// SPDX-License-Identifier: GPL-2.0 /* * RZ/G2L Clock Pulse Generator * * Copyright (C) 2021 Renesas Electronics Corp. * * Based on renesas-cpg-mssr.c * * Copyright (C) 2015 Glider bvba * Copyright (C) 2013 Ideas On Board SPRL * Copyright (C) 2015 Renesas Electronics Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rzg2l-cpg.h" #ifdef DEBUG #define WARN_DEBUG(x) WARN_ON(x) #else #define WARN_DEBUG(x) do { } while (0) #endif #define GET_SHIFT(val) ((val >> 12) & 0xff) #define GET_WIDTH(val) ((val >> 8) & 0xf) #define KDIV(val) ((s16)FIELD_GET(GENMASK(31, 16), val)) #define MDIV(val) FIELD_GET(GENMASK(15, 6), val) #define PDIV(val) FIELD_GET(GENMASK(5, 0), val) #define SDIV(val) FIELD_GET(GENMASK(2, 0), val) #define RZG3S_DIV_P GENMASK(28, 26) #define RZG3S_DIV_M GENMASK(25, 22) #define RZG3S_DIV_NI GENMASK(21, 13) #define RZG3S_DIV_NF GENMASK(12, 1) #define CLK_ON_R(reg) (reg) #define CLK_MON_R(reg) (0x180 + (reg)) #define CLK_RST_R(reg) (reg) #define CLK_MRST_R(reg) (0x180 + (reg)) #define GET_REG_OFFSET(val) ((val >> 20) & 0xfff) #define GET_REG_SAMPLL_CLK1(val) ((val >> 22) & 0xfff) #define GET_REG_SAMPLL_CLK2(val) ((val >> 12) & 0xfff) #define CPG_WEN_BIT BIT(16) #define MAX_VCLK_FREQ (148500000) /** * struct clk_hw_data - clock hardware data * @hw: clock hw * @conf: clock configuration (register offset, shift, width) * @sconf: clock status configuration (register offset, shift, width) * @priv: CPG private data structure */ struct clk_hw_data { struct clk_hw hw; u32 conf; u32 sconf; struct rzg2l_cpg_priv *priv; }; #define to_clk_hw_data(_hw) container_of(_hw, struct clk_hw_data, hw) /** * struct sd_mux_hw_data - SD MUX clock hardware data * @hw_data: clock hw data * @mtable: clock mux table */ struct sd_mux_hw_data { struct clk_hw_data hw_data; const u32 *mtable; }; #define to_sd_mux_hw_data(_hw) container_of(_hw, struct sd_mux_hw_data, hw_data) /** * struct div_hw_data - divider clock hardware data * @hw_data: clock hw data * @dtable: pointer to divider table * @invalid_rate: invalid rate for divider * @max_rate: maximum rate for divider * @width: divider width */ struct div_hw_data { struct clk_hw_data hw_data; const struct clk_div_table *dtable; unsigned long invalid_rate; unsigned long max_rate; u32 width; }; #define to_div_hw_data(_hw) container_of(_hw, struct div_hw_data, hw_data) struct rzg2l_pll5_param { u32 pl5_fracin; u8 pl5_refdiv; u8 pl5_intin; u8 pl5_postdiv1; u8 pl5_postdiv2; u8 pl5_spread; }; struct rzg2l_pll5_mux_dsi_div_param { u8 clksrc; u8 dsi_div_a; u8 dsi_div_b; }; /** * struct rzg2l_cpg_priv - Clock Pulse Generator Private Data * * @rcdev: Reset controller entity * @dev: CPG device * @base: CPG register block base address * @rmw_lock: protects register accesses * @clks: Array containing all Core and Module Clocks * @num_core_clks: Number of Core Clocks in clks[] * @num_mod_clks: Number of Module Clocks in clks[] * @num_resets: Number of Module Resets in info->resets[] * @last_dt_core_clk: ID of the last Core Clock exported to DT * @info: Pointer to platform data * @mux_dsi_div_params: pll5 mux and dsi div parameters */ struct rzg2l_cpg_priv { struct reset_controller_dev rcdev; struct device *dev; void __iomem *base; spinlock_t rmw_lock; struct clk **clks; unsigned int num_core_clks; unsigned int num_mod_clks; unsigned int num_resets; unsigned int last_dt_core_clk; const struct rzg2l_cpg_info *info; struct rzg2l_pll5_mux_dsi_div_param mux_dsi_div_params; }; static void rzg2l_cpg_del_clk_provider(void *data) { of_clk_del_provider(data); } /* Must be called in atomic context. */ static int rzg2l_cpg_wait_clk_update_done(void __iomem *base, u32 conf) { u32 bitmask = GENMASK(GET_WIDTH(conf) - 1, 0) << GET_SHIFT(conf); u32 off = GET_REG_OFFSET(conf); u32 val; return readl_poll_timeout_atomic(base + off, val, !(val & bitmask), 10, 200); } int rzg2l_cpg_sd_clk_mux_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *cnd = data; struct clk_hw *hw = __clk_get_hw(cnd->clk); struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 off = GET_REG_OFFSET(clk_hw_data->conf); u32 shift = GET_SHIFT(clk_hw_data->conf); const u32 clk_src_266 = 3; unsigned long flags; int ret; if (event != PRE_RATE_CHANGE || (cnd->new_rate / MEGA == 266)) return NOTIFY_DONE; spin_lock_irqsave(&priv->rmw_lock, flags); /* * As per the HW manual, we should not directly switch from 533 MHz to * 400 MHz and vice versa. To change the setting from 2’b01 (533 MHz) * to 2’b10 (400 MHz) or vice versa, Switch to 2’b11 (266 MHz) first, * and then switch to the target setting (2’b01 (533 MHz) or 2’b10 * (400 MHz)). * Setting a value of '0' to the SEL_SDHI0_SET or SEL_SDHI1_SET clock * switching register is prohibited. * The clock mux has 3 input clocks(533 MHz, 400 MHz, and 266 MHz), and * the index to value mapping is done by adding 1 to the index. */ writel((CPG_WEN_BIT | clk_src_266) << shift, priv->base + off); /* Wait for the update done. */ ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); spin_unlock_irqrestore(&priv->rmw_lock, flags); if (ret) dev_err(priv->dev, "failed to switch to safe clk source\n"); return notifier_from_errno(ret); } int rzg3s_cpg_div_clk_notifier(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *cnd = data; struct clk_hw *hw = __clk_get_hw(cnd->clk); struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 off = GET_REG_OFFSET(clk_hw_data->conf); u32 shift = GET_SHIFT(clk_hw_data->conf); unsigned long flags; int ret = 0; u32 val; if (event != PRE_RATE_CHANGE || !div_hw_data->invalid_rate || div_hw_data->invalid_rate % cnd->new_rate) return NOTIFY_DONE; spin_lock_irqsave(&priv->rmw_lock, flags); val = readl(priv->base + off); val >>= shift; val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); /* * There are different constraints for the user of this notifiers as follows: * 1/ SD div cannot be 1 (val == 0) if parent rate is 800MHz * 2/ OCTA / SPI div cannot be 1 (val == 0) if parent rate is 400MHz * As SD can have only one parent having 800MHz and OCTA div can have * only one parent having 400MHz we took into account the parent rate * at the beginning of function (by checking invalid_rate % new_rate). * Now it is time to check the hardware divider and update it accordingly. */ if (!val) { writel((CPG_WEN_BIT | 1) << shift, priv->base + off); /* Wait for the update done. */ ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); } spin_unlock_irqrestore(&priv->rmw_lock, flags); if (ret) dev_err(priv->dev, "Failed to downgrade the div\n"); return notifier_from_errno(ret); } static int rzg2l_register_notifier(struct clk_hw *hw, const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct notifier_block *nb; if (!core->notifier) return 0; nb = devm_kzalloc(priv->dev, sizeof(*nb), GFP_KERNEL); if (!nb) return -ENOMEM; nb->notifier_call = core->notifier; return clk_notifier_register(hw->clk, nb); } static unsigned long rzg3s_div_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 val; val = readl(priv->base + GET_REG_OFFSET(clk_hw_data->conf)); val >>= GET_SHIFT(clk_hw_data->conf); val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); return divider_recalc_rate(hw, parent_rate, val, div_hw_data->dtable, CLK_DIVIDER_ROUND_CLOSEST, div_hw_data->width); } static int rzg3s_div_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); if (div_hw_data->max_rate && req->rate > div_hw_data->max_rate) req->rate = div_hw_data->max_rate; return divider_determine_rate(hw, req, div_hw_data->dtable, div_hw_data->width, CLK_DIVIDER_ROUND_CLOSEST); } static int rzg3s_div_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct div_hw_data *div_hw_data = to_div_hw_data(clk_hw_data); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 off = GET_REG_OFFSET(clk_hw_data->conf); u32 shift = GET_SHIFT(clk_hw_data->conf); unsigned long flags; u32 val; int ret; val = divider_get_val(rate, parent_rate, div_hw_data->dtable, div_hw_data->width, CLK_DIVIDER_ROUND_CLOSEST); spin_lock_irqsave(&priv->rmw_lock, flags); writel((CPG_WEN_BIT | val) << shift, priv->base + off); /* Wait for the update done. */ ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); spin_unlock_irqrestore(&priv->rmw_lock, flags); return ret; } static const struct clk_ops rzg3s_div_clk_ops = { .recalc_rate = rzg3s_div_clk_recalc_rate, .determine_rate = rzg3s_div_clk_determine_rate, .set_rate = rzg3s_div_clk_set_rate, }; static struct clk * __init rzg3s_cpg_div_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct div_hw_data *div_hw_data; struct clk_init_data init = {}; const struct clk_div_table *clkt; struct clk_hw *clk_hw; const struct clk *parent; const char *parent_name; u32 max = 0; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); div_hw_data = devm_kzalloc(priv->dev, sizeof(*div_hw_data), GFP_KERNEL); if (!div_hw_data) return ERR_PTR(-ENOMEM); init.name = core->name; init.flags = core->flag; init.ops = &rzg3s_div_clk_ops; init.parent_names = &parent_name; init.num_parents = 1; /* Get the maximum divider to retrieve div width. */ for (clkt = core->dtable; clkt->div; clkt++) { if (max < clkt->div) max = clkt->div; } div_hw_data->hw_data.priv = priv; div_hw_data->hw_data.conf = core->conf; div_hw_data->hw_data.sconf = core->sconf; div_hw_data->dtable = core->dtable; div_hw_data->invalid_rate = core->invalid_rate; div_hw_data->max_rate = core->max_rate; div_hw_data->width = fls(max) - 1; clk_hw = &div_hw_data->hw_data.hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); ret = rzg2l_register_notifier(clk_hw, core, priv); if (ret) { dev_err(priv->dev, "Failed to register notifier for %s\n", core->name); return ERR_PTR(ret); } return clk_hw->clk; } static struct clk * __init rzg2l_cpg_div_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { void __iomem *base = priv->base; struct device *dev = priv->dev; const struct clk *parent; const char *parent_name; struct clk_hw *clk_hw; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); parent_name = __clk_get_name(parent); if (core->dtable) clk_hw = clk_hw_register_divider_table(dev, core->name, parent_name, 0, base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->flag, core->dtable, &priv->rmw_lock); else clk_hw = clk_hw_register_divider(dev, core->name, parent_name, 0, base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->flag, &priv->rmw_lock); if (IS_ERR(clk_hw)) return ERR_CAST(clk_hw); return clk_hw->clk; } static struct clk * __init rzg2l_cpg_mux_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { const struct clk_hw *clk_hw; clk_hw = devm_clk_hw_register_mux(priv->dev, core->name, core->parent_names, core->num_parents, core->flag, priv->base + GET_REG_OFFSET(core->conf), GET_SHIFT(core->conf), GET_WIDTH(core->conf), core->mux_flags, &priv->rmw_lock); if (IS_ERR(clk_hw)) return ERR_CAST(clk_hw); return clk_hw->clk; } static int rzg2l_cpg_sd_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct sd_mux_hw_data *sd_mux_hw_data = to_sd_mux_hw_data(clk_hw_data); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 off = GET_REG_OFFSET(clk_hw_data->conf); u32 shift = GET_SHIFT(clk_hw_data->conf); unsigned long flags; u32 val; int ret; val = clk_mux_index_to_val(sd_mux_hw_data->mtable, CLK_MUX_ROUND_CLOSEST, index); spin_lock_irqsave(&priv->rmw_lock, flags); writel((CPG_WEN_BIT | val) << shift, priv->base + off); /* Wait for the update done. */ ret = rzg2l_cpg_wait_clk_update_done(priv->base, clk_hw_data->sconf); spin_unlock_irqrestore(&priv->rmw_lock, flags); if (ret) dev_err(priv->dev, "Failed to switch parent\n"); return ret; } static u8 rzg2l_cpg_sd_clk_mux_get_parent(struct clk_hw *hw) { struct clk_hw_data *clk_hw_data = to_clk_hw_data(hw); struct sd_mux_hw_data *sd_mux_hw_data = to_sd_mux_hw_data(clk_hw_data); struct rzg2l_cpg_priv *priv = clk_hw_data->priv; u32 val; val = readl(priv->base + GET_REG_OFFSET(clk_hw_data->conf)); val >>= GET_SHIFT(clk_hw_data->conf); val &= GENMASK(GET_WIDTH(clk_hw_data->conf) - 1, 0); return clk_mux_val_to_index(hw, sd_mux_hw_data->mtable, CLK_MUX_ROUND_CLOSEST, val); } static const struct clk_ops rzg2l_cpg_sd_clk_mux_ops = { .determine_rate = __clk_mux_determine_rate_closest, .set_parent = rzg2l_cpg_sd_clk_mux_set_parent, .get_parent = rzg2l_cpg_sd_clk_mux_get_parent, }; static struct clk * __init rzg2l_cpg_sd_mux_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct sd_mux_hw_data *sd_mux_hw_data; struct clk_init_data init; struct clk_hw *clk_hw; int ret; sd_mux_hw_data = devm_kzalloc(priv->dev, sizeof(*sd_mux_hw_data), GFP_KERNEL); if (!sd_mux_hw_data) return ERR_PTR(-ENOMEM); sd_mux_hw_data->hw_data.priv = priv; sd_mux_hw_data->hw_data.conf = core->conf; sd_mux_hw_data->hw_data.sconf = core->sconf; sd_mux_hw_data->mtable = core->mtable; init.name = core->name; init.ops = &rzg2l_cpg_sd_clk_mux_ops; init.flags = core->flag; init.num_parents = core->num_parents; init.parent_names = core->parent_names; clk_hw = &sd_mux_hw_data->hw_data.hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); ret = rzg2l_register_notifier(clk_hw, core, priv); if (ret) { dev_err(priv->dev, "Failed to register notifier for %s\n", core->name); return ERR_PTR(ret); } return clk_hw->clk; } static unsigned long rzg2l_cpg_get_foutpostdiv_rate(struct rzg2l_pll5_param *params, unsigned long rate) { unsigned long foutpostdiv_rate, foutvco_rate; params->pl5_intin = rate / MEGA; params->pl5_fracin = div_u64(((u64)rate % MEGA) << 24, MEGA); params->pl5_refdiv = 2; params->pl5_postdiv1 = 1; params->pl5_postdiv2 = 1; params->pl5_spread = 0x16; foutvco_rate = div_u64(mul_u32_u32(EXTAL_FREQ_IN_MEGA_HZ * MEGA, (params->pl5_intin << 24) + params->pl5_fracin), params->pl5_refdiv) >> 24; foutpostdiv_rate = DIV_ROUND_CLOSEST_ULL(foutvco_rate, params->pl5_postdiv1 * params->pl5_postdiv2); return foutpostdiv_rate; } struct dsi_div_hw_data { struct clk_hw hw; u32 conf; unsigned long rate; struct rzg2l_cpg_priv *priv; }; #define to_dsi_div_hw_data(_hw) container_of(_hw, struct dsi_div_hw_data, hw) static unsigned long rzg2l_cpg_dsi_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); unsigned long rate = dsi_div->rate; if (!rate) rate = parent_rate; return rate; } static unsigned long rzg2l_cpg_get_vclk_parent_rate(struct clk_hw *hw, unsigned long rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); struct rzg2l_cpg_priv *priv = dsi_div->priv; struct rzg2l_pll5_param params; unsigned long parent_rate; parent_rate = rzg2l_cpg_get_foutpostdiv_rate(¶ms, rate); if (priv->mux_dsi_div_params.clksrc) parent_rate /= 2; return parent_rate; } static int rzg2l_cpg_dsi_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { if (req->rate > MAX_VCLK_FREQ) req->rate = MAX_VCLK_FREQ; req->best_parent_rate = rzg2l_cpg_get_vclk_parent_rate(hw, req->rate); return 0; } static int rzg2l_cpg_dsi_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_div_hw_data *dsi_div = to_dsi_div_hw_data(hw); struct rzg2l_cpg_priv *priv = dsi_div->priv; /* * MUX -->DIV_DSI_{A,B} -->M3 -->VCLK * * Based on the dot clock, the DSI divider clock sets the divider value, * calculates the pll parameters for generating FOUTPOSTDIV and the clk * source for the MUX and propagates that info to the parents. */ if (!rate || rate > MAX_VCLK_FREQ) return -EINVAL; dsi_div->rate = rate; writel(CPG_PL5_SDIV_DIV_DSI_A_WEN | CPG_PL5_SDIV_DIV_DSI_B_WEN | (priv->mux_dsi_div_params.dsi_div_a << 0) | (priv->mux_dsi_div_params.dsi_div_b << 8), priv->base + CPG_PL5_SDIV); return 0; } static const struct clk_ops rzg2l_cpg_dsi_div_ops = { .recalc_rate = rzg2l_cpg_dsi_div_recalc_rate, .determine_rate = rzg2l_cpg_dsi_div_determine_rate, .set_rate = rzg2l_cpg_dsi_div_set_rate, }; static struct clk * __init rzg2l_cpg_dsi_div_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct dsi_div_hw_data *clk_hw_data; const struct clk *parent; const char *parent_name; struct clk_init_data init; struct clk_hw *clk_hw; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; parent_name = __clk_get_name(parent); init.name = core->name; init.ops = &rzg2l_cpg_dsi_div_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } struct pll5_mux_hw_data { struct clk_hw hw; u32 conf; unsigned long rate; struct rzg2l_cpg_priv *priv; }; #define to_pll5_mux_hw_data(_hw) container_of(_hw, struct pll5_mux_hw_data, hw) static int rzg2l_cpg_pll5_4_clk_mux_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw *parent; struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; parent = clk_hw_get_parent_by_index(hw, priv->mux_dsi_div_params.clksrc); req->best_parent_hw = parent; req->best_parent_rate = req->rate; return 0; } static int rzg2l_cpg_pll5_4_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; /* * FOUTPOSTDIV--->| * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK * |--FOUT1PH0-->| * * Based on the dot clock, the DSI divider clock calculates the parent * rate and clk source for the MUX. It propagates that info to * pll5_4_clk_mux which sets the clock source for DSI divider clock. */ writel(CPG_OTHERFUNC1_REG_RES0_ON_WEN | index, priv->base + CPG_OTHERFUNC1_REG); return 0; } static u8 rzg2l_cpg_pll5_4_clk_mux_get_parent(struct clk_hw *hw) { struct pll5_mux_hw_data *hwdata = to_pll5_mux_hw_data(hw); struct rzg2l_cpg_priv *priv = hwdata->priv; return readl(priv->base + GET_REG_OFFSET(hwdata->conf)); } static const struct clk_ops rzg2l_cpg_pll5_4_clk_mux_ops = { .determine_rate = rzg2l_cpg_pll5_4_clk_mux_determine_rate, .set_parent = rzg2l_cpg_pll5_4_clk_mux_set_parent, .get_parent = rzg2l_cpg_pll5_4_clk_mux_get_parent, }; static struct clk * __init rzg2l_cpg_pll5_4_mux_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { struct pll5_mux_hw_data *clk_hw_data; struct clk_init_data init; struct clk_hw *clk_hw; int ret; clk_hw_data = devm_kzalloc(priv->dev, sizeof(*clk_hw_data), GFP_KERNEL); if (!clk_hw_data) return ERR_PTR(-ENOMEM); clk_hw_data->priv = priv; clk_hw_data->conf = core->conf; init.name = core->name; init.ops = &rzg2l_cpg_pll5_4_clk_mux_ops; init.flags = CLK_SET_RATE_PARENT; init.num_parents = core->num_parents; init.parent_names = core->parent_names; clk_hw = &clk_hw_data->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); return clk_hw->clk; } struct sipll5 { struct clk_hw hw; u32 conf; unsigned long foutpostdiv_rate; struct rzg2l_cpg_priv *priv; }; #define to_sipll5(_hw) container_of(_hw, struct sipll5, hw) static unsigned long rzg2l_cpg_get_vclk_rate(struct clk_hw *hw, unsigned long rate) { struct sipll5 *sipll5 = to_sipll5(hw); struct rzg2l_cpg_priv *priv = sipll5->priv; unsigned long vclk; vclk = rate / ((1 << priv->mux_dsi_div_params.dsi_div_a) * (priv->mux_dsi_div_params.dsi_div_b + 1)); if (priv->mux_dsi_div_params.clksrc) vclk /= 2; return vclk; } static unsigned long rzg2l_cpg_sipll5_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sipll5 *sipll5 = to_sipll5(hw); unsigned long pll5_rate = sipll5->foutpostdiv_rate; if (!pll5_rate) pll5_rate = parent_rate; return pll5_rate; } static long rzg2l_cpg_sipll5_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { return rate; } static int rzg2l_cpg_sipll5_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct sipll5 *sipll5 = to_sipll5(hw); struct rzg2l_cpg_priv *priv = sipll5->priv; struct rzg2l_pll5_param params; unsigned long vclk_rate; int ret; u32 val; /* * OSC --> PLL5 --> FOUTPOSTDIV-->| * | | -->MUX -->DIV_DSIA_B -->M3 -->VCLK * |--FOUT1PH0-->| * * Based on the dot clock, the DSI divider clock calculates the parent * rate and the pll5 parameters for generating FOUTPOSTDIV. It propagates * that info to sipll5 which sets parameters for generating FOUTPOSTDIV. * * OSC --> PLL5 --> FOUTPOSTDIV */ if (!rate) return -EINVAL; vclk_rate = rzg2l_cpg_get_vclk_rate(hw, rate); sipll5->foutpostdiv_rate = rzg2l_cpg_get_foutpostdiv_rate(¶ms, vclk_rate); /* Put PLL5 into standby mode */ writel(CPG_SIPLL5_STBY_RESETB_WEN, priv->base + CPG_SIPLL5_STBY); ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, !(val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); if (ret) { dev_err(priv->dev, "failed to release pll5 lock"); return ret; } /* Output clock setting 1 */ writel((params.pl5_postdiv1 << 0) | (params.pl5_postdiv2 << 4) | (params.pl5_refdiv << 8), priv->base + CPG_SIPLL5_CLK1); /* Output clock setting, SSCG modulation value setting 3 */ writel((params.pl5_fracin << 8), priv->base + CPG_SIPLL5_CLK3); /* Output clock setting 4 */ writel(CPG_SIPLL5_CLK4_RESV_LSB | (params.pl5_intin << 16), priv->base + CPG_SIPLL5_CLK4); /* Output clock setting 5 */ writel(params.pl5_spread, priv->base + CPG_SIPLL5_CLK5); /* PLL normal mode setting */ writel(CPG_SIPLL5_STBY_DOWNSPREAD_WEN | CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY); /* PLL normal mode transition, output clock stability check */ ret = readl_poll_timeout(priv->base + CPG_SIPLL5_MON, val, (val & CPG_SIPLL5_MON_PLL5_LOCK), 100, 250000); if (ret) { dev_err(priv->dev, "failed to lock pll5"); return ret; } return 0; } static const struct clk_ops rzg2l_cpg_sipll5_ops = { .recalc_rate = rzg2l_cpg_sipll5_recalc_rate, .round_rate = rzg2l_cpg_sipll5_round_rate, .set_rate = rzg2l_cpg_sipll5_set_rate, }; static struct clk * __init rzg2l_cpg_sipll5_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv) { const struct clk *parent; struct clk_init_data init; const char *parent_name; struct sipll5 *sipll5; struct clk_hw *clk_hw; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); sipll5 = devm_kzalloc(priv->dev, sizeof(*sipll5), GFP_KERNEL); if (!sipll5) return ERR_PTR(-ENOMEM); init.name = core->name; parent_name = __clk_get_name(parent); init.ops = &rzg2l_cpg_sipll5_ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; sipll5->hw.init = &init; sipll5->conf = core->conf; sipll5->priv = priv; writel(CPG_SIPLL5_STBY_SSCG_EN_WEN | CPG_SIPLL5_STBY_RESETB_WEN | CPG_SIPLL5_STBY_RESETB, priv->base + CPG_SIPLL5_STBY); clk_hw = &sipll5->hw; clk_hw->init = &init; ret = devm_clk_hw_register(priv->dev, clk_hw); if (ret) return ERR_PTR(ret); priv->mux_dsi_div_params.clksrc = 1; /* Use clk src 1 for DSI */ priv->mux_dsi_div_params.dsi_div_a = 1; /* Divided by 2 */ priv->mux_dsi_div_params.dsi_div_b = 2; /* Divided by 3 */ return clk_hw->clk; } struct pll_clk { struct clk_hw hw; unsigned int conf; unsigned int type; void __iomem *base; struct rzg2l_cpg_priv *priv; }; #define to_pll(_hw) container_of(_hw, struct pll_clk, hw) static unsigned long rzg2l_cpg_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pll_clk *pll_clk = to_pll(hw); struct rzg2l_cpg_priv *priv = pll_clk->priv; unsigned int val1, val2; u64 rate; if (pll_clk->type != CLK_TYPE_SAM_PLL) return parent_rate; val1 = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf)); val2 = readl(priv->base + GET_REG_SAMPLL_CLK2(pll_clk->conf)); rate = mul_u64_u32_shr(parent_rate, (MDIV(val1) << 16) + KDIV(val1), 16 + SDIV(val2)); return DIV_ROUND_CLOSEST_ULL(rate, PDIV(val1)); } static const struct clk_ops rzg2l_cpg_pll_ops = { .recalc_rate = rzg2l_cpg_pll_clk_recalc_rate, }; static unsigned long rzg3s_cpg_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pll_clk *pll_clk = to_pll(hw); struct rzg2l_cpg_priv *priv = pll_clk->priv; u32 nir, nfr, mr, pr, val; u64 rate; if (pll_clk->type != CLK_TYPE_G3S_PLL) return parent_rate; val = readl(priv->base + GET_REG_SAMPLL_CLK1(pll_clk->conf)); pr = 1 << FIELD_GET(RZG3S_DIV_P, val); /* Hardware interprets values higher than 8 as p = 16. */ if (pr > 8) pr = 16; mr = FIELD_GET(RZG3S_DIV_M, val) + 1; nir = FIELD_GET(RZG3S_DIV_NI, val) + 1; nfr = FIELD_GET(RZG3S_DIV_NF, val); rate = mul_u64_u32_shr(parent_rate, 4096 * nir + nfr, 12); return DIV_ROUND_CLOSEST_ULL(rate, (mr * pr)); } static const struct clk_ops rzg3s_cpg_pll_ops = { .recalc_rate = rzg3s_cpg_pll_clk_recalc_rate, }; static struct clk * __init rzg2l_cpg_pll_clk_register(const struct cpg_core_clk *core, struct rzg2l_cpg_priv *priv, const struct clk_ops *ops) { struct device *dev = priv->dev; const struct clk *parent; struct clk_init_data init; const char *parent_name; struct pll_clk *pll_clk; int ret; parent = priv->clks[core->parent]; if (IS_ERR(parent)) return ERR_CAST(parent); pll_clk = devm_kzalloc(dev, sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return ERR_PTR(-ENOMEM); parent_name = __clk_get_name(parent); init.name = core->name; init.ops = ops; init.flags = 0; init.parent_names = &parent_name; init.num_parents = 1; pll_clk->hw.init = &init; pll_clk->conf = core->conf; pll_clk->base = priv->base; pll_clk->priv = priv; pll_clk->type = core->type; ret = devm_clk_hw_register(dev, &pll_clk->hw); if (ret) return ERR_PTR(ret); return pll_clk->hw.clk; } static struct clk *rzg2l_cpg_clk_src_twocell_get(struct of_phandle_args *clkspec, void *data) { unsigned int clkidx = clkspec->args[1]; struct rzg2l_cpg_priv *priv = data; struct device *dev = priv->dev; const char *type; struct clk *clk; switch (clkspec->args[0]) { case CPG_CORE: type = "core"; if (clkidx > priv->last_dt_core_clk) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[clkidx]; break; case CPG_MOD: type = "module"; if (clkidx >= priv->num_mod_clks) { dev_err(dev, "Invalid %s clock index %u\n", type, clkidx); return ERR_PTR(-EINVAL); } clk = priv->clks[priv->num_core_clks + clkidx]; break; default: dev_err(dev, "Invalid CPG clock type %u\n", clkspec->args[0]); return ERR_PTR(-EINVAL); } if (IS_ERR(clk)) dev_err(dev, "Cannot get %s clock %u: %ld", type, clkidx, PTR_ERR(clk)); else dev_dbg(dev, "clock (%u, %u) is %pC at %lu Hz\n", clkspec->args[0], clkspec->args[1], clk, clk_get_rate(clk)); return clk; } static void __init rzg2l_cpg_register_core_clk(const struct cpg_core_clk *core, const struct rzg2l_cpg_info *info, struct rzg2l_cpg_priv *priv) { struct clk *clk = ERR_PTR(-EOPNOTSUPP), *parent; struct device *dev = priv->dev; unsigned int id = core->id, div = core->div; const char *parent_name; struct clk_hw *clk_hw; WARN_DEBUG(id >= priv->num_core_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); if (!core->name) { /* Skip NULLified clock */ return; } switch (core->type) { case CLK_TYPE_IN: clk = of_clk_get_by_name(priv->dev->of_node, core->name); break; case CLK_TYPE_FF: WARN_DEBUG(core->parent >= priv->num_core_clks); parent = priv->clks[core->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } parent_name = __clk_get_name(parent); clk_hw = devm_clk_hw_register_fixed_factor(dev, core->name, parent_name, CLK_SET_RATE_PARENT, core->mult, div); if (IS_ERR(clk_hw)) clk = ERR_CAST(clk_hw); else clk = clk_hw->clk; break; case CLK_TYPE_SAM_PLL: clk = rzg2l_cpg_pll_clk_register(core, priv, &rzg2l_cpg_pll_ops); break; case CLK_TYPE_G3S_PLL: clk = rzg2l_cpg_pll_clk_register(core, priv, &rzg3s_cpg_pll_ops); break; case CLK_TYPE_SIPLL5: clk = rzg2l_cpg_sipll5_register(core, priv); break; case CLK_TYPE_DIV: clk = rzg2l_cpg_div_clk_register(core, priv); break; case CLK_TYPE_G3S_DIV: clk = rzg3s_cpg_div_clk_register(core, priv); break; case CLK_TYPE_MUX: clk = rzg2l_cpg_mux_clk_register(core, priv); break; case CLK_TYPE_SD_MUX: clk = rzg2l_cpg_sd_mux_clk_register(core, priv); break; case CLK_TYPE_PLL5_4_MUX: clk = rzg2l_cpg_pll5_4_mux_clk_register(core, priv); break; case CLK_TYPE_DSI_DIV: clk = rzg2l_cpg_dsi_div_clk_register(core, priv); break; default: goto fail; } if (IS_ERR_OR_NULL(clk)) goto fail; dev_dbg(dev, "Core clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); priv->clks[id] = clk; return; fail: dev_err(dev, "Failed to register %s clock %s: %ld\n", "core", core->name, PTR_ERR(clk)); } /** * struct mstp_clock - MSTP gating clock * * @hw: handle between common and hardware-specific interfaces * @off: register offset * @bit: ON/MON bit * @enabled: soft state of the clock, if it is coupled with another clock * @priv: CPG/MSTP private data * @sibling: pointer to the other coupled clock */ struct mstp_clock { struct clk_hw hw; u16 off; u8 bit; bool enabled; struct rzg2l_cpg_priv *priv; struct mstp_clock *sibling; }; #define to_mod_clock(_hw) container_of(_hw, struct mstp_clock, hw) static int rzg2l_mod_clock_endisable(struct clk_hw *hw, bool enable) { struct mstp_clock *clock = to_mod_clock(hw); struct rzg2l_cpg_priv *priv = clock->priv; unsigned int reg = clock->off; struct device *dev = priv->dev; u32 bitmask = BIT(clock->bit); u32 value; int error; if (!clock->off) { dev_dbg(dev, "%pC does not support ON/OFF\n", hw->clk); return 0; } dev_dbg(dev, "CLK_ON 0x%x/%pC %s\n", CLK_ON_R(reg), hw->clk, enable ? "ON" : "OFF"); value = bitmask << 16; if (enable) value |= bitmask; writel(value, priv->base + CLK_ON_R(reg)); if (!enable) return 0; if (!priv->info->has_clk_mon_regs) return 0; error = readl_poll_timeout_atomic(priv->base + CLK_MON_R(reg), value, value & bitmask, 0, 10); if (error) dev_err(dev, "Failed to enable CLK_ON %p\n", priv->base + CLK_ON_R(reg)); return error; } static int rzg2l_mod_clock_enable(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); if (clock->sibling) { struct rzg2l_cpg_priv *priv = clock->priv; unsigned long flags; bool enabled; spin_lock_irqsave(&priv->rmw_lock, flags); enabled = clock->sibling->enabled; clock->enabled = true; spin_unlock_irqrestore(&priv->rmw_lock, flags); if (enabled) return 0; } return rzg2l_mod_clock_endisable(hw, true); } static void rzg2l_mod_clock_disable(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); if (clock->sibling) { struct rzg2l_cpg_priv *priv = clock->priv; unsigned long flags; bool enabled; spin_lock_irqsave(&priv->rmw_lock, flags); enabled = clock->sibling->enabled; clock->enabled = false; spin_unlock_irqrestore(&priv->rmw_lock, flags); if (enabled) return; } rzg2l_mod_clock_endisable(hw, false); } static int rzg2l_mod_clock_is_enabled(struct clk_hw *hw) { struct mstp_clock *clock = to_mod_clock(hw); struct rzg2l_cpg_priv *priv = clock->priv; u32 bitmask = BIT(clock->bit); u32 value; if (!clock->off) { dev_dbg(priv->dev, "%pC does not support ON/OFF\n", hw->clk); return 1; } if (clock->sibling) return clock->enabled; if (priv->info->has_clk_mon_regs) value = readl(priv->base + CLK_MON_R(clock->off)); else value = readl(priv->base + clock->off); return value & bitmask; } static const struct clk_ops rzg2l_mod_clock_ops = { .enable = rzg2l_mod_clock_enable, .disable = rzg2l_mod_clock_disable, .is_enabled = rzg2l_mod_clock_is_enabled, }; static struct mstp_clock *rzg2l_mod_clock_get_sibling(struct mstp_clock *clock, struct rzg2l_cpg_priv *priv) { struct clk_hw *hw; unsigned int i; for (i = 0; i < priv->num_mod_clks; i++) { struct mstp_clock *clk; if (priv->clks[priv->num_core_clks + i] == ERR_PTR(-ENOENT)) continue; hw = __clk_get_hw(priv->clks[priv->num_core_clks + i]); clk = to_mod_clock(hw); if (clock->off == clk->off && clock->bit == clk->bit) return clk; } return NULL; } static void __init rzg2l_cpg_register_mod_clk(const struct rzg2l_mod_clk *mod, const struct rzg2l_cpg_info *info, struct rzg2l_cpg_priv *priv) { struct mstp_clock *clock = NULL; struct device *dev = priv->dev; unsigned int id = mod->id; struct clk_init_data init; struct clk *parent, *clk; const char *parent_name; unsigned int i; int ret; WARN_DEBUG(id < priv->num_core_clks); WARN_DEBUG(id >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(mod->parent >= priv->num_core_clks + priv->num_mod_clks); WARN_DEBUG(PTR_ERR(priv->clks[id]) != -ENOENT); if (!mod->name) { /* Skip NULLified clock */ return; } parent = priv->clks[mod->parent]; if (IS_ERR(parent)) { clk = parent; goto fail; } clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL); if (!clock) { clk = ERR_PTR(-ENOMEM); goto fail; } init.name = mod->name; init.ops = &rzg2l_mod_clock_ops; init.flags = CLK_SET_RATE_PARENT; for (i = 0; i < info->num_crit_mod_clks; i++) if (id == info->crit_mod_clks[i]) { dev_dbg(dev, "CPG %s setting CLK_IS_CRITICAL\n", mod->name); init.flags |= CLK_IS_CRITICAL; break; } parent_name = __clk_get_name(parent); init.parent_names = &parent_name; init.num_parents = 1; clock->off = mod->off; clock->bit = mod->bit; clock->priv = priv; clock->hw.init = &init; ret = devm_clk_hw_register(dev, &clock->hw); if (ret) { clk = ERR_PTR(ret); goto fail; } clk = clock->hw.clk; dev_dbg(dev, "Module clock %pC at %lu Hz\n", clk, clk_get_rate(clk)); priv->clks[id] = clk; if (mod->is_coupled) { struct mstp_clock *sibling; clock->enabled = rzg2l_mod_clock_is_enabled(&clock->hw); sibling = rzg2l_mod_clock_get_sibling(clock, priv); if (sibling) { clock->sibling = sibling; sibling->sibling = clock; } } return; fail: dev_err(dev, "Failed to register %s clock %s: %ld\n", "module", mod->name, PTR_ERR(clk)); } #define rcdev_to_priv(x) container_of(x, struct rzg2l_cpg_priv, rcdev) static int rzg2l_cpg_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 mask = BIT(info->resets[id].bit); s8 monbit = info->resets[id].monbit; u32 value = mask << 16; dev_dbg(rcdev->dev, "assert id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); writel(value, priv->base + CLK_RST_R(reg)); if (info->has_clk_mon_regs) { reg = CLK_MRST_R(reg); } else if (monbit >= 0) { reg = CPG_RST_MON; mask = BIT(monbit); } else { /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */ udelay(35); return 0; } return readl_poll_timeout_atomic(priv->base + reg, value, value & mask, 10, 200); } static int rzg2l_cpg_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int reg = info->resets[id].off; u32 mask = BIT(info->resets[id].bit); s8 monbit = info->resets[id].monbit; u32 value = (mask << 16) | mask; dev_dbg(rcdev->dev, "deassert id:%ld offset:0x%x\n", id, CLK_RST_R(reg)); writel(value, priv->base + CLK_RST_R(reg)); if (info->has_clk_mon_regs) { reg = CLK_MRST_R(reg); } else if (monbit >= 0) { reg = CPG_RST_MON; mask = BIT(monbit); } else { /* Wait for at least one cycle of the RCLK clock (@ ca. 32 kHz) */ udelay(35); return 0; } return readl_poll_timeout_atomic(priv->base + reg, value, !(value & mask), 10, 200); } static int rzg2l_cpg_reset(struct reset_controller_dev *rcdev, unsigned long id) { int ret; ret = rzg2l_cpg_assert(rcdev, id); if (ret) return ret; return rzg2l_cpg_deassert(rcdev, id); } static int rzg2l_cpg_status(struct reset_controller_dev *rcdev, unsigned long id) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; s8 monbit = info->resets[id].monbit; unsigned int reg; u32 bitmask; if (info->has_clk_mon_regs) { reg = CLK_MRST_R(info->resets[id].off); bitmask = BIT(info->resets[id].bit); } else if (monbit >= 0) { reg = CPG_RST_MON; bitmask = BIT(monbit); } else { return -ENOTSUPP; } return !!(readl(priv->base + reg) & bitmask); } static const struct reset_control_ops rzg2l_cpg_reset_ops = { .reset = rzg2l_cpg_reset, .assert = rzg2l_cpg_assert, .deassert = rzg2l_cpg_deassert, .status = rzg2l_cpg_status, }; static int rzg2l_cpg_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { struct rzg2l_cpg_priv *priv = rcdev_to_priv(rcdev); const struct rzg2l_cpg_info *info = priv->info; unsigned int id = reset_spec->args[0]; if (id >= rcdev->nr_resets || !info->resets[id].off) { dev_err(rcdev->dev, "Invalid reset index %u\n", id); return -EINVAL; } return id; } static int rzg2l_cpg_reset_controller_register(struct rzg2l_cpg_priv *priv) { priv->rcdev.ops = &rzg2l_cpg_reset_ops; priv->rcdev.of_node = priv->dev->of_node; priv->rcdev.dev = priv->dev; priv->rcdev.of_reset_n_cells = 1; priv->rcdev.of_xlate = rzg2l_cpg_reset_xlate; priv->rcdev.nr_resets = priv->num_resets; return devm_reset_controller_register(priv->dev, &priv->rcdev); } static bool rzg2l_cpg_is_pm_clk(struct rzg2l_cpg_priv *priv, const struct of_phandle_args *clkspec) { const struct rzg2l_cpg_info *info = priv->info; unsigned int id; unsigned int i; if (clkspec->args_count != 2) return false; if (clkspec->args[0] != CPG_MOD) return false; id = clkspec->args[1] + info->num_total_core_clks; for (i = 0; i < info->num_no_pm_mod_clks; i++) { if (info->no_pm_mod_clks[i] == id) return false; } return true; } /** * struct rzg2l_cpg_pm_domains - RZ/G2L PM domains data structure * @onecell_data: cell data * @domains: generic PM domains */ struct rzg2l_cpg_pm_domains { struct genpd_onecell_data onecell_data; struct generic_pm_domain *domains[]; }; /** * struct rzg2l_cpg_pd - RZ/G2L power domain data structure * @genpd: generic PM domain * @priv: pointer to CPG private data structure * @conf: CPG PM domain configuration info * @id: RZ/G2L power domain ID */ struct rzg2l_cpg_pd { struct generic_pm_domain genpd; struct rzg2l_cpg_priv *priv; struct rzg2l_cpg_pm_domain_conf conf; u16 id; }; static int rzg2l_cpg_attach_dev(struct generic_pm_domain *domain, struct device *dev) { struct rzg2l_cpg_pd *pd = container_of(domain, struct rzg2l_cpg_pd, genpd); struct rzg2l_cpg_priv *priv = pd->priv; struct device_node *np = dev->of_node; struct of_phandle_args clkspec; bool once = true; struct clk *clk; int error; int i = 0; while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i, &clkspec)) { if (rzg2l_cpg_is_pm_clk(priv, &clkspec)) { if (once) { once = false; error = pm_clk_create(dev); if (error) { of_node_put(clkspec.np); goto err; } } clk = of_clk_get_from_provider(&clkspec); of_node_put(clkspec.np); if (IS_ERR(clk)) { error = PTR_ERR(clk); goto fail_destroy; } error = pm_clk_add_clk(dev, clk); if (error) { dev_err(dev, "pm_clk_add_clk failed %d\n", error); goto fail_put; } } else { of_node_put(clkspec.np); } i++; } return 0; fail_put: clk_put(clk); fail_destroy: pm_clk_destroy(dev); err: return error; } static void rzg2l_cpg_detach_dev(struct generic_pm_domain *unused, struct device *dev) { if (!pm_clk_no_clocks(dev)) pm_clk_destroy(dev); } static void rzg2l_cpg_genpd_remove(void *data) { struct genpd_onecell_data *celldata = data; for (unsigned int i = 0; i < celldata->num_domains; i++) pm_genpd_remove(celldata->domains[i]); } static void rzg2l_cpg_genpd_remove_simple(void *data) { pm_genpd_remove(data); } static int rzg2l_cpg_power_on(struct generic_pm_domain *domain) { struct rzg2l_cpg_pd *pd = container_of(domain, struct rzg2l_cpg_pd, genpd); struct rzg2l_cpg_reg_conf mstop = pd->conf.mstop; struct rzg2l_cpg_priv *priv = pd->priv; /* Set MSTOP. */ if (mstop.mask) writel(mstop.mask << 16, priv->base + mstop.off); return 0; } static int rzg2l_cpg_power_off(struct generic_pm_domain *domain) { struct rzg2l_cpg_pd *pd = container_of(domain, struct rzg2l_cpg_pd, genpd); struct rzg2l_cpg_reg_conf mstop = pd->conf.mstop; struct rzg2l_cpg_priv *priv = pd->priv; /* Set MSTOP. */ if (mstop.mask) writel(mstop.mask | (mstop.mask << 16), priv->base + mstop.off); return 0; } static int __init rzg2l_cpg_pd_setup(struct rzg2l_cpg_pd *pd) { bool always_on = !!(pd->genpd.flags & GENPD_FLAG_ALWAYS_ON); struct dev_power_governor *governor; int ret; if (always_on) governor = &pm_domain_always_on_gov; else governor = &simple_qos_governor; pd->genpd.flags |= GENPD_FLAG_PM_CLK | GENPD_FLAG_ACTIVE_WAKEUP; pd->genpd.attach_dev = rzg2l_cpg_attach_dev; pd->genpd.detach_dev = rzg2l_cpg_detach_dev; pd->genpd.power_on = rzg2l_cpg_power_on; pd->genpd.power_off = rzg2l_cpg_power_off; ret = pm_genpd_init(&pd->genpd, governor, !always_on); if (ret) return ret; if (always_on) ret = rzg2l_cpg_power_on(&pd->genpd); return ret; } static int __init rzg2l_cpg_add_clk_domain(struct rzg2l_cpg_priv *priv) { struct device *dev = priv->dev; struct device_node *np = dev->of_node; struct rzg2l_cpg_pd *pd; int ret; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->genpd.name = np->name; pd->genpd.flags = GENPD_FLAG_ALWAYS_ON; pd->priv = priv; ret = rzg2l_cpg_pd_setup(pd); if (ret) return ret; ret = devm_add_action_or_reset(dev, rzg2l_cpg_genpd_remove_simple, &pd->genpd); if (ret) return ret; return of_genpd_add_provider_simple(np, &pd->genpd); } static struct generic_pm_domain * rzg2l_cpg_pm_domain_xlate(const struct of_phandle_args *spec, void *data) { struct generic_pm_domain *domain = ERR_PTR(-ENOENT); struct genpd_onecell_data *genpd = data; if (spec->args_count != 1) return ERR_PTR(-EINVAL); for (unsigned int i = 0; i < genpd->num_domains; i++) { struct rzg2l_cpg_pd *pd = container_of(genpd->domains[i], struct rzg2l_cpg_pd, genpd); if (pd->id == spec->args[0]) { domain = &pd->genpd; break; } } return domain; } static int __init rzg2l_cpg_add_pm_domains(struct rzg2l_cpg_priv *priv) { const struct rzg2l_cpg_info *info = priv->info; struct device *dev = priv->dev; struct device_node *np = dev->of_node; struct rzg2l_cpg_pm_domains *domains; struct generic_pm_domain *parent; u32 ncells; int ret; ret = of_property_read_u32(np, "#power-domain-cells", &ncells); if (ret) return ret; /* For backward compatibility. */ if (!ncells) return rzg2l_cpg_add_clk_domain(priv); domains = devm_kzalloc(dev, struct_size(domains, domains, info->num_pm_domains), GFP_KERNEL); if (!domains) return -ENOMEM; domains->onecell_data.domains = domains->domains; domains->onecell_data.num_domains = info->num_pm_domains; domains->onecell_data.xlate = rzg2l_cpg_pm_domain_xlate; ret = devm_add_action_or_reset(dev, rzg2l_cpg_genpd_remove, &domains->onecell_data); if (ret) return ret; for (unsigned int i = 0; i < info->num_pm_domains; i++) { struct rzg2l_cpg_pd *pd; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->genpd.name = info->pm_domains[i].name; pd->genpd.flags = info->pm_domains[i].genpd_flags; pd->conf = info->pm_domains[i].conf; pd->id = info->pm_domains[i].id; pd->priv = priv; ret = rzg2l_cpg_pd_setup(pd); if (ret) return ret; domains->domains[i] = &pd->genpd; /* Parent should be on the very first entry of info->pm_domains[]. */ if (!i) { parent = &pd->genpd; continue; } ret = pm_genpd_add_subdomain(parent, &pd->genpd); if (ret) return ret; } ret = of_genpd_add_provider_onecell(np, &domains->onecell_data); if (ret) return ret; return 0; } static int __init rzg2l_cpg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; const struct rzg2l_cpg_info *info; struct rzg2l_cpg_priv *priv; unsigned int nclks, i; struct clk **clks; int error; info = of_device_get_match_data(dev); priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->info = info; spin_lock_init(&priv->rmw_lock); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); nclks = info->num_total_core_clks + info->num_hw_mod_clks; clks = devm_kmalloc_array(dev, nclks, sizeof(*clks), GFP_KERNEL); if (!clks) return -ENOMEM; dev_set_drvdata(dev, priv); priv->clks = clks; priv->num_core_clks = info->num_total_core_clks; priv->num_mod_clks = info->num_hw_mod_clks; priv->num_resets = info->num_resets; priv->last_dt_core_clk = info->last_dt_core_clk; for (i = 0; i < nclks; i++) clks[i] = ERR_PTR(-ENOENT); for (i = 0; i < info->num_core_clks; i++) rzg2l_cpg_register_core_clk(&info->core_clks[i], info, priv); for (i = 0; i < info->num_mod_clks; i++) rzg2l_cpg_register_mod_clk(&info->mod_clks[i], info, priv); error = of_clk_add_provider(np, rzg2l_cpg_clk_src_twocell_get, priv); if (error) return error; error = devm_add_action_or_reset(dev, rzg2l_cpg_del_clk_provider, np); if (error) return error; error = rzg2l_cpg_add_pm_domains(priv); if (error) return error; error = rzg2l_cpg_reset_controller_register(priv); if (error) return error; return 0; } static const struct of_device_id rzg2l_cpg_match[] = { #ifdef CONFIG_CLK_R9A07G043 { .compatible = "renesas,r9a07g043-cpg", .data = &r9a07g043_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A07G044 { .compatible = "renesas,r9a07g044-cpg", .data = &r9a07g044_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A07G054 { .compatible = "renesas,r9a07g054-cpg", .data = &r9a07g054_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A08G045 { .compatible = "renesas,r9a08g045-cpg", .data = &r9a08g045_cpg_info, }, #endif #ifdef CONFIG_CLK_R9A09G011 { .compatible = "renesas,r9a09g011-cpg", .data = &r9a09g011_cpg_info, }, #endif { /* sentinel */ } }; static struct platform_driver rzg2l_cpg_driver = { .driver = { .name = "rzg2l-cpg", .of_match_table = rzg2l_cpg_match, }, }; static int __init rzg2l_cpg_init(void) { return platform_driver_probe(&rzg2l_cpg_driver, rzg2l_cpg_probe); } subsys_initcall(rzg2l_cpg_init); MODULE_DESCRIPTION("Renesas RZ/G2L CPG Driver");