// SPDX-License-Identifier: GPL-2.0 /* * R-Car Gen4 Clock Pulse Generator * * Copyright (C) 2021 Renesas Electronics Corp. * * Based on rcar-gen3-cpg.c * * Copyright (C) 2015-2018 Glider bvba * Copyright (C) 2019 Renesas Electronics Corp. */ #include #include #include #include #include #include #include #include #include #include "renesas-cpg-mssr.h" #include "rcar-gen4-cpg.h" #include "rcar-cpg-lib.h" static const struct rcar_gen4_cpg_pll_config *cpg_pll_config __initdata; static unsigned int cpg_clk_extalr __initdata; static u32 cpg_mode __initdata; #define CPG_PLLECR 0x0820 /* PLL Enable Control Register */ #define CPG_PLLECR_PLLST(n) BIT(8 + ((n) < 3 ? (n) - 1 : \ (n) > 3 ? (n) + 1 : n)) /* PLLn Circuit Status */ #define CPG_PLL1CR0 0x830 /* PLLn Control Registers */ #define CPG_PLL1CR1 0x8b0 #define CPG_PLL2CR0 0x834 #define CPG_PLL2CR1 0x8b8 #define CPG_PLL3CR0 0x83c #define CPG_PLL3CR1 0x8c0 #define CPG_PLL4CR0 0x844 #define CPG_PLL4CR1 0x8c8 #define CPG_PLL6CR0 0x84c #define CPG_PLL6CR1 0x8d8 #define CPG_PLLxCR0_KICK BIT(31) #define CPG_PLLxCR0_SSMODE GENMASK(18, 16) /* PLL mode */ #define CPG_PLLxCR0_SSMODE_FM BIT(18) /* Fractional Multiplication */ #define CPG_PLLxCR0_SSMODE_DITH BIT(17) /* Frequency Dithering */ #define CPG_PLLxCR0_SSMODE_CENT BIT(16) /* Center (vs. Down) Spread Dithering */ #define CPG_PLLxCR0_SSFREQ GENMASK(14, 8) /* SSCG Modulation Frequency */ #define CPG_PLLxCR0_SSDEPT GENMASK(6, 0) /* SSCG Modulation Depth */ /* Fractional 8.25 PLL */ #define CPG_PLLxCR0_NI8 GENMASK(27, 20) /* Integer mult. factor */ #define CPG_PLLxCR1_NF25 GENMASK(24, 0) /* Fractional mult. factor */ /* Fractional 9.24 PLL */ #define CPG_PLLxCR0_NI9 GENMASK(28, 20) /* Integer mult. factor */ #define CPG_PLLxCR1_NF24 GENMASK(23, 0) /* Fractional mult. factor */ #define CPG_PLLxCR_STC GENMASK(30, 24) /* R_Car V3U PLLxCR */ #define CPG_RPCCKCR 0x874 /* RPC Clock Freq. Control Register */ #define CPG_SD0CKCR1 0x8a4 /* SD-IF0 Clock Freq. Control Reg. 1 */ #define CPG_SD0CKCR1_SDSRC_SEL GENMASK(30, 29) /* SDSRC clock freq. select */ /* PLL Clocks */ struct cpg_pll_clk { struct clk_hw hw; void __iomem *pllcr0_reg; void __iomem *pllcr1_reg; void __iomem *pllecr_reg; u32 pllecr_pllst_mask; }; #define to_pll_clk(_hw) container_of(_hw, struct cpg_pll_clk, hw) static unsigned long cpg_pll_8_25_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct cpg_pll_clk *pll_clk = to_pll_clk(hw); u32 cr0 = readl(pll_clk->pllcr0_reg); unsigned int ni, nf; unsigned long rate; ni = (FIELD_GET(CPG_PLLxCR0_NI8, cr0) + 1) * 2; rate = parent_rate * ni; if (cr0 & CPG_PLLxCR0_SSMODE_FM) { nf = FIELD_GET(CPG_PLLxCR1_NF25, readl(pll_clk->pllcr1_reg)); rate += mul_u64_u32_shr(parent_rate, nf, 24); } return rate; } static int cpg_pll_8_25_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct cpg_pll_clk *pll_clk = to_pll_clk(hw); unsigned int min_mult, max_mult, ni, nf; u32 cr0 = readl(pll_clk->pllcr0_reg); unsigned long prate; prate = req->best_parent_rate * 2; min_mult = max(div64_ul(req->min_rate, prate), 1ULL); max_mult = min(div64_ul(req->max_rate, prate), 256ULL); if (max_mult < min_mult) return -EINVAL; if (cr0 & CPG_PLLxCR0_SSMODE_FM) { ni = div64_ul(req->rate, prate); if (ni < min_mult) { ni = min_mult; nf = 0; } else { ni = min(ni, max_mult); nf = div64_ul((u64)(req->rate - prate * ni) << 24, req->best_parent_rate); } } else { ni = DIV_ROUND_CLOSEST_ULL(req->rate, prate); ni = clamp(ni, min_mult, max_mult); nf = 0; } req->rate = prate * ni + mul_u64_u32_shr(req->best_parent_rate, nf, 24); return 0; } static int cpg_pll_8_25_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct cpg_pll_clk *pll_clk = to_pll_clk(hw); unsigned long prate = parent_rate * 2; u32 cr0 = readl(pll_clk->pllcr0_reg); unsigned int ni, nf; u32 val; if (cr0 & CPG_PLLxCR0_SSMODE_FM) { ni = div64_ul(rate, prate); if (ni < 1) { ni = 1; nf = 0; } else { ni = min(ni, 256U); nf = div64_ul((u64)(rate - prate * ni) << 24, parent_rate); } } else { ni = DIV_ROUND_CLOSEST_ULL(rate, prate); ni = clamp(ni, 1U, 256U); } if (readl(pll_clk->pllcr0_reg) & CPG_PLLxCR0_KICK) return -EBUSY; cpg_reg_modify(pll_clk->pllcr0_reg, CPG_PLLxCR0_NI8, FIELD_PREP(CPG_PLLxCR0_NI8, ni - 1)); if (cr0 & CPG_PLLxCR0_SSMODE_FM) cpg_reg_modify(pll_clk->pllcr1_reg, CPG_PLLxCR1_NF25, FIELD_PREP(CPG_PLLxCR1_NF25, nf)); /* * Set KICK bit in PLLxCR0 to update hardware setting and wait for * clock change completion. */ cpg_reg_modify(pll_clk->pllcr0_reg, 0, CPG_PLLxCR0_KICK); /* * Note: There is no HW information about the worst case latency. * * Using experimental measurements, it seems that no more than * ~45 µs are needed, independently of the CPU rate. * Since this value might be dependent on external xtal rate, pll * rate or even the other emulation clocks rate, use 1000 as a * "super" safe value. */ return readl_poll_timeout(pll_clk->pllecr_reg, val, val & pll_clk->pllecr_pllst_mask, 0, 1000); } static const struct clk_ops cpg_pll_f8_25_clk_ops = { .recalc_rate = cpg_pll_8_25_clk_recalc_rate, }; static const struct clk_ops cpg_pll_v8_25_clk_ops = { .recalc_rate = cpg_pll_8_25_clk_recalc_rate, .determine_rate = cpg_pll_8_25_clk_determine_rate, .set_rate = cpg_pll_8_25_clk_set_rate, }; static unsigned long cpg_pll_9_24_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct cpg_pll_clk *pll_clk = to_pll_clk(hw); u32 cr0 = readl(pll_clk->pllcr0_reg); unsigned int ni, nf; unsigned long rate; ni = FIELD_GET(CPG_PLLxCR0_NI9, cr0) + 1; rate = parent_rate * ni; if (cr0 & CPG_PLLxCR0_SSMODE_FM) { nf = FIELD_GET(CPG_PLLxCR1_NF24, readl(pll_clk->pllcr1_reg)); rate += mul_u64_u32_shr(parent_rate, nf, 24); } else { rate *= 2; } return rate; } static const struct clk_ops cpg_pll_f9_24_clk_ops = { .recalc_rate = cpg_pll_9_24_clk_recalc_rate, }; static struct clk * __init cpg_pll_clk_register(const char *name, const char *parent_name, void __iomem *base, unsigned int index, const struct clk_ops *ops) { static const struct { u16 cr0, cr1; } pll_cr_offsets[] __initconst = { [1 - 1] = { CPG_PLL1CR0, CPG_PLL1CR1 }, [2 - 1] = { CPG_PLL2CR0, CPG_PLL2CR1 }, [3 - 1] = { CPG_PLL3CR0, CPG_PLL3CR1 }, [4 - 1] = { CPG_PLL4CR0, CPG_PLL4CR1 }, [6 - 1] = { CPG_PLL6CR0, CPG_PLL6CR1 }, }; struct clk_init_data init = {}; struct cpg_pll_clk *pll_clk; struct clk *clk; pll_clk = kzalloc(sizeof(*pll_clk), GFP_KERNEL); if (!pll_clk) return ERR_PTR(-ENOMEM); init.name = name; init.ops = ops; init.parent_names = &parent_name; init.num_parents = 1; pll_clk->hw.init = &init; pll_clk->pllcr0_reg = base + pll_cr_offsets[index - 1].cr0; pll_clk->pllcr1_reg = base + pll_cr_offsets[index - 1].cr1; pll_clk->pllecr_reg = base + CPG_PLLECR; pll_clk->pllecr_pllst_mask = CPG_PLLECR_PLLST(index); clk = clk_register(NULL, &pll_clk->hw); if (IS_ERR(clk)) kfree(pll_clk); return clk; } /* * Z0 Clock & Z1 Clock */ #define CPG_FRQCRB 0x00000804 #define CPG_FRQCRB_KICK BIT(31) #define CPG_FRQCRC0 0x00000808 #define CPG_FRQCRC1 0x000008e0 struct cpg_z_clk { struct clk_hw hw; void __iomem *reg; void __iomem *kick_reg; unsigned long max_rate; /* Maximum rate for normal mode */ unsigned int fixed_div; u32 mask; }; #define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw) static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; u32 val; val = readl(zclk->reg) & zclk->mask; mult = 32 - (val >> __ffs(zclk->mask)); return DIV_ROUND_CLOSEST_ULL((u64)parent_rate * mult, 32 * zclk->fixed_div); } static int cpg_z_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int min_mult, max_mult, mult; unsigned long rate, prate; rate = min(req->rate, req->max_rate); if (rate <= zclk->max_rate) { /* Set parent rate to initial value for normal modes */ prate = zclk->max_rate; } else { /* Set increased parent rate for boost modes */ prate = rate; } req->best_parent_rate = clk_hw_round_rate(clk_hw_get_parent(hw), prate * zclk->fixed_div); prate = req->best_parent_rate / zclk->fixed_div; min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL); max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL); if (max_mult < min_mult) return -EINVAL; mult = DIV_ROUND_CLOSEST_ULL(rate * 32ULL, prate); mult = clamp(mult, min_mult, max_mult); req->rate = DIV_ROUND_CLOSEST_ULL((u64)prate * mult, 32); return 0; } static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct cpg_z_clk *zclk = to_z_clk(hw); unsigned int mult; unsigned int i; mult = DIV64_U64_ROUND_CLOSEST(rate * 32ULL * zclk->fixed_div, parent_rate); mult = clamp(mult, 1U, 32U); if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK) return -EBUSY; cpg_reg_modify(zclk->reg, zclk->mask, (32 - mult) << __ffs(zclk->mask)); /* * Set KICK bit in FRQCRB to update hardware setting and wait for * clock change completion. */ cpg_reg_modify(zclk->kick_reg, 0, CPG_FRQCRB_KICK); /* * Note: There is no HW information about the worst case latency. * * Using experimental measurements, it seems that no more than * ~10 iterations are needed, independently of the CPU rate. * Since this value might be dependent on external xtal rate, pll1 * rate or even the other emulation clocks rate, use 1000 as a * "super" safe value. */ for (i = 1000; i; i--) { if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK)) return 0; cpu_relax(); } return -ETIMEDOUT; } static const struct clk_ops cpg_z_clk_ops = { .recalc_rate = cpg_z_clk_recalc_rate, .determine_rate = cpg_z_clk_determine_rate, .set_rate = cpg_z_clk_set_rate, }; static struct clk * __init cpg_z_clk_register(const char *name, const char *parent_name, void __iomem *reg, unsigned int div, unsigned int offset) { struct clk_init_data init = {}; struct cpg_z_clk *zclk; struct clk *clk; zclk = kzalloc(sizeof(*zclk), GFP_KERNEL); if (!zclk) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &cpg_z_clk_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; if (offset < 32) { zclk->reg = reg + CPG_FRQCRC0; } else { zclk->reg = reg + CPG_FRQCRC1; offset -= 32; } zclk->kick_reg = reg + CPG_FRQCRB; zclk->hw.init = &init; zclk->mask = GENMASK(offset + 4, offset); zclk->fixed_div = div; /* PLLVCO x 1/div x SYS-CPU divider */ clk = clk_register(NULL, &zclk->hw); if (IS_ERR(clk)) { kfree(zclk); return clk; } zclk->max_rate = clk_hw_get_rate(clk_hw_get_parent(&zclk->hw)) / zclk->fixed_div; return clk; } /* * RPC Clocks */ static const struct clk_div_table cpg_rpcsrc_div_table[] = { { 0, 4 }, { 1, 6 }, { 2, 5 }, { 3, 6 }, { 0, 0 }, }; struct clk * __init rcar_gen4_cpg_clk_register(struct device *dev, const struct cpg_core_clk *core, const struct cpg_mssr_info *info, struct clk **clks, void __iomem *base, struct raw_notifier_head *notifiers) { const struct clk *parent; unsigned int mult = 1; unsigned int div = 1; u32 value; parent = clks[core->parent & 0xffff]; /* some types use high bits */ if (IS_ERR(parent)) return ERR_CAST(parent); switch (core->type) { case CLK_TYPE_GEN4_MAIN: div = cpg_pll_config->extal_div; break; case CLK_TYPE_GEN4_PLL1: mult = cpg_pll_config->pll1_mult; div = cpg_pll_config->pll1_div; break; case CLK_TYPE_GEN4_PLL5: mult = cpg_pll_config->pll5_mult; div = cpg_pll_config->pll5_div; break; case CLK_TYPE_GEN4_PLL2X_3X: value = readl(base + core->offset); mult = (FIELD_GET(CPG_PLLxCR_STC, value) + 1) * 2; break; case CLK_TYPE_GEN4_PLL_F8_25: return cpg_pll_clk_register(core->name, __clk_get_name(parent), base, core->offset, &cpg_pll_f8_25_clk_ops); case CLK_TYPE_GEN4_PLL_V8_25: return cpg_pll_clk_register(core->name, __clk_get_name(parent), base, core->offset, &cpg_pll_v8_25_clk_ops); case CLK_TYPE_GEN4_PLL_V9_24: /* Variable fractional 9.24 is not yet supported, using fixed */ fallthrough; case CLK_TYPE_GEN4_PLL_F9_24: return cpg_pll_clk_register(core->name, __clk_get_name(parent), base, core->offset, &cpg_pll_f9_24_clk_ops); case CLK_TYPE_GEN4_Z: return cpg_z_clk_register(core->name, __clk_get_name(parent), base, core->div, core->offset); case CLK_TYPE_GEN4_SDSRC: value = readl(base + CPG_SD0CKCR1); div = FIELD_GET(CPG_SD0CKCR1_SDSRC_SEL, value) + 4; break; case CLK_TYPE_GEN4_SDH: return cpg_sdh_clk_register(core->name, base + core->offset, __clk_get_name(parent), notifiers); case CLK_TYPE_GEN4_SD: return cpg_sd_clk_register(core->name, base + core->offset, __clk_get_name(parent)); case CLK_TYPE_GEN4_MDSEL: /* * Clock selectable between two parents and two fixed dividers * using a mode pin */ if (cpg_mode & BIT(core->offset)) { div = core->div & 0xffff; } else { parent = clks[core->parent >> 16]; if (IS_ERR(parent)) return ERR_CAST(parent); div = core->div >> 16; } mult = 1; break; case CLK_TYPE_GEN4_OSC: /* * Clock combining OSC EXTAL predivider and a fixed divider */ div = cpg_pll_config->osc_prediv * core->div; break; case CLK_TYPE_GEN4_RPCSRC: return clk_register_divider_table(NULL, core->name, __clk_get_name(parent), 0, base + CPG_RPCCKCR, 3, 2, 0, cpg_rpcsrc_div_table, &cpg_lock); case CLK_TYPE_GEN4_RPC: return cpg_rpc_clk_register(core->name, base + CPG_RPCCKCR, __clk_get_name(parent), notifiers); case CLK_TYPE_GEN4_RPCD2: return cpg_rpcd2_clk_register(core->name, base + CPG_RPCCKCR, __clk_get_name(parent)); default: return ERR_PTR(-EINVAL); } return clk_register_fixed_factor(NULL, core->name, __clk_get_name(parent), 0, mult, div); } int __init rcar_gen4_cpg_init(const struct rcar_gen4_cpg_pll_config *config, unsigned int clk_extalr, u32 mode) { cpg_pll_config = config; cpg_clk_extalr = clk_extalr; cpg_mode = mode; return 0; }