANCE) { epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; return; } /* * If this CPU gen doesn't call for change in balance_perf * EPP return. */ if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) return; /* * Use hard coded value per gen to update the balance_perf * and default EPP. */ cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; intel_pstate_set_epp(cpudata, cpudata->epp_default); } static void intel_pstate_hwp_enable(struct cpudata *cpudata) { /* First disable HWP notification interrupt till we activate again */ if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); intel_pstate_enable_hwp_interrupt(cpudata); if (cpudata->epp_default >= 0) return; intel_pstate_update_epp_defaults(cpudata); } static int atom_get_min_pstate(int not_used) { u64 value; rdmsrl(MSR_ATOM_CORE_RATIOS, value); return (value >> 8) & 0x7F; } static int atom_get_max_pstate(int not_used) { u64 value; rdmsrl(MSR_ATOM_CORE_RATIOS, value); return (value >> 16) & 0x7F; } static int atom_get_turbo_pstate(int not_used) { u64 value; rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); return value & 0x7F; } static u64 atom_get_val(struct cpudata *cpudata, int pstate) { u64 val; int32_t vid_fp; u32 vid; val = (u64)pstate << 8; if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) val |= (u64)1 << 32; vid_fp = cpudata->vid.min + mul_fp( int_tofp(pstate - cpudata->pstate.min_pstate), cpudata->vid.ratio); vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); vid = ceiling_fp(vid_fp); if (pstate > cpudata->pstate.max_pstate) vid = cpudata->vid.turbo; return val | vid; } static int silvermont_get_scaling(void) { u64 value; int i; /* Defined in Table 35-6 from SDM (Sept 2015) */ static int silvermont_freq_table[] = { 83300, 100000, 133300, 116700, 80000}; rdmsrl(MSR_FSB_FREQ, value); i = value & 0x7; WARN_ON(i > 4); return silvermont_freq_table[i]; } static int airmont_get_scaling(void) { u64 value; int i; /* Defined in Table 35-10 from SDM (Sept 2015) */ static int airmont_freq_table[] = { 83300, 100000, 133300, 116700, 80000, 93300, 90000, 88900, 87500}; rdmsrl(MSR_FSB_FREQ, value); i = value & 0xF; WARN_ON(i > 8); return airmont_freq_table[i]; } static void atom_get_vid(struct cpudata *cpudata) { u64 value; rdmsrl(MSR_ATOM_CORE_VIDS, value); cpudata->vid.min = int_tofp((value >> 8) & 0x7f); cpudata->vid.max = int_tofp((value >> 16) & 0x7f); cpudata->vid.ratio = div_fp( cpudata->vid.max - cpudata->vid.min, int_tofp(cpudata->pstate.max_pstate - cpudata->pstate.min_pstate)); rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); cpudata->vid.turbo = value & 0x7f; } static int core_get_min_pstate(int cpu) { u64 value; rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); return (value >> 40) & 0xFF; } static int core_get_max_pstate_physical(int cpu) { u64 value; rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); return (value >> 8) & 0xFF; } static int core_get_tdp_ratio(int cpu, u64 plat_info) { /* Check how many TDP levels present */ if (plat_info & 0x600000000) { u64 tdp_ctrl; u64 tdp_ratio; int tdp_msr; int err; /* Get the TDP level (0, 1, 2) to get ratios */ err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); if (err) return err; /* TDP MSR are continuous starting at 0x648 */ tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); if (err) return err; /* For level 1 and 2, bits[23:16] contain the ratio */ if (tdp_ctrl & 0x03) tdp_ratio >>= 16; tdp_ratio &= 0xff; /* ratios are only 8 bits long */ pr_debug("tdp_ratio %x\n", (int)tdp_ratio); return (int)tdp_ratio; } return -ENXIO; } static int core_get_max_pstate(int cpu) { u64 tar; u64 plat_info; int max_pstate; int tdp_ratio; int err; rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); max_pstate = (plat_info >> 8) & 0xFF; tdp_ratio = core_get_tdp_ratio(cpu, plat_info); if (tdp_ratio <= 0) return max_pstate; if (hwp_active) { /* Turbo activation ratio is not used on HWP platforms */ return tdp_ratio; } err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); if (!err) { int tar_levels; /* Do some sanity checking for safety */ tar_levels = tar & 0xff; if (tdp_ratio - 1 == tar_levels) { max_pstate = tar_levels; pr_debug("max_pstate=TAC %x\n", max_pstate); } } return max_pstate; } static int core_get_turbo_pstate(int cpu) { u64 value; int nont, ret; rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); nont = core_get_max_pstate(cpu); ret = (value) & 255; if (ret <= nont) ret = nont; return ret; } static u64 core_get_val(struct cpudata *cpudata, int pstate) { u64 val; val = (u64)pstate << 8; if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled)) val |= (u64)1 << 32; return val; } static int knl_get_aperf_mperf_shift(void) { return 10; } static int knl_get_turbo_pstate(int cpu) { u64 value; int nont, ret; rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); nont = core_get_max_pstate(cpu); ret = (((value) >> 8) & 0xFF); if (ret <= nont) ret = nont; return ret; } static void hybrid_get_type(void *data) { u8 *cpu_type = data; *cpu_type = get_this_hybrid_cpu_type(); } static int hwp_get_cpu_scaling(int cpu) { u8 cpu_type = 0; smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); /* P-cores have a smaller perf level-to-freqency scaling factor. */ if (cpu_type == 0x40) return hybrid_scaling_factor; /* Use default core scaling for E-cores */ if (cpu_type == 0x20) return core_get_scaling(); /* * If reached here, this system is either non-hybrid (like Tiger * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with * no E cores (in which case CPUID for hybrid support is 0). * * The CPPC nominal_frequency field is 0 for non-hybrid systems, * so the default core scaling will be used for them. */ return intel_pstate_cppc_get_scaling(cpu); } static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) { trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); cpu->pstate.current_pstate = pstate; /* * Generally, there is no guarantee that this code will always run on * the CPU being updated, so force the register update to run on the * right CPU. */ wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); } static void intel_pstate_set_min_pstate(struct cpudata *cpu) { intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); } static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) { int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); int perf_ctl_scaling = pstate_funcs.get_scaling(); cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); cpu->pstate.max_pstate_physical = perf_ctl_max_phys; cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; if (hwp_active && !hwp_mode_bdw) { __intel_pstate_get_hwp_cap(cpu); if (pstate_funcs.get_cpu_scaling) { cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); if (cpu->pstate.scaling != perf_ctl_scaling) intel_pstate_hybrid_hwp_adjust(cpu); } else { cpu->pstate.scaling = perf_ctl_scaling; } } else { cpu->pstate.scaling = perf_ctl_scaling; cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); } if (cpu->pstate.scaling == perf_ctl_scaling) { cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; } if (pstate_funcs.get_aperf_mperf_shift) cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); if (pstate_funcs.get_vid) pstate_funcs.get_vid(cpu); intel_pstate_set_min_pstate(cpu); } /* * Long hold time will keep high perf limits for long time, * which negatively impacts perf/watt for some workloads, * like specpower. 3ms is based on experiements on some * workoads. */ static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) { u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); u32 max_limit = (hwp_req & 0xff00) >> 8; u32 min_limit = (hwp_req & 0xff); u32 boost_level1; /* * Cases to consider (User changes via sysfs or boot time): * If, P0 (Turbo max) = P1 (Guaranteed max) = min: * No boost, return. * If, P0 (Turbo max) > P1 (Guaranteed max) = min: * Should result in one level boost only for P0. * If, P0 (Turbo max) = P1 (Guaranteed max) > min: * Should result in two level boost: * (min + p1)/2 and P1. * If, P0 (Turbo max) > P1 (Guaranteed max) > min: * Should result in three level boost: * (min + p1)/2, P1 and P0. */ /* If max and min are equal or already at max, nothing to boost */ if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) return; if (!cpu->hwp_boost_min) cpu->hwp_boost_min = min_limit; /* level at half way mark between min and guranteed */ boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; if (cpu->hwp_boost_min < boost_level1) cpu->hwp_boost_min = boost_level1; else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && max_limit != HWP_GUARANTEED_PERF(hwp_cap)) cpu->hwp_boost_min = max_limit; else return; hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; wrmsrl(MSR_HWP_REQUEST, hwp_req); cpu->last_update = cpu->sample.time; } static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) { if (cpu->hwp_boost_min) { bool expired; /* Check if we are idle for hold time to boost down */ expired = time_after64(cpu->sample.time, cpu->last_update + hwp_boost_hold_time_ns); if (expired) { wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); cpu->hwp_boost_min = 0; } } cpu->last_update = cpu->sample.time; } static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, u64 time) { cpu->sample.time = time; if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { bool do_io = false; cpu->sched_flags = 0; /* * Set iowait_boost flag and update time. Since IO WAIT flag * is set all the time, we can't just conclude that there is * some IO bound activity is scheduled on this CPU with just * one occurrence. If we receive at least two in two * consecutive ticks, then we treat as boost candidate. */ if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) do_io = true; cpu->last_io_update = time; if (do_io) intel_pstate_hwp_boost_up(cpu); } else { intel_pstate_hwp_boost_down(cpu); } } static inline void intel_pstate_update_util_hwp(struct update_util_data *data, u64 time, unsigned int flags) { struct cpudata *cpu = container_of(data, struct cpudata, update_util); cpu->sched_flags |= flags; if (smp_processor_id() == cpu->cpu) intel_pstate_update_util_hwp_local(cpu, time); } static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) { struct sample *sample = &cpu->sample; sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); } static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) { u64 aperf, mperf; unsigned long flags; u64 tsc; local_irq_save(flags); rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); tsc = rdtsc(); if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { local_irq_restore(flags); return false; } local_irq_restore(flags); cpu->last_sample_time = cpu->sample.time; cpu->sample.time = time; cpu->sample.aperf = aperf; cpu->sample.mperf = mperf; cpu->sample.tsc = tsc; cpu->sample.aperf -= cpu->prev_aperf; cpu->sample.mperf -= cpu->prev_mperf; cpu->sample.tsc -= cpu->prev_tsc; cpu->prev_aperf = aperf; cpu->prev_mperf = mperf; cpu->prev_tsc = tsc; /* * First time this function is invoked in a given cycle, all of the * previous sample data fields are equal to zero or stale and they must * be populated with meaningful numbers for things to work, so assume * that sample.time will always be reset before setting the utilization * update hook and make the caller skip the sample then. */ if (cpu->last_sample_time) { intel_pstate_calc_avg_perf(cpu); return true; } return false; } static inline int32_t get_avg_frequency(struct cpudata *cpu) { return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); } static inline int32_t get_avg_pstate(struct cpudata *cpu) { return mul_ext_fp(cpu->pstate.max_pstate_physical, cpu->sample.core_avg_perf); } static inline int32_t get_target_pstate(struct cpudata *cpu) { struct sample *sample = &cpu->sample; int32_t busy_frac; int target, avg_pstate; busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, sample->tsc); if (busy_frac < cpu->iowait_boost) busy_frac = cpu->iowait_boost; sample->busy_scaled = busy_frac * 100; target = READ_ONCE(global.no_turbo) ? cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; target += target >> 2; target = mul_fp(target, busy_frac); if (target < cpu->pstate.min_pstate) target = cpu->pstate.min_pstate; /* * If the average P-state during the previous cycle was higher than the * current target, add 50% of the difference to the target to reduce * possible performance oscillations and offset possible performance * loss related to moving the workload from one CPU to another within * a package/module. */ avg_pstate = get_avg_pstate(cpu); if (avg_pstate > target) target += (avg_pstate - target) >> 1; return target; } static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) { int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); int max_pstate = max(min_pstate, cpu->max_perf_ratio); return clamp_t(int, pstate, min_pstate, max_pstate); } static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) { if (pstate == cpu->pstate.current_pstate) return; cpu->pstate.current_pstate = pstate; wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); } static void intel_pstate_adjust_pstate(struct cpudata *cpu) { int from = cpu->pstate.current_pstate; struct sample *sample; int target_pstate; target_pstate = get_target_pstate(cpu); target_pstate = intel_pstate_prepare_request(cpu, target_pstate); trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); intel_pstate_update_pstate(cpu, target_pstate); sample = &cpu->sample; trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), fp_toint(sample->busy_scaled), from, cpu->pstate.current_pstate, sample->mperf, sample->aperf, sample->tsc, get_avg_frequency(cpu), fp_toint(cpu->iowait_boost * 100)); } static void intel_pstate_update_util(struct update_util_data *data, u64 time, unsigned int flags) { struct cpudata *cpu = container_of(data, struct cpudata, update_util); u64 delta_ns; /* Don't allow remote callbacks */ if (smp_processor_id() != cpu->cpu) return; delta_ns = time - cpu->last_update; if (flags & SCHED_CPUFREQ_IOWAIT) { /* Start over if the CPU may have been idle. */ if (delta_ns > TICK_NSEC) { cpu->iowait_boost = ONE_EIGHTH_FP; } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { cpu->iowait_boost <<= 1; if (cpu->iowait_boost > int_tofp(1)) cpu->iowait_boost = int_tofp(1); } else { cpu->iowait_boost = ONE_EIGHTH_FP; } } else if (cpu->iowait_boost) { /* Clear iowait_boost if the CPU may have been idle. */ if (delta_ns > TICK_NSEC) cpu->iowait_boost = 0; else cpu->iowait_boost >>= 1; } cpu->last_update = time; delta_ns = time - cpu->sample.time; if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) return; if (intel_pstate_sample(cpu, time)) intel_pstate_adjust_pstate(cpu); } static struct pstate_funcs core_funcs = { .get_max = core_get_max_pstate, .get_max_physical = core_get_max_pstate_physical, .get_min = core_get_min_pstate, .get_turbo = core_get_turbo_pstate, .get_scaling = core_get_scaling, .get_val = core_get_val, }; static const struct pstate_funcs silvermont_funcs = { .get_max = atom_get_max_pstate, .get_max_physical = atom_get_max_pstate, .get_min = atom_get_min_pstate, .get_turbo = atom_get_turbo_pstate, .get_val = atom_get_val, .get_scaling = silvermont_get_scaling, .get_vid = atom_get_vid, }; static const struct pstate_funcs airmont_funcs = { .get_max = atom_get_max_pstate, .get_max_physical = atom_get_max_pstate, .get_min = atom_get_min_pstate, .get_turbo = atom_get_turbo_pstate, .get_val = atom_get_val, .get_scaling = airmont_get_scaling, .get_vid = atom_get_vid, }; static const struct pstate_funcs knl_funcs = { .get_max = core_get_max_pstate, .get_max_physical = core_get_max_pstate_physical, .get_min = core_get_min_pstate, .get_turbo = knl_get_turbo_pstate, .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, .get_scaling = core_get_scaling, .get_val = core_get_val, }; #define X86_MATCH(vfm, policy) \ X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy) static const struct x86_cpu_id intel_pstate_cpu_ids[] = { X86_MATCH(INTEL_SANDYBRIDGE, core_funcs), X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs), X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs), X86_MATCH(INTEL_IVYBRIDGE, core_funcs), X86_MATCH(INTEL_HASWELL, core_funcs), X86_MATCH(INTEL_BROADWELL, core_funcs), X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs), X86_MATCH(INTEL_HASWELL_X, core_funcs), X86_MATCH(INTEL_HASWELL_L, core_funcs), X86_MATCH(INTEL_HASWELL_G, core_funcs), X86_MATCH(INTEL_BROADWELL_G, core_funcs), X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs), X86_MATCH(INTEL_SKYLAKE_L, core_funcs), X86_MATCH(INTEL_BROADWELL_X, core_funcs), X86_MATCH(INTEL_SKYLAKE, core_funcs), X86_MATCH(INTEL_BROADWELL_D, core_funcs), X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs), X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs), X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs), X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs), X86_MATCH(INTEL_SKYLAKE_X, core_funcs), X86_MATCH(INTEL_COMETLAKE, core_funcs), X86_MATCH(INTEL_ICELAKE_X, core_funcs), X86_MATCH(INTEL_TIGERLAKE, core_funcs), X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); #ifdef CONFIG_ACPI static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { X86_MATCH(INTEL_BROADWELL_D, core_funcs), X86_MATCH(INTEL_BROADWELL_X, core_funcs), X86_MATCH(INTEL_SKYLAKE_X, core_funcs), X86_MATCH(INTEL_ICELAKE_X, core_funcs), X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs), X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs), {} }; #endif static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { X86_MATCH(INTEL_KABYLAKE, core_funcs), {} }; static int intel_pstate_init_cpu(unsigned int cpunum) { struct cpudata *cpu; cpu = all_cpu_data[cpunum]; if (!cpu) { cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); if (!cpu) return -ENOMEM; WRITE_ONCE(all_cpu_data[cpunum], cpu); cpu->cpu = cpunum; cpu->epp_default = -EINVAL; if (hwp_active) { intel_pstate_hwp_enable(cpu); if (intel_pstate_acpi_pm_profile_server()) hwp_boost = true; } } else if (hwp_active) { /* * Re-enable HWP in case this happens after a resume from ACPI * S3 if the CPU was offline during the whole system/resume * cycle. */ intel_pstate_hwp_reenable(cpu); } cpu->epp_powersave = -EINVAL; cpu->epp_policy = 0; intel_pstate_get_cpu_pstates(cpu); pr_debug("controlling: cpu %d\n", cpunum); return 0; } static void intel_pstate_set_update_util_hook(unsigned int cpu_num) { struct cpudata *cpu = all_cpu_data[cpu_num]; if (hwp_active && !hwp_boost) return; if (cpu->update_util_set) return; /* Prevent intel_pstate_update_util() from using stale data. */ cpu->sample.time = 0; cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, (hwp_active ? intel_pstate_update_util_hwp : intel_pstate_update_util)); cpu->update_util_set = true; } static void intel_pstate_clear_update_util_hook(unsigned int cpu) { struct cpudata *cpu_data = all_cpu_data[cpu]; if (!cpu_data->update_util_set) return; cpufreq_remove_update_util_hook(cpu); cpu_data->update_util_set = false; synchronize_rcu(); } static int intel_pstate_get_max_freq(struct cpudata *cpu) { return READ_ONCE(global.no_turbo) ? cpu->pstate.max_freq : cpu->pstate.turbo_freq; } static void intel_pstate_update_perf_limits(struct cpudata *cpu, unsigned int policy_min, unsigned int policy_max) { int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; int32_t max_policy_perf, min_policy_perf; max_policy_perf = policy_max / perf_ctl_scaling; if (policy_max == policy_min) { min_policy_perf = max_policy_perf; } else { min_policy_perf = policy_min / perf_ctl_scaling; min_policy_perf = clamp_t(int32_t, min_policy_perf, 0, max_policy_perf); } /* * HWP needs some special consideration, because HWP_REQUEST uses * abstract values to represent performance rather than pure ratios. */ if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { int freq; freq = max_policy_perf * perf_ctl_scaling; max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); freq = min_policy_perf * perf_ctl_scaling; min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); } pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", cpu->cpu, min_policy_perf, max_policy_perf); /* Normalize user input to [min_perf, max_perf] */ if (per_cpu_limits) { cpu->min_perf_ratio = min_policy_perf; cpu->max_perf_ratio = max_policy_perf; } else { int turbo_max = cpu->pstate.turbo_pstate; int32_t global_min, global_max; /* Global limits are in percent of the maximum turbo P-state. */ global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); global_min = clamp_t(int32_t, global_min, 0, global_max); pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, global_min, global_max); cpu->min_perf_ratio = max(min_policy_perf, global_min); cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); cpu->max_perf_ratio = min(max_policy_perf, global_max); cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); /* Make sure min_perf <= max_perf */ cpu->min_perf_ratio = min(cpu->min_perf_ratio, cpu->max_perf_ratio); } pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, cpu->max_perf_ratio, cpu->min_perf_ratio); } static int intel_pstate_set_policy(struct cpufreq_policy *policy) { struct cpudata *cpu; if (!policy->cpuinfo.max_freq) return -ENODEV; pr_debug("set_policy cpuinfo.max %u policy->max %u\n", policy->cpuinfo.max_freq, policy->max); cpu = all_cpu_data[policy->cpu]; cpu->policy = policy->policy; mutex_lock(&intel_pstate_limits_lock); intel_pstate_update_perf_limits(cpu, policy->min, policy->max); if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); /* * NOHZ_FULL CPUs need this as the governor callback may not * be invoked on them. */ intel_pstate_clear_update_util_hook(policy->cpu); intel_pstate_set_pstate(cpu, pstate); } else { intel_pstate_set_update_util_hook(policy->cpu); } if (hwp_active) { /* * When hwp_boost was active before and dynamically it * was turned off, in that case we need to clear the * update util hook. */ if (!hwp_boost) intel_pstate_clear_update_util_hook(policy->cpu); intel_pstate_hwp_set(policy->cpu); } /* * policy->cur is never updated with the intel_pstate driver, but it * is used as a stale frequency value. So, keep it within limits. */ policy->cur = policy->min; mutex_unlock(&intel_pstate_limits_lock); return 0; } static void intel_pstate_adjust_policy_max(struct cpudata *cpu, struct cpufreq_policy_data *policy) { if (!hwp_active && cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && policy->max < policy->cpuinfo.max_freq && policy->max > cpu->pstate.max_freq) { pr_debug("policy->max > max non turbo frequency\n"); policy->max = policy->cpuinfo.max_freq; } } static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, struct cpufreq_policy_data *policy) { int max_freq; if (hwp_active) { intel_pstate_get_hwp_cap(cpu); max_freq = READ_ONCE(global.no_turbo) ? cpu->pstate.max_freq : cpu->pstate.turbo_freq; } else { max_freq = intel_pstate_get_max_freq(cpu); } cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); intel_pstate_adjust_policy_max(cpu, policy); } static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) { intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); return 0; } static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) { struct cpudata *cpu = all_cpu_data[policy->cpu]; pr_debug("CPU %d going offline\n", cpu->cpu); if (cpu->suspended) return 0; /* * If the CPU is an SMT thread and it goes offline with the performance * settings different from the minimum, it will prevent its sibling * from getting to lower performance levels, so force the minimum * performance on CPU offline to prevent that from happening. */ if (hwp_active) intel_pstate_hwp_offline(cpu); else intel_pstate_set_min_pstate(cpu); intel_pstate_exit_perf_limits(policy); return 0; } static int intel_pstate_cpu_online(struct cpufreq_policy *policy) { struct cpudata *cpu = all_cpu_data[policy->cpu]; pr_debug("CPU %d going online\n", cpu->cpu); intel_pstate_init_acpi_perf_limits(policy); if (hwp_active) { /* * Re-enable HWP and clear the "suspended" flag to let "resume" * know that it need not do that. */ intel_pstate_hwp_reenable(cpu); cpu->suspended = false; } return 0; } static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) { intel_pstate_clear_update_util_hook(policy->cpu); return intel_cpufreq_cpu_offline(policy); } static void intel_pstate_cpu_exit(struct cpufreq_policy *policy) { pr_debug("CPU %d exiting\n", policy->cpu); policy->fast_switch_possible = false; } static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) { struct cpudata *cpu; int rc; rc = intel_pstate_init_cpu(policy->cpu); if (rc) return rc; cpu = all_cpu_data[policy->cpu]; cpu->max_perf_ratio = 0xFF; cpu->min_perf_ratio = 0; /* cpuinfo and default policy values */ policy->cpuinfo.min_freq = cpu->pstate.min_freq; policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ? cpu->pstate.max_freq : cpu->pstate.turbo_freq; policy->min = policy->cpuinfo.min_freq; policy->max = policy->cpuinfo.max_freq; intel_pstate_init_acpi_perf_limits(policy); policy->fast_switch_possible = true; return 0; } static int intel_pstate_cpu_init(struct cpufreq_policy *policy) { int ret = __intel_pstate_cpu_init(policy); if (ret) return ret; /* * Set the policy to powersave to provide a valid fallback value in case * the default cpufreq governor is neither powersave nor performance. */ policy->policy = CPUFREQ_POLICY_POWERSAVE; if (hwp_active) { struct cpudata *cpu = all_cpu_data[policy->cpu]; cpu->epp_cached = intel_pstate_get_epp(cpu, 0); } return 0; } static struct cpufreq_driver intel_pstate = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_pstate_verify_policy, .setpolicy = intel_pstate_set_policy, .suspend = intel_pstate_suspend, .resume = intel_pstate_resume, .init = intel_pstate_cpu_init, .exit = intel_pstate_cpu_exit, .offline = intel_pstate_cpu_offline, .online = intel_pstate_cpu_online, .update_limits = intel_pstate_update_limits, .name = "intel_pstate", }; static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) { struct cpudata *cpu = all_cpu_data[policy->cpu]; intel_pstate_verify_cpu_policy(cpu, policy); intel_pstate_update_perf_limits(cpu, policy->min, policy->max); return 0; } /* Use of trace in passive mode: * * In passive mode the trace core_busy field (also known as the * performance field, and lablelled as such on the graphs; also known as * core_avg_perf) is not needed and so is re-assigned to indicate if the * driver call was via the normal or fast switch path. Various graphs * output from the intel_pstate_tracer.py utility that include core_busy * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, * so we use 10 to indicate the normal path through the driver, and * 90 to indicate the fast switch path through the driver. * The scaled_busy field is not used, and is set to 0. */ #define INTEL_PSTATE_TRACE_TARGET 10 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) { struct sample *sample; if (!trace_pstate_sample_enabled()) return; if (!intel_pstate_sample(cpu, ktime_get())) return; sample = &cpu->sample; trace_pstate_sample(trace_type, 0, old_pstate, cpu->pstate.current_pstate, sample->mperf, sample->aperf, sample->tsc, get_avg_frequency(cpu), fp_toint(cpu->iowait_boost * 100)); } static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, u32 desired, bool fast_switch) { u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; value &= ~HWP_MIN_PERF(~0L); value |= HWP_MIN_PERF(min); value &= ~HWP_MAX_PERF(~0L); value |= HWP_MAX_PERF(max); value &= ~HWP_DESIRED_PERF(~0L); value |= HWP_DESIRED_PERF(desired); if (value == prev) return; WRITE_ONCE(cpu->hwp_req_cached, value); if (fast_switch) wrmsrl(MSR_HWP_REQUEST, value); else wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); } static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, u32 target_pstate, bool fast_switch) { if (fast_switch) wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, target_pstate)); else wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, target_pstate)); } static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, int target_pstate, bool fast_switch) { struct cpudata *cpu = all_cpu_data[policy->cpu]; int old_pstate = cpu->pstate.current_pstate; target_pstate = intel_pstate_prepare_request(cpu, target_pstate); if (hwp_active) { int max_pstate = policy->strict_target ? target_pstate : cpu->max_perf_ratio; intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, fast_switch); } else if (target_pstate != old_pstate) { intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); } cpu->pstate.current_pstate = target_pstate; intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : INTEL_PSTATE_TRACE_TARGET, old_pstate); return target_pstate; } static int intel_cpufreq_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpudata *cpu = all_cpu_data[policy->cpu]; struct cpufreq_freqs freqs; int target_pstate; freqs.old = policy->cur; freqs.new = target_freq; cpufreq_freq_transition_begin(policy, &freqs); target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); freqs.new = target_pstate * cpu->pstate.scaling; cpufreq_freq_transition_end(policy, &freqs, false); return 0; } static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { struct cpudata *cpu = all_cpu_data[policy->cpu]; int target_pstate; target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); return target_pstate * cpu->pstate.scaling; } static void intel_cpufreq_adjust_perf(unsigned int cpunum, unsigned long min_perf, unsigned long target_perf, unsigned long capacity) { struct cpudata *cpu = all_cpu_data[cpunum]; u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); int old_pstate = cpu->pstate.current_pstate; int cap_pstate, min_pstate, max_pstate, target_pstate; cap_pstate = READ_ONCE(global.no_turbo) ? HWP_GUARANTEED_PERF(hwp_cap) : HWP_HIGHEST_PERF(hwp_cap); /* Optimization: Avoid unnecessary divisions. */ target_pstate = cap_pstate; if (target_perf < capacity) target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); min_pstate = cap_pstate; if (min_perf < capacity) min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); if (min_pstate < cpu->pstate.min_pstate) min_pstate = cpu->pstate.min_pstate; if (min_pstate < cpu->min_perf_ratio) min_pstate = cpu->min_perf_ratio; if (min_pstate > cpu->max_perf_ratio) min_pstate = cpu->max_perf_ratio; max_pstate = min(cap_pstate, cpu->max_perf_ratio); if (max_pstate < min_pstate) max_pstate = min_pstate; target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); cpu->pstate.current_pstate = target_pstate; intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); } static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) { struct freq_qos_request *req; struct cpudata *cpu; struct device *dev; int ret, freq; dev = get_cpu_device(policy->cpu); if (!dev) return -ENODEV; ret = __intel_pstate_cpu_init(policy); if (ret) return ret; policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; /* This reflects the intel_pstate_get_cpu_pstates() setting. */ policy->cur = policy->cpuinfo.min_freq; req = kcalloc(2, sizeof(*req), GFP_KERNEL); if (!req) { ret = -ENOMEM; goto pstate_exit; } cpu = all_cpu_data[policy->cpu]; if (hwp_active) { u64 value; policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; intel_pstate_get_hwp_cap(cpu); rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); WRITE_ONCE(cpu->hwp_req_cached, value); cpu->epp_cached = intel_pstate_get_epp(cpu, value); } else { policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; } freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, freq); if (ret < 0) { dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); goto free_req; } freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, freq); if (ret < 0) { dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); goto remove_min_req; } policy->driver_data = req; return 0; remove_min_req: freq_qos_remove_request(req); free_req: kfree(req); pstate_exit: intel_pstate_exit_perf_limits(policy); return ret; } static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct freq_qos_request *req; req = policy->driver_data; freq_qos_remove_request(req + 1); freq_qos_remove_request(req); kfree(req); intel_pstate_cpu_exit(policy); } static int intel_cpufreq_suspend(struct cpufreq_policy *policy) { intel_pstate_suspend(policy); if (hwp_active) { struct cpudata *cpu = all_cpu_data[policy->cpu]; u64 value = READ_ONCE(cpu->hwp_req_cached); /* * Clear the desired perf field in MSR_HWP_REQUEST in case * intel_cpufreq_adjust_perf() is in use and the last value * written by it may not be suitable. */ value &= ~HWP_DESIRED_PERF(~0L); wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); WRITE_ONCE(cpu->hwp_req_cached, value); } return 0; } static struct cpufreq_driver intel_cpufreq = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_cpufreq_verify_policy, .target = intel_cpufreq_target, .fast_switch = intel_cpufreq_fast_switch, .init = intel_cpufreq_cpu_init, .exit = intel_cpufreq_cpu_exit, .offline = intel_cpufreq_cpu_offline, .online = intel_pstate_cpu_online, .suspend = intel_cpufreq_suspend, .resume = intel_pstate_resume, .update_limits = intel_pstate_update_limits, .name = "intel_cpufreq", }; static struct cpufreq_driver *default_driver; static void intel_pstate_driver_cleanup(void) { unsigned int cpu; cpus_read_lock(); for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) { if (intel_pstate_driver == &intel_pstate) intel_pstate_clear_update_util_hook(cpu); kfree(all_cpu_data[cpu]); WRITE_ONCE(all_cpu_data[cpu], NULL); } } cpus_read_unlock(); intel_pstate_driver = NULL; } static int intel_pstate_register_driver(struct cpufreq_driver *driver) { int ret; if (driver == &intel_pstate) intel_pstate_sysfs_expose_hwp_dynamic_boost(); memset(&global, 0, sizeof(global)); global.max_perf_pct = 100; global.turbo_disabled = turbo_is_disabled(); global.no_turbo = global.turbo_disabled; arch_set_max_freq_ratio(global.turbo_disabled); intel_pstate_driver = driver; ret = cpufreq_register_driver(intel_pstate_driver); if (ret) { intel_pstate_driver_cleanup(); return ret; } global.min_perf_pct = min_perf_pct_min(); return 0; } static ssize_t intel_pstate_show_status(char *buf) { if (!intel_pstate_driver) return sprintf(buf, "off\n"); return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? "active" : "passive"); } static int intel_pstate_update_status(const char *buf, size_t size) { if (size == 3 && !strncmp(buf, "off", size)) { if (!intel_pstate_driver) return -EINVAL; if (hwp_active) return -EBUSY; cpufreq_unregister_driver(intel_pstate_driver); intel_pstate_driver_cleanup(); return 0; } if (size == 6 && !strncmp(buf, "active", size)) { if (intel_pstate_driver) { if (intel_pstate_driver == &intel_pstate) return 0; cpufreq_unregister_driver(intel_pstate_driver); } return intel_pstate_register_driver(&intel_pstate); } if (size == 7 && !strncmp(buf, "passive", size)) { if (intel_pstate_driver) { if (intel_pstate_driver == &intel_cpufreq) return 0; cpufreq_unregister_driver(intel_pstate_driver); intel_pstate_sysfs_hide_hwp_dynamic_boost(); } return intel_pstate_register_driver(&intel_cpufreq); } return -EINVAL; } static int no_load __initdata; static int no_hwp __initdata; static int hwp_only __initdata; static unsigned int force_load __initdata; static int __init intel_pstate_msrs_not_valid(void) { if (!pstate_funcs.get_max(0) || !pstate_funcs.get_min(0) || !pstate_funcs.get_turbo(0)) return -ENODEV; return 0; } static void __init copy_cpu_funcs(struct pstate_funcs *funcs) { pstate_funcs.get_max = funcs->get_max; pstate_funcs.get_max_physical = funcs->get_max_physical; pstate_funcs.get_min = funcs->get_min; pstate_funcs.get_turbo = funcs->get_turbo; pstate_funcs.get_scaling = funcs->get_scaling; pstate_funcs.get_val = funcs->get_val; pstate_funcs.get_vid = funcs->get_vid; pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; } #ifdef CONFIG_ACPI static bool __init intel_pstate_no_acpi_pss(void) { int i; for_each_possible_cpu(i) { acpi_status status; union acpi_object *pss; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if (ACPI_FAILURE(status)) continue; pss = buffer.pointer; if (pss && pss->type == ACPI_TYPE_PACKAGE) { kfree(pss); return false; } kfree(pss); } pr_debug("ACPI _PSS not found\n"); return true; } static bool __init intel_pstate_no_acpi_pcch(void) { acpi_status status; acpi_handle handle; status = acpi_get_handle(NULL, "\\_SB", &handle); if (ACPI_FAILURE(status)) goto not_found; if (acpi_has_method(handle, "PCCH")) return false; not_found: pr_debug("ACPI PCCH not found\n"); return true; } static bool __init intel_pstate_has_acpi_ppc(void) { int i; for_each_possible_cpu(i) { struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; if (acpi_has_method(pr->handle, "_PPC")) return true; } pr_debug("ACPI _PPC not found\n"); return false; } enum { PSS, PPC, }; /* Hardware vendor-specific info that has its own power management modes */ static struct acpi_platform_list plat_info[] __initdata = { {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, { } /* End */ }; #define BITMASK_OOB (BIT(8) | BIT(18)) static bool __init intel_pstate_platform_pwr_mgmt_exists(void) { const struct x86_cpu_id *id; u64 misc_pwr; int idx; id = x86_match_cpu(intel_pstate_cpu_oob_ids); if (id) { rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); if (misc_pwr & BITMASK_OOB) { pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); return true; } } idx = acpi_match_platform_list(plat_info); if (idx < 0) return false; switch (plat_info[idx].data) { case PSS: if (!intel_pstate_no_acpi_pss()) return false; return intel_pstate_no_acpi_pcch(); case PPC: return intel_pstate_has_acpi_ppc() && !force_load; } return false; } static void intel_pstate_request_control_from_smm(void) { /* * It may be unsafe to request P-states control from SMM if _PPC support * has not been enabled. */ if (acpi_ppc) acpi_processor_pstate_control(); } #else /* CONFIG_ACPI not enabled */ static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } static inline bool intel_pstate_has_acpi_ppc(void) { return false; } static inline void intel_pstate_request_control_from_smm(void) {} #endif /* CONFIG_ACPI */ #define INTEL_PSTATE_HWP_BROADWELL 0x01 #define X86_MATCH_HWP(vfm, hwp_mode) \ X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode) static const struct x86_cpu_id hwp_support_ids[] __initconst = { X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), X86_MATCH_HWP(INTEL_ANY, 0), {} }; static bool intel_pstate_hwp_is_enabled(void) { u64 value; rdmsrl(MSR_PM_ENABLE, value); return !!(value & 0x1); } #define POWERSAVE_MASK GENMASK(7, 0) #define BALANCE_POWER_MASK GENMASK(15, 8) #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16) #define PERFORMANCE_MASK GENMASK(31, 24) #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \ (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\ FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\ FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\ FIELD_PREP_CONST(PERFORMANCE_MASK, performance)) #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \ (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\ balance_perf, HWP_EPP_PERFORMANCE)) static const struct x86_cpu_id intel_epp_default[] = { /* * Set EPP value as 102, this is the max suggested EPP * which can result in one core turbo frequency for * AlderLake Mobile CPUs. */ X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)), X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)), X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 179, 64, 16)), X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, 179, 64, 16)), {} }; static const struct x86_cpu_id intel_hybrid_scaling_factor[] = { X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL), X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL), X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL), {} }; static int __init intel_pstate_init(void) { static struct cpudata **_all_cpu_data; const struct x86_cpu_id *id; int rc; if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) return -ENODEV; id = x86_match_cpu(hwp_support_ids); if (id) { hwp_forced = intel_pstate_hwp_is_enabled(); if (hwp_forced) pr_info("HWP enabled by BIOS\n"); else if (no_load) return -ENODEV; copy_cpu_funcs(&core_funcs); /* * Avoid enabling HWP for processors without EPP support, * because that means incomplete HWP implementation which is a * corner case and supporting it is generally problematic. * * If HWP is enabled already, though, there is no choice but to * deal with it. */ if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { hwp_active = true; hwp_mode_bdw = id->driver_data; intel_pstate.attr = hwp_cpufreq_attrs; intel_cpufreq.attr = hwp_cpufreq_attrs; intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; if (!default_driver) default_driver = &intel_pstate; pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; goto hwp_cpu_matched; } pr_info("HWP not enabled\n"); } else { if (no_load) return -ENODEV; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) { pr_info("CPU model not supported\n"); return -ENODEV; } copy_cpu_funcs((struct pstate_funcs *)id->driver_data); } if (intel_pstate_msrs_not_valid()) { pr_info("Invalid MSRs\n"); return -ENODEV; } /* Without HWP start in the passive mode. */ if (!default_driver) default_driver = &intel_cpufreq; hwp_cpu_matched: /* * The Intel pstate driver will be ignored if the platform * firmware has its own power management modes. */ if (intel_pstate_platform_pwr_mgmt_exists()) { pr_info("P-states controlled by the platform\n"); return -ENODEV; } if (!hwp_active && hwp_only) return -ENOTSUPP; pr_info("Intel P-state driver initializing\n"); _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); if (!_all_cpu_data) return -ENOMEM; WRITE_ONCE(all_cpu_data, _all_cpu_data); intel_pstate_request_control_from_smm(); intel_pstate_sysfs_expose_params(); if (hwp_active) { const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default); const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor); if (id) { epp_values[EPP_INDEX_POWERSAVE] = FIELD_GET(POWERSAVE_MASK, id->driver_data); epp_values[EPP_INDEX_BALANCE_POWERSAVE] = FIELD_GET(BALANCE_POWER_MASK, id->driver_data); epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data); epp_values[EPP_INDEX_PERFORMANCE] = FIELD_GET(PERFORMANCE_MASK, id->driver_data); pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n", epp_values[EPP_INDEX_POWERSAVE], epp_values[EPP_INDEX_BALANCE_POWERSAVE], epp_values[EPP_INDEX_BALANCE_PERFORMANCE], epp_values[EPP_INDEX_PERFORMANCE]); } if (hybrid_id) { hybrid_scaling_factor = hybrid_id->driver_data; pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor); } } mutex_lock(&intel_pstate_driver_lock); rc = intel_pstate_register_driver(default_driver); mutex_unlock(&intel_pstate_driver_lock); if (rc) { intel_pstate_sysfs_remove(); return rc; } if (hwp_active) { const struct x86_cpu_id *id; id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); if (id) { set_power_ctl_ee_state(false); pr_info("Disabling energy efficiency optimization\n"); } pr_info("HWP enabled\n"); } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); } return 0; } device_initcall(intel_pstate_init); static int __init intel_pstate_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "disable")) no_load = 1; else if (!strcmp(str, "active")) default_driver = &intel_pstate; else if (!strcmp(str, "passive")) default_driver = &intel_cpufreq; if (!strcmp(str, "no_hwp")) no_hwp = 1; if (!strcmp(str, "force")) force_load = 1; if (!strcmp(str, "hwp_only")) hwp_only = 1; if (!strcmp(str, "per_cpu_perf_limits")) per_cpu_limits = true; #ifdef CONFIG_ACPI if (!strcmp(str, "support_acpi_ppc")) acpi_ppc = true; #endif return 0; } early_param("intel_pstate", intel_pstate_setup); MODULE_AUTHOR("Dirk Brandewie "); MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");