// SPDX-License-Identifier: GPL-2.0-only /* drbd.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner . Copyright (C) 2002-2008, Lars Ellenberg . Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev from Logicworks, Inc. for making SDP replication support possible. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drbd_int.h" #include "drbd_protocol.h" #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ #include "drbd_vli.h" #include "drbd_debugfs.h" static DEFINE_MUTEX(drbd_main_mutex); static int drbd_open(struct gendisk *disk, blk_mode_t mode); static void drbd_release(struct gendisk *gd); static void md_sync_timer_fn(struct timer_list *t); static int w_bitmap_io(struct drbd_work *w, int unused); MODULE_AUTHOR("Philipp Reisner , " "Lars Ellenberg "); MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); MODULE_VERSION(REL_VERSION); MODULE_LICENSE("GPL"); MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); #include /* thanks to these macros, if compiled into the kernel (not-module), * these become boot parameters (e.g., drbd.minor_count) */ #ifdef CONFIG_DRBD_FAULT_INJECTION int drbd_enable_faults; int drbd_fault_rate; static int drbd_fault_count; static int drbd_fault_devs; /* bitmap of enabled faults */ module_param_named(enable_faults, drbd_enable_faults, int, 0664); /* fault rate % value - applies to all enabled faults */ module_param_named(fault_rate, drbd_fault_rate, int, 0664); /* count of faults inserted */ module_param_named(fault_count, drbd_fault_count, int, 0664); /* bitmap of devices to insert faults on */ module_param_named(fault_devs, drbd_fault_devs, int, 0644); #endif /* module parameters we can keep static */ static bool drbd_allow_oos; /* allow_open_on_secondary */ static bool drbd_disable_sendpage; MODULE_PARM_DESC(allow_oos, "DONT USE!"); module_param_named(allow_oos, drbd_allow_oos, bool, 0); module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); /* module parameters we share */ int drbd_proc_details; /* Detail level in proc drbd*/ module_param_named(proc_details, drbd_proc_details, int, 0644); /* module parameters shared with defaults */ unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; /* Module parameter for setting the user mode helper program * to run. Default is /sbin/drbdadm */ char drbd_usermode_helper[80] = "/sbin/drbdadm"; module_param_named(minor_count, drbd_minor_count, uint, 0444); module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); /* in 2.6.x, our device mapping and config info contains our virtual gendisks * as member "struct gendisk *vdisk;" */ struct idr drbd_devices; struct list_head drbd_resources; struct mutex resources_mutex; struct kmem_cache *drbd_request_cache; struct kmem_cache *drbd_ee_cache; /* peer requests */ struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ mempool_t drbd_request_mempool; mempool_t drbd_ee_mempool; mempool_t drbd_md_io_page_pool; struct bio_set drbd_md_io_bio_set; struct bio_set drbd_io_bio_set; /* I do not use a standard mempool, because: 1) I want to hand out the pre-allocated objects first. 2) I want to be able to interrupt sleeping allocation with a signal. Note: This is a single linked list, the next pointer is the private member of struct page. */ struct page *drbd_pp_pool; DEFINE_SPINLOCK(drbd_pp_lock); int drbd_pp_vacant; wait_queue_head_t drbd_pp_wait; DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); static const struct block_device_operations drbd_ops = { .owner = THIS_MODULE, .submit_bio = drbd_submit_bio, .open = drbd_open, .release = drbd_release, }; #ifdef __CHECKER__ /* When checking with sparse, and this is an inline function, sparse will give tons of false positives. When this is a real functions sparse works. */ int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) { int io_allowed; atomic_inc(&device->local_cnt); io_allowed = (device->state.disk >= mins); if (!io_allowed) { if (atomic_dec_and_test(&device->local_cnt)) wake_up(&device->misc_wait); } return io_allowed; } #endif /** * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch * @connection: DRBD connection. * @barrier_nr: Expected identifier of the DRBD write barrier packet. * @set_size: Expected number of requests before that barrier. * * In case the passed barrier_nr or set_size does not match the oldest * epoch of not yet barrier-acked requests, this function will cause a * termination of the connection. */ void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, unsigned int set_size) { struct drbd_request *r; struct drbd_request *req = NULL, *tmp = NULL; int expect_epoch = 0; int expect_size = 0; spin_lock_irq(&connection->resource->req_lock); /* find oldest not yet barrier-acked write request, * count writes in its epoch. */ list_for_each_entry(r, &connection->transfer_log, tl_requests) { const unsigned s = r->rq_state; if (!req) { if (!(s & RQ_WRITE)) continue; if (!(s & RQ_NET_MASK)) continue; if (s & RQ_NET_DONE) continue; req = r; expect_epoch = req->epoch; expect_size ++; } else { if (r->epoch != expect_epoch) break; if (!(s & RQ_WRITE)) continue; /* if (s & RQ_DONE): not expected */ /* if (!(s & RQ_NET_MASK)): not expected */ expect_size++; } } /* first some paranoia code */ if (req == NULL) { drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", barrier_nr); goto bail; } if (expect_epoch != barrier_nr) { drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", barrier_nr, expect_epoch); goto bail; } if (expect_size != set_size) { drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", barrier_nr, set_size, expect_size); goto bail; } /* Clean up list of requests processed during current epoch. */ /* this extra list walk restart is paranoia, * to catch requests being barrier-acked "unexpectedly". * It usually should find the same req again, or some READ preceding it. */ list_for_each_entry(req, &connection->transfer_log, tl_requests) if (req->epoch == expect_epoch) { tmp = req; break; } req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { struct drbd_peer_device *peer_device; if (req->epoch != expect_epoch) break; peer_device = conn_peer_device(connection, req->device->vnr); _req_mod(req, BARRIER_ACKED, peer_device); } spin_unlock_irq(&connection->resource->req_lock); return; bail: spin_unlock_irq(&connection->resource->req_lock); conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); } /** * _tl_restart() - Walks the transfer log, and applies an action to all requests * @connection: DRBD connection to operate on. * @what: The action/event to perform with all request objects * * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, * RESTART_FROZEN_DISK_IO. */ /* must hold resource->req_lock */ void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) { struct drbd_peer_device *peer_device; struct drbd_request *req, *r; list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { peer_device = conn_peer_device(connection, req->device->vnr); _req_mod(req, what, peer_device); } } void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) { spin_lock_irq(&connection->resource->req_lock); _tl_restart(connection, what); spin_unlock_irq(&connection->resource->req_lock); } /** * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL * @connection: DRBD connection. * * This is called after the connection to the peer was lost. The storage covered * by the requests on the transfer gets marked as our of sync. Called from the * receiver thread and the worker thread. */ void tl_clear(struct drbd_connection *connection) { tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); } /** * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL * @device: DRBD device. */ void tl_abort_disk_io(struct drbd_device *device) { struct drbd_connection *connection = first_peer_device(device)->connection; struct drbd_request *req, *r; spin_lock_irq(&connection->resource->req_lock); list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { if (!(req->rq_state & RQ_LOCAL_PENDING)) continue; if (req->device != device) continue; _req_mod(req, ABORT_DISK_IO, NULL); } spin_unlock_irq(&connection->resource->req_lock); } static int drbd_thread_setup(void *arg) { struct drbd_thread *thi = (struct drbd_thread *) arg; struct drbd_resource *resource = thi->resource; unsigned long flags; int retval; snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", thi->name[0], resource->name); allow_kernel_signal(DRBD_SIGKILL); allow_kernel_signal(SIGXCPU); restart: retval = thi->function(thi); spin_lock_irqsave(&thi->t_lock, flags); /* if the receiver has been "EXITING", the last thing it did * was set the conn state to "StandAlone", * if now a re-connect request comes in, conn state goes C_UNCONNECTED, * and receiver thread will be "started". * drbd_thread_start needs to set "RESTARTING" in that case. * t_state check and assignment needs to be within the same spinlock, * so either thread_start sees EXITING, and can remap to RESTARTING, * or thread_start see NONE, and can proceed as normal. */ if (thi->t_state == RESTARTING) { drbd_info(resource, "Restarting %s thread\n", thi->name); thi->t_state = RUNNING; spin_unlock_irqrestore(&thi->t_lock, flags); goto restart; } thi->task = NULL; thi->t_state = NONE; smp_mb(); complete_all(&thi->stop); spin_unlock_irqrestore(&thi->t_lock, flags); drbd_info(resource, "Terminating %s\n", current->comm); /* Release mod reference taken when thread was started */ if (thi->connection) kref_put(&thi->connection->kref, drbd_destroy_connection); kref_put(&resource->kref, drbd_destroy_resource); module_put(THIS_MODULE); return retval; } static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, int (*func) (struct drbd_thread *), const char *name) { spin_lock_init(&thi->t_lock); thi->task = NULL; thi->t_state = NONE; thi->function = func; thi->resource = resource; thi->connection = NULL; thi->name = name; } int drbd_thread_start(struct drbd_thread *thi) { struct drbd_resource *resource = thi->resource; struct task_struct *nt; unsigned long flags; /* is used from state engine doing drbd_thread_stop_nowait, * while holding the req lock irqsave */ spin_lock_irqsave(&thi->t_lock, flags); switch (thi->t_state) { case NONE: drbd_info(resource, "Starting %s thread (from %s [%d])\n", thi->name, current->comm, current->pid); /* Get ref on module for thread - this is released when thread exits */ if (!try_module_get(THIS_MODULE)) { drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); spin_unlock_irqrestore(&thi->t_lock, flags); return false; } kref_get(&resource->kref); if (thi->connection) kref_get(&thi->connection->kref); init_completion(&thi->stop); thi->reset_cpu_mask = 1; thi->t_state = RUNNING; spin_unlock_irqrestore(&thi->t_lock, flags); flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ nt = kthread_create(drbd_thread_setup, (void *) thi, "drbd_%c_%s", thi->name[0], thi->resource->name); if (IS_ERR(nt)) { drbd_err(resource, "Couldn't start thread\n"); if (thi->connection) kref_put(&thi->connection->kref, drbd_destroy_connection); kref_put(&resource->kref, drbd_destroy_resource); module_put(THIS_MODULE); return false; } spin_lock_irqsave(&thi->t_lock, flags); thi->task = nt; thi->t_state = RUNNING; spin_unlock_irqrestore(&thi->t_lock, flags); wake_up_process(nt); break; case EXITING: thi->t_state = RESTARTING; drbd_info(resource, "Restarting %s thread (from %s [%d])\n", thi->name, current->comm, current->pid); fallthrough; case RUNNING: case RESTARTING: default: spin_unlock_irqrestore(&thi->t_lock, flags); break; } return true; } void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) { unsigned long flags; enum drbd_thread_state ns = restart ? RESTARTING : EXITING; /* may be called from state engine, holding the req lock irqsave */ spin_lock_irqsave(&thi->t_lock, flags); if (thi->t_state == NONE) { spin_unlock_irqrestore(&thi->t_lock, flags); if (restart) drbd_thread_start(thi); return; } if (thi->t_state != ns) { if (thi->task == NULL) { spin_unlock_irqrestore(&thi->t_lock, flags); return; } thi->t_state = ns; smp_mb(); init_completion(&thi->stop); if (thi->task != current) send_sig(DRBD_SIGKILL, thi->task, 1); } spin_unlock_irqrestore(&thi->t_lock, flags); if (wait) wait_for_completion(&thi->stop); } int conn_lowest_minor(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; int vnr = 0, minor = -1; rcu_read_lock(); peer_device = idr_get_next(&connection->peer_devices, &vnr); if (peer_device) minor = device_to_minor(peer_device->device); rcu_read_unlock(); return minor; } #ifdef CONFIG_SMP /* * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs * * Forces all threads of a resource onto the same CPU. This is beneficial for * DRBD's performance. May be overwritten by user's configuration. */ static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) { unsigned int *resources_per_cpu, min_index = ~0; resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), GFP_KERNEL); if (resources_per_cpu) { struct drbd_resource *resource; unsigned int cpu, min = ~0; rcu_read_lock(); for_each_resource_rcu(resource, &drbd_resources) { for_each_cpu(cpu, resource->cpu_mask) resources_per_cpu[cpu]++; } rcu_read_unlock(); for_each_online_cpu(cpu) { if (resources_per_cpu[cpu] < min) { min = resources_per_cpu[cpu]; min_index = cpu; } } kfree(resources_per_cpu); } if (min_index == ~0) { cpumask_setall(*cpu_mask); return; } cpumask_set_cpu(min_index, *cpu_mask); } /** * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread * @thi: drbd_thread object * * call in the "main loop" of _all_ threads, no need for any mutex, current won't die * prematurely. */ void drbd_thread_current_set_cpu(struct drbd_thread *thi) { struct drbd_resource *resource = thi->resource; struct task_struct *p = current; if (!thi->reset_cpu_mask) return; thi->reset_cpu_mask = 0; set_cpus_allowed_ptr(p, resource->cpu_mask); } #else #define drbd_calc_cpu_mask(A) ({}) #endif /* * drbd_header_size - size of a packet header * * The header size is a multiple of 8, so any payload following the header is * word aligned on 64-bit architectures. (The bitmap send and receive code * relies on this.) */ unsigned int drbd_header_size(struct drbd_connection *connection) { if (connection->agreed_pro_version >= 100) { BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); return sizeof(struct p_header100); } else { BUILD_BUG_ON(sizeof(struct p_header80) != sizeof(struct p_header95)); BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); return sizeof(struct p_header80); } } static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) { h->magic = cpu_to_be32(DRBD_MAGIC); h->command = cpu_to_be16(cmd); h->length = cpu_to_be16(size); return sizeof(struct p_header80); } static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) { h->magic = cpu_to_be16(DRBD_MAGIC_BIG); h->command = cpu_to_be16(cmd); h->length = cpu_to_be32(size); return sizeof(struct p_header95); } static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, int size, int vnr) { h->magic = cpu_to_be32(DRBD_MAGIC_100); h->volume = cpu_to_be16(vnr); h->command = cpu_to_be16(cmd); h->length = cpu_to_be32(size); h->pad = 0; return sizeof(struct p_header100); } static unsigned int prepare_header(struct drbd_connection *connection, int vnr, void *buffer, enum drbd_packet cmd, int size) { if (connection->agreed_pro_version >= 100) return prepare_header100(buffer, cmd, size, vnr); else if (connection->agreed_pro_version >= 95 && size > DRBD_MAX_SIZE_H80_PACKET) return prepare_header95(buffer, cmd, size); else return prepare_header80(buffer, cmd, size); } static void *__conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) { if (!sock->socket) return NULL; return sock->sbuf + drbd_header_size(connection); } void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) { void *p; mutex_lock(&sock->mutex); p = __conn_prepare_command(connection, sock); if (!p) mutex_unlock(&sock->mutex); return p; } void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) { return conn_prepare_command(peer_device->connection, sock); } static int __send_command(struct drbd_connection *connection, int vnr, struct drbd_socket *sock, enum drbd_packet cmd, unsigned int header_size, void *data, unsigned int size) { int msg_flags; int err; /* * Called with @data == NULL and the size of the data blocks in @size * for commands that send data blocks. For those commands, omit the * MSG_MORE flag: this will increase the likelihood that data blocks * which are page aligned on the sender will end up page aligned on the * receiver. */ msg_flags = data ? MSG_MORE : 0; header_size += prepare_header(connection, vnr, sock->sbuf, cmd, header_size + size); err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, msg_flags); if (data && !err) err = drbd_send_all(connection, sock->socket, data, size, 0); /* DRBD protocol "pings" are latency critical. * This is supposed to trigger tcp_push_pending_frames() */ if (!err && (cmd == P_PING || cmd == P_PING_ACK)) tcp_sock_set_nodelay(sock->socket->sk); return err; } static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, enum drbd_packet cmd, unsigned int header_size, void *data, unsigned int size) { return __send_command(connection, 0, sock, cmd, header_size, data, size); } int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, enum drbd_packet cmd, unsigned int header_size, void *data, unsigned int size) { int err; err = __conn_send_command(connection, sock, cmd, header_size, data, size); mutex_unlock(&sock->mutex); return err; } int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, enum drbd_packet cmd, unsigned int header_size, void *data, unsigned int size) { int err; err = __send_command(peer_device->connection, peer_device->device->vnr, sock, cmd, header_size, data, size); mutex_unlock(&sock->mutex); return err; } int drbd_send_ping(struct drbd_connection *connection) { struct drbd_socket *sock; sock = &connection->meta; if (!conn_prepare_command(connection, sock)) return -EIO; return conn_send_command(connection, sock, P_PING, 0, NULL, 0); } int drbd_send_ping_ack(struct drbd_connection *connection) { struct drbd_socket *sock; sock = &connection->meta; if (!conn_prepare_command(connection, sock)) return -EIO; return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); } int drbd_send_sync_param(struct drbd_peer_device *peer_device) { struct drbd_socket *sock; struct p_rs_param_95 *p; int size; const int apv = peer_device->connection->agreed_pro_version; enum drbd_packet cmd; struct net_conf *nc; struct disk_conf *dc; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; rcu_read_lock(); nc = rcu_dereference(peer_device->connection->net_conf); size = apv <= 87 ? sizeof(struct p_rs_param) : apv == 88 ? sizeof(struct p_rs_param) + strlen(nc->verify_alg) + 1 : apv <= 94 ? sizeof(struct p_rs_param_89) : /* apv >= 95 */ sizeof(struct p_rs_param_95); cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; /* initialize verify_alg and csums_alg */ BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); memset(&p->algs, 0, sizeof(p->algs)); if (get_ldev(peer_device->device)) { dc = rcu_dereference(peer_device->device->ldev->disk_conf); p->resync_rate = cpu_to_be32(dc->resync_rate); p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); p->c_delay_target = cpu_to_be32(dc->c_delay_target); p->c_fill_target = cpu_to_be32(dc->c_fill_target); p->c_max_rate = cpu_to_be32(dc->c_max_rate); put_ldev(peer_device->device); } else { p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); } if (apv >= 88) strcpy(p->verify_alg, nc->verify_alg); if (apv >= 89) strcpy(p->csums_alg, nc->csums_alg); rcu_read_unlock(); return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); } int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) { struct drbd_socket *sock; struct p_protocol *p; struct net_conf *nc; int size, cf; sock = &connection->data; p = __conn_prepare_command(connection, sock); if (!p) return -EIO; rcu_read_lock(); nc = rcu_dereference(connection->net_conf); if (nc->tentative && connection->agreed_pro_version < 92) { rcu_read_unlock(); drbd_err(connection, "--dry-run is not supported by peer"); return -EOPNOTSUPP; } size = sizeof(*p); if (connection->agreed_pro_version >= 87) size += strlen(nc->integrity_alg) + 1; p->protocol = cpu_to_be32(nc->wire_protocol); p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); p->two_primaries = cpu_to_be32(nc->two_primaries); cf = 0; if (nc->discard_my_data) cf |= CF_DISCARD_MY_DATA; if (nc->tentative) cf |= CF_DRY_RUN; p->conn_flags = cpu_to_be32(cf); if (connection->agreed_pro_version >= 87) strcpy(p->integrity_alg, nc->integrity_alg); rcu_read_unlock(); return __conn_send_command(connection, sock, cmd, size, NULL, 0); } int drbd_send_protocol(struct drbd_connection *connection) { int err; mutex_lock(&connection->data.mutex); err = __drbd_send_protocol(connection, P_PROTOCOL); mutex_unlock(&connection->data.mutex); return err; } static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock; struct p_uuids *p; int i; if (!get_ldev_if_state(device, D_NEGOTIATING)) return 0; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) { put_ldev(device); return -EIO; } spin_lock_irq(&device->ldev->md.uuid_lock); for (i = UI_CURRENT; i < UI_SIZE; i++) p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); spin_unlock_irq(&device->ldev->md.uuid_lock); device->comm_bm_set = drbd_bm_total_weight(device); p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); rcu_read_lock(); uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; rcu_read_unlock(); uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); put_ldev(device); return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); } int drbd_send_uuids(struct drbd_peer_device *peer_device) { return _drbd_send_uuids(peer_device, 0); } int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) { return _drbd_send_uuids(peer_device, 8); } void drbd_print_uuids(struct drbd_device *device, const char *text) { if (get_ldev_if_state(device, D_NEGOTIATING)) { u64 *uuid = device->ldev->md.uuid; drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", text, (unsigned long long)uuid[UI_CURRENT], (unsigned long long)uuid[UI_BITMAP], (unsigned long long)uuid[UI_HISTORY_START], (unsigned long long)uuid[UI_HISTORY_END]); put_ldev(device); } else { drbd_info(device, "%s effective data uuid: %016llX\n", text, (unsigned long long)device->ed_uuid); } } void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock; struct p_rs_uuid *p; u64 uuid; D_ASSERT(device, device->state.disk == D_UP_TO_DATE); uuid = device->ldev->md.uuid[UI_BITMAP]; if (uuid && uuid != UUID_JUST_CREATED) uuid = uuid + UUID_NEW_BM_OFFSET; else get_random_bytes(&uuid, sizeof(u64)); drbd_uuid_set(device, UI_BITMAP, uuid); drbd_print_uuids(device, "updated sync UUID"); drbd_md_sync(device); sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (p) { p->uuid = cpu_to_be64(uuid); drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); } } int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock; struct p_sizes *p; sector_t d_size, u_size; int q_order_type; unsigned int max_bio_size; unsigned int packet_size; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; packet_size = sizeof(*p); if (peer_device->connection->agreed_features & DRBD_FF_WSAME) packet_size += sizeof(p->qlim[0]); memset(p, 0, packet_size); if (get_ldev_if_state(device, D_NEGOTIATING)) { struct block_device *bdev = device->ldev->backing_bdev; struct request_queue *q = bdev_get_queue(bdev); d_size = drbd_get_max_capacity(device->ldev); rcu_read_lock(); u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; rcu_read_unlock(); q_order_type = drbd_queue_order_type(device); max_bio_size = queue_max_hw_sectors(q) << 9; max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); p->qlim->physical_block_size = cpu_to_be32(bdev_physical_block_size(bdev)); p->qlim->logical_block_size = cpu_to_be32(bdev_logical_block_size(bdev)); p->qlim->alignment_offset = cpu_to_be32(bdev_alignment_offset(bdev)); p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev)); p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev)); p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev); put_ldev(device); } else { struct request_queue *q = device->rq_queue; p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q)); p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q)); p->qlim->alignment_offset = 0; p->qlim->io_min = cpu_to_be32(queue_io_min(q)); p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); p->qlim->discard_enabled = 0; d_size = 0; u_size = 0; q_order_type = QUEUE_ORDERED_NONE; max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ } if (peer_device->connection->agreed_pro_version <= 94) max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); else if (peer_device->connection->agreed_pro_version < 100) max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); p->d_size = cpu_to_be64(d_size); p->u_size = cpu_to_be64(u_size); if (trigger_reply) p->c_size = 0; else p->c_size = cpu_to_be64(get_capacity(device->vdisk)); p->max_bio_size = cpu_to_be32(max_bio_size); p->queue_order_type = cpu_to_be16(q_order_type); p->dds_flags = cpu_to_be16(flags); return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); } /** * drbd_send_current_state() - Sends the drbd state to the peer * @peer_device: DRBD peer device. */ int drbd_send_current_state(struct drbd_peer_device *peer_device) { struct drbd_socket *sock; struct p_state *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); } /** * drbd_send_state() - After a state change, sends the new state to the peer * @peer_device: DRBD peer device. * @state: the state to send, not necessarily the current state. * * Each state change queues an "after_state_ch" work, which will eventually * send the resulting new state to the peer. If more state changes happen * between queuing and processing of the after_state_ch work, we still * want to send each intermediary state in the order it occurred. */ int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) { struct drbd_socket *sock; struct p_state *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->state = cpu_to_be32(state.i); /* Within the send mutex */ return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); } int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) { struct drbd_socket *sock; struct p_req_state *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->mask = cpu_to_be32(mask.i); p->val = cpu_to_be32(val.i); return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); } int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) { enum drbd_packet cmd; struct drbd_socket *sock; struct p_req_state *p; cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; sock = &connection->data; p = conn_prepare_command(connection, sock); if (!p) return -EIO; p->mask = cpu_to_be32(mask.i); p->val = cpu_to_be32(val.i); return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); } void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) { struct drbd_socket *sock; struct p_req_state_reply *p; sock = &peer_device->connection->meta; p = drbd_prepare_command(peer_device, sock); if (p) { p->retcode = cpu_to_be32(retcode); drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); } } void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) { struct drbd_socket *sock; struct p_req_state_reply *p; enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; sock = &connection->meta; p = conn_prepare_command(connection, sock); if (p) { p->retcode = cpu_to_be32(retcode); conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); } } static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) { BUG_ON(code & ~0xf); p->encoding = (p->encoding & ~0xf) | code; } static void dcbp_set_start(struct p_compressed_bm *p, int set) { p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); } static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) { BUG_ON(n & ~0x7); p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); } static int fill_bitmap_rle_bits(struct drbd_device *device, struct p_compressed_bm *p, unsigned int size, struct bm_xfer_ctx *c) { struct bitstream bs; unsigned long plain_bits; unsigned long tmp; unsigned long rl; unsigned len; unsigned toggle; int bits, use_rle; /* may we use this feature? */ rcu_read_lock(); use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; rcu_read_unlock(); if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) return 0; if (c->bit_offset >= c->bm_bits) return 0; /* nothing to do. */ /* use at most thus many bytes */ bitstream_init(&bs, p->code, size, 0); memset(p->code, 0, size); /* plain bits covered in this code string */ plain_bits = 0; /* p->encoding & 0x80 stores whether the first run length is set. * bit offset is implicit. * start with toggle == 2 to be able to tell the first iteration */ toggle = 2; /* see how much plain bits we can stuff into one packet * using RLE and VLI. */ do { tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) : _drbd_bm_find_next(device, c->bit_offset); if (tmp == -1UL) tmp = c->bm_bits; rl = tmp - c->bit_offset; if (toggle == 2) { /* first iteration */ if (rl == 0) { /* the first checked bit was set, * store start value, */ dcbp_set_start(p, 1); /* but skip encoding of zero run length */ toggle = !toggle; continue; } dcbp_set_start(p, 0); } /* paranoia: catch zero runlength. * can only happen if bitmap is modified while we scan it. */ if (rl == 0) { drbd_err(device, "unexpected zero runlength while encoding bitmap " "t:%u bo:%lu\n", toggle, c->bit_offset); return -1; } bits = vli_encode_bits(&bs, rl); if (bits == -ENOBUFS) /* buffer full */ break; if (bits <= 0) { drbd_err(device, "error while encoding bitmap: %d\n", bits); return 0; } toggle = !toggle; plain_bits += rl; c->bit_offset = tmp; } while (c->bit_offset < c->bm_bits); len = bs.cur.b - p->code + !!bs.cur.bit; if (plain_bits < (len << 3)) { /* incompressible with this method. * we need to rewind both word and bit position. */ c->bit_offset -= plain_bits; bm_xfer_ctx_bit_to_word_offset(c); c->bit_offset = c->word_offset * BITS_PER_LONG; return 0; } /* RLE + VLI was able to compress it just fine. * update c->word_offset. */ bm_xfer_ctx_bit_to_word_offset(c); /* store pad_bits */ dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); return len; } /* * send_bitmap_rle_or_plain * * Return 0 when done, 1 when another iteration is needed, and a negative error * code upon failure. */ static int send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock = &peer_device->connection->data; unsigned int header_size = drbd_header_size(peer_device->connection); struct p_compressed_bm *p = sock->sbuf + header_size; int len, err; len = fill_bitmap_rle_bits(device, p, DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); if (len < 0) return -EIO; if (len) { dcbp_set_code(p, RLE_VLI_Bits); err = __send_command(peer_device->connection, device->vnr, sock, P_COMPRESSED_BITMAP, sizeof(*p) + len, NULL, 0); c->packets[0]++; c->bytes[0] += header_size + sizeof(*p) + len; if (c->bit_offset >= c->bm_bits) len = 0; /* DONE */ } else { /* was not compressible. * send a buffer full of plain text bits instead. */ unsigned int data_size; unsigned long num_words; unsigned long *p = sock->sbuf + header_size; data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; num_words = min_t(size_t, data_size / sizeof(*p), c->bm_words - c->word_offset); len = num_words * sizeof(*p); if (len) drbd_bm_get_lel(device, c->word_offset, num_words, p); err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); c->word_offset += num_words; c->bit_offset = c->word_offset * BITS_PER_LONG; c->packets[1]++; c->bytes[1] += header_size + len; if (c->bit_offset > c->bm_bits) c->bit_offset = c->bm_bits; } if (!err) { if (len == 0) { INFO_bm_xfer_stats(peer_device, "send", c); return 0; } else return 1; } return -EIO; } /* See the comment at receive_bitmap() */ static int _drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device) { struct bm_xfer_ctx c; int err; if (!expect(device, device->bitmap)) return false; if (get_ldev(device)) { if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); drbd_bm_set_all(device); if (drbd_bm_write(device, peer_device)) { /* write_bm did fail! Leave full sync flag set in Meta P_DATA * but otherwise process as per normal - need to tell other * side that a full resync is required! */ drbd_err(device, "Failed to write bitmap to disk!\n"); } else { drbd_md_clear_flag(device, MDF_FULL_SYNC); drbd_md_sync(device); } } put_ldev(device); } c = (struct bm_xfer_ctx) { .bm_bits = drbd_bm_bits(device), .bm_words = drbd_bm_words(device), }; do { err = send_bitmap_rle_or_plain(peer_device, &c); } while (err > 0); return err == 0; } int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device) { struct drbd_socket *sock = &peer_device->connection->data; int err = -1; mutex_lock(&sock->mutex); if (sock->socket) err = !_drbd_send_bitmap(device, peer_device); mutex_unlock(&sock->mutex); return err; } void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) { struct drbd_socket *sock; struct p_barrier_ack *p; if (connection->cstate < C_WF_REPORT_PARAMS) return; sock = &connection->meta; p = conn_prepare_command(connection, sock); if (!p) return; p->barrier = barrier_nr; p->set_size = cpu_to_be32(set_size); conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); } /** * _drbd_send_ack() - Sends an ack packet * @peer_device: DRBD peer device. * @cmd: Packet command code. * @sector: sector, needs to be in big endian byte order * @blksize: size in byte, needs to be in big endian byte order * @block_id: Id, big endian byte order */ static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, u64 sector, u32 blksize, u64 block_id) { struct drbd_socket *sock; struct p_block_ack *p; if (peer_device->device->state.conn < C_CONNECTED) return -EIO; sock = &peer_device->connection->meta; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = sector; p->block_id = block_id; p->blksize = blksize; p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); } /* dp->sector and dp->block_id already/still in network byte order, * data_size is payload size according to dp->head, * and may need to be corrected for digest size. */ void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, struct p_data *dp, int data_size) { if (peer_device->connection->peer_integrity_tfm) data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), dp->block_id); } void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, struct p_block_req *rp) { _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); } /** * drbd_send_ack() - Sends an ack packet * @peer_device: DRBD peer device * @cmd: packet command code * @peer_req: peer request */ int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, struct drbd_peer_request *peer_req) { return _drbd_send_ack(peer_device, cmd, cpu_to_be64(peer_req->i.sector), cpu_to_be32(peer_req->i.size), peer_req->block_id); } /* This function misuses the block_id field to signal if the blocks * are is sync or not. */ int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, sector_t sector, int blksize, u64 block_id) { return _drbd_send_ack(peer_device, cmd, cpu_to_be64(sector), cpu_to_be32(blksize), cpu_to_be64(block_id)); } int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, struct drbd_peer_request *peer_req) { struct drbd_socket *sock; struct p_block_desc *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = cpu_to_be64(peer_req->i.sector); p->blksize = cpu_to_be32(peer_req->i.size); p->pad = 0; return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); } int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, sector_t sector, int size, u64 block_id) { struct drbd_socket *sock; struct p_block_req *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = cpu_to_be64(sector); p->block_id = block_id; p->blksize = cpu_to_be32(size); return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); } int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, void *digest, int digest_size, enum drbd_packet cmd) { struct drbd_socket *sock; struct p_block_req *p; /* FIXME: Put the digest into the preallocated socket buffer. */ sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = cpu_to_be64(sector); p->block_id = ID_SYNCER /* unused */; p->blksize = cpu_to_be32(size); return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); } int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) { struct drbd_socket *sock; struct p_block_req *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = cpu_to_be64(sector); p->block_id = ID_SYNCER /* unused */; p->blksize = cpu_to_be32(size); return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); } /* called on sndtimeo * returns false if we should retry, * true if we think connection is dead */ static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) { int drop_it; /* long elapsed = (long)(jiffies - device->last_received); */ drop_it = connection->meta.socket == sock || !connection->ack_receiver.task || get_t_state(&connection->ack_receiver) != RUNNING || connection->cstate < C_WF_REPORT_PARAMS; if (drop_it) return true; drop_it = !--connection->ko_count; if (!drop_it) { drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", current->comm, current->pid, connection->ko_count); request_ping(connection); } return drop_it; /* && (device->state == R_PRIMARY) */; } static void drbd_update_congested(struct drbd_connection *connection) { struct sock *sk = connection->data.socket->sk; if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) set_bit(NET_CONGESTED, &connection->flags); } /* The idea of sendpage seems to be to put some kind of reference * to the page into the skb, and to hand it over to the NIC. In * this process get_page() gets called. * * As soon as the page was really sent over the network put_page() * gets called by some part of the network layer. [ NIC driver? ] * * [ get_page() / put_page() increment/decrement the count. If count * reaches 0 the page will be freed. ] * * This works nicely with pages from FSs. * But this means that in protocol A we might signal IO completion too early! * * In order not to corrupt data during a resync we must make sure * that we do not reuse our own buffer pages (EEs) to early, therefore * we have the net_ee list. * * XFS seems to have problems, still, it submits pages with page_count == 0! * As a workaround, we disable sendpage on pages * with page_count == 0 or PageSlab. */ static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, int offset, size_t size, unsigned msg_flags) { struct socket *socket; void *addr; int err; socket = peer_device->connection->data.socket; addr = kmap(page) + offset; err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); kunmap(page); if (!err) peer_device->device->send_cnt += size >> 9; return err; } static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, int offset, size_t size, unsigned msg_flags) { struct socket *socket = peer_device->connection->data.socket; struct msghdr msg = { .msg_flags = msg_flags, }; struct bio_vec bvec; int len = size; int err = -EIO; /* e.g. XFS meta- & log-data is in slab pages, which have a * page_count of 0 and/or have PageSlab() set. * we cannot use send_page for those, as that does get_page(); * put_page(); and would cause either a VM_BUG directly, or * __page_cache_release a page that would actually still be referenced * by someone, leading to some obscure delayed Oops somewhere else. */ if (!drbd_disable_sendpage && sendpages_ok(page, len, offset)) msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES; drbd_update_congested(peer_device->connection); do { int sent; bvec_set_page(&bvec, page, len, offset); iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len); sent = sock_sendmsg(socket, &msg); if (sent <= 0) { if (sent == -EAGAIN) { if (we_should_drop_the_connection(peer_device->connection, socket)) break; continue; } drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", __func__, (int)size, len, sent); if (sent < 0) err = sent; break; } len -= sent; offset += sent; } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); clear_bit(NET_CONGESTED, &peer_device->connection->flags); if (len == 0) { err = 0; peer_device->device->send_cnt += size >> 9; } return err; } static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) { struct bio_vec bvec; struct bvec_iter iter; /* hint all but last page with MSG_MORE */ bio_for_each_segment(bvec, bio, iter) { int err; err = _drbd_no_send_page(peer_device, bvec.bv_page, bvec.bv_offset, bvec.bv_len, bio_iter_last(bvec, iter) ? 0 : MSG_MORE); if (err) return err; } return 0; } static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) { struct bio_vec bvec; struct bvec_iter iter; /* hint all but last page with MSG_MORE */ bio_for_each_segment(bvec, bio, iter) { int err; err = _drbd_send_page(peer_device, bvec.bv_page, bvec.bv_offset, bvec.bv_len, bio_iter_last(bvec, iter) ? 0 : MSG_MORE); if (err) return err; } return 0; } static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, struct drbd_peer_request *peer_req) { struct page *page = peer_req->pages; unsigned len = peer_req->i.size; int err; /* hint all but last page with MSG_MORE */ page_chain_for_each(page) { unsigned l = min_t(unsigned, len, PAGE_SIZE); err = _drbd_send_page(peer_device, page, 0, l, page_chain_next(page) ? MSG_MORE : 0); if (err) return err; len -= l; } return 0; } static u32 bio_flags_to_wire(struct drbd_connection *connection, struct bio *bio) { if (connection->agreed_pro_version >= 95) return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | (bio_op(bio) == REQ_OP_WRITE_ZEROES ? ((connection->agreed_features & DRBD_FF_WZEROES) ? (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) : DP_DISCARD) : 0); else return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; } /* Used to send write or TRIM aka REQ_OP_DISCARD requests * R_PRIMARY -> Peer (P_DATA, P_TRIM) */ int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock; struct p_data *p; void *digest_out; unsigned int dp_flags = 0; int digest_size; int err; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); digest_size = peer_device->connection->integrity_tfm ? crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; if (!p) return -EIO; p->sector = cpu_to_be64(req->i.sector); p->block_id = (unsigned long)req; p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); if (device->state.conn >= C_SYNC_SOURCE && device->state.conn <= C_PAUSED_SYNC_T) dp_flags |= DP_MAY_SET_IN_SYNC; if (peer_device->connection->agreed_pro_version >= 100) { if (req->rq_state & RQ_EXP_RECEIVE_ACK) dp_flags |= DP_SEND_RECEIVE_ACK; /* During resync, request an explicit write ack, * even in protocol != C */ if (req->rq_state & RQ_EXP_WRITE_ACK || (dp_flags & DP_MAY_SET_IN_SYNC)) dp_flags |= DP_SEND_WRITE_ACK; } p->dp_flags = cpu_to_be32(dp_flags); if (dp_flags & (DP_DISCARD|DP_ZEROES)) { enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; struct p_trim *t = (struct p_trim*)p; t->size = cpu_to_be32(req->i.size); err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); goto out; } digest_out = p + 1; /* our digest is still only over the payload. * TRIM does not carry any payload. */ if (digest_size) drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, sizeof(*p) + digest_size, NULL, req->i.size); if (!err) { /* For protocol A, we have to memcpy the payload into * socket buffers, as we may complete right away * as soon as we handed it over to tcp, at which point the data * pages may become invalid. * * For data-integrity enabled, we copy it as well, so we can be * sure that even if the bio pages may still be modified, it * won't change the data on the wire, thus if the digest checks * out ok after sending on this side, but does not fit on the * receiving side, we sure have detected corruption elsewhere. */ if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) err = _drbd_send_bio(peer_device, req->master_bio); else err = _drbd_send_zc_bio(peer_device, req->master_bio); /* double check digest, sometimes buffers have been modified in flight. */ if (digest_size > 0 && digest_size <= 64) { /* 64 byte, 512 bit, is the largest digest size * currently supported in kernel crypto. */ unsigned char digest[64]; drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); if (memcmp(p + 1, digest, digest_size)) { drbd_warn(device, "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", (unsigned long long)req->i.sector, req->i.size); } } /* else if (digest_size > 64) { ... Be noisy about digest too large ... } */ } out: mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ return err; } /* answer packet, used to send data back for read requests: * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) */ int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, struct drbd_peer_request *peer_req) { struct drbd_device *device = peer_device->device; struct drbd_socket *sock; struct p_data *p; int err; int digest_size; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); digest_size = peer_device->connection->integrity_tfm ? crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; if (!p) return -EIO; p->sector = cpu_to_be64(peer_req->i.sector); p->block_id = peer_req->block_id; p->seq_num = 0; /* unused */ p->dp_flags = 0; if (digest_size) drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); if (!err) err = _drbd_send_zc_ee(peer_device, peer_req); mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ return err; } int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) { struct drbd_socket *sock; struct p_block_desc *p; sock = &peer_device->connection->data; p = drbd_prepare_command(peer_device, sock); if (!p) return -EIO; p->sector = cpu_to_be64(req->i.sector); p->blksize = cpu_to_be32(req->i.size); return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); } /* drbd_send distinguishes two cases: Packets sent via the data socket "sock" and packets sent via the meta data socket "msock" sock msock -----------------+-------------------------+------------------------------ timeout conf.timeout / 2 conf.timeout / 2 timeout action send a ping via msock Abort communication and close all sockets */ /* * you must have down()ed the appropriate [m]sock_mutex elsewhere! */ int drbd_send(struct drbd_connection *connection, struct socket *sock, void *buf, size_t size, unsigned msg_flags) { struct kvec iov = {.iov_base = buf, .iov_len = size}; struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; int rv, sent = 0; if (!sock) return -EBADR; /* THINK if (signal_pending) return ... ? */ iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size); if (sock == connection->data.socket) { rcu_read_lock(); connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; rcu_read_unlock(); drbd_update_congested(connection); } do { rv = sock_sendmsg(sock, &msg); if (rv == -EAGAIN) { if (we_should_drop_the_connection(connection, sock)) break; else continue; } if (rv == -EINTR) { flush_signals(current); rv = 0; } if (rv < 0) break; sent += rv; } while (sent < size); if (sock == connection->data.socket) clear_bit(NET_CONGESTED, &connection->flags); if (rv <= 0) { if (rv != -EAGAIN) { drbd_err(connection, "%s_sendmsg returned %d\n", sock == connection->meta.socket ? "msock" : "sock", rv); conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); } else conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); } return sent; } /* * drbd_send_all - Send an entire buffer * * Returns 0 upon success and a negative error value otherwise. */ int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, size_t size, unsigned msg_flags) { int err; err = drbd_send(connection, sock, buffer, size, msg_flags); if (err < 0) return err; if (err != size) return -EIO; return 0; } static int drbd_open(struct gendisk *disk, blk_mode_t mode) { struct drbd_device *device = disk->private_data; unsigned long flags; int rv = 0; mutex_lock(&drbd_main_mutex); spin_lock_irqsave(&device->resource->req_lock, flags); /* to have a stable device->state.role * and no race with updating open_cnt */ if (device->state.role != R_PRIMARY) { if (mode & BLK_OPEN_WRITE) rv = -EROFS; else if (!drbd_allow_oos) rv = -EMEDIUMTYPE; } if (!rv) device->open_cnt++; spin_unlock_irqrestore(&device->resource->req_lock, flags); mutex_unlock(&drbd_main_mutex); return rv; } static void drbd_release(struct gendisk *gd) { struct drbd_device *device = gd->private_data; mutex_lock(&drbd_main_mutex); device->open_cnt--; mutex_unlock(&drbd_main_mutex); } /* need to hold resource->req_lock */ void drbd_queue_unplug(struct drbd_device *device) { if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { D_ASSERT(device, device->state.role == R_PRIMARY); if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { drbd_queue_work_if_unqueued( &first_peer_device(device)->connection->sender_work, &device->unplug_work); } } } static void drbd_set_defaults(struct drbd_device *device) { /* Beware! The actual layout differs * between big endian and little endian */ device->state = (union drbd_dev_state) { { .role = R_SECONDARY, .peer = R_UNKNOWN, .conn = C_STANDALONE, .disk = D_DISKLESS, .pdsk = D_UNKNOWN, } }; } void drbd_init_set_defaults(struct drbd_device *device) { /* the memset(,0,) did most of this. * note: only assignments, no allocation in here */ drbd_set_defaults(device); atomic_set(&device->ap_bio_cnt, 0); atomic_set(&device->ap_actlog_cnt, 0); atomic_set(&device->ap_pending_cnt, 0); atomic_set(&device->rs_pending_cnt, 0); atomic_set(&device->unacked_cnt, 0); atomic_set(&device->local_cnt, 0); atomic_set(&device->pp_in_use_by_net, 0); atomic_set(&device->rs_sect_in, 0); atomic_set(&device->rs_sect_ev, 0); atomic_set(&device->ap_in_flight, 0); atomic_set(&device->md_io.in_use, 0); mutex_init(&device->own_state_mutex); device->state_mutex = &device->own_state_mutex; spin_lock_init(&device->al_lock); spin_lock_init(&device->peer_seq_lock); INIT_LIST_HEAD(&device->active_ee); INIT_LIST_HEAD(&device->sync_ee); INIT_LIST_HEAD(&device->done_ee); INIT_LIST_HEAD(&device->read_ee); INIT_LIST_HEAD(&device->net_ee); INIT_LIST_HEAD(&device->resync_reads); INIT_LIST_HEAD(&device->resync_work.list); INIT_LIST_HEAD(&device->unplug_work.list); INIT_LIST_HEAD(&device->bm_io_work.w.list); INIT_LIST_HEAD(&device->pending_master_completion[0]); INIT_LIST_HEAD(&device->pending_master_completion[1]); INIT_LIST_HEAD(&device->pending_completion[0]); INIT_LIST_HEAD(&device->pending_completion[1]); device->resync_work.cb = w_resync_timer; device->unplug_work.cb = w_send_write_hint; device->bm_io_work.w.cb = w_bitmap_io; timer_setup(&device->resync_timer, resync_timer_fn, 0); timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); timer_setup(&device->request_timer, request_timer_fn, 0); init_waitqueue_head(&device->misc_wait); init_waitqueue_head(&device->state_wait); init_waitqueue_head(&device->ee_wait); init_waitqueue_head(&device->al_wait); init_waitqueue_head(&device->seq_wait); device->resync_wenr = LC_FREE; device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; } void drbd_set_my_capacity(struct drbd_device *device, sector_t size) { char ppb[10]; set_capacity_and_notify(device->vdisk, size); drbd_info(device, "size = %s (%llu KB)\n", ppsize(ppb, size>>1), (unsigned long long)size>>1); } void drbd_device_cleanup(struct drbd_device *device) { int i; if (first_peer_device(device)->connection->receiver.t_state != NONE) drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", first_peer_device(device)->connection->receiver.t_state); device->al_writ_cnt = device->bm_writ_cnt = device->read_cnt = device->recv_cnt = device->send_cnt = device->writ_cnt = device->p_size = device->rs_start = device->rs_total = device->rs_failed = 0; device->rs_last_events = 0; device->rs_last_sect_ev = 0; for (i = 0; i < DRBD_SYNC_MARKS; i++) { device->rs_mark_left[i] = 0; device->rs_mark_time[i] = 0; } D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); set_capacity_and_notify(device->vdisk, 0); if (device->bitmap) { /* maybe never allocated. */ drbd_bm_resize(device, 0, 1); drbd_bm_cleanup(device); } drbd_backing_dev_free(device, device->ldev); device->ldev = NULL; clear_bit(AL_SUSPENDED, &device->flags); D_ASSERT(device, list_empty(&device->active_ee)); D_ASSERT(device, list_empty(&device->sync_ee)); D_ASSERT(device, list_empty(&device->done_ee)); D_ASSERT(device, list_empty(&device->read_ee)); D_ASSERT(device, list_empty(&device->net_ee)); D_ASSERT(device, list_empty(&device->resync_reads)); D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); D_ASSERT(device, list_empty(&device->resync_work.list)); D_ASSERT(device, list_empty(&device->unplug_work.list)); drbd_set_defaults(device); } static void drbd_destroy_mempools(void) { struct page *page; while (drbd_pp_pool) { page = drbd_pp_pool; drbd_pp_pool = (struct page *)page_private(page); __free_page(page); drbd_pp_vacant--; } /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ bioset_exit(&drbd_io_bio_set); bioset_exit(&drbd_md_io_bio_set); mempool_exit(&drbd_md_io_page_pool); mempool_exit(&drbd_ee_mempool); mempool_exit(&drbd_request_mempool); kmem_cache_destroy(drbd_ee_cache); kmem_cache_destroy(drbd_request_cache); kmem_cache_destroy(drbd_bm_ext_cache); kmem_cache_destroy(drbd_al_ext_cache); drbd_ee_cache = NULL; drbd_request_cache = NULL; drbd_bm_ext_cache = NULL; drbd_al_ext_cache = NULL; return; } static int drbd_create_mempools(void) { struct page *page; const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; int i, ret; /* caches */ drbd_request_cache = kmem_cache_create( "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); if (drbd_request_cache == NULL) goto Enomem; drbd_ee_cache = kmem_cache_create( "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); if (drbd_ee_cache == NULL) goto Enomem; drbd_bm_ext_cache = kmem_cache_create( "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); if (drbd_bm_ext_cache == NULL) goto Enomem; drbd_al_ext_cache = kmem_cache_create( "drbd_al", sizeof(struct lc_element), 0, 0, NULL); if (drbd_al_ext_cache == NULL) goto Enomem; /* mempools */ ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); if (ret) goto Enomem; ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, BIOSET_NEED_BVECS); if (ret) goto Enomem; ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); if (ret) goto Enomem; ret = mempool_init_slab_pool(&drbd_request_mempool, number, drbd_request_cache); if (ret) goto Enomem; ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); if (ret) goto Enomem; for (i = 0; i < number; i++) { page = alloc_page(GFP_HIGHUSER); if (!page) goto Enomem; set_page_private(page, (unsigned long)drbd_pp_pool); drbd_pp_pool = page; } drbd_pp_vacant = number; return 0; Enomem: drbd_destroy_mempools(); /* in case we allocated some */ return -ENOMEM; } static void drbd_release_all_peer_reqs(struct drbd_device *device) { int rr; rr = drbd_free_peer_reqs(device, &device->active_ee); if (rr) drbd_err(device, "%d EEs in active list found!\n", rr); rr = drbd_free_peer_reqs(device, &device->sync_ee); if (rr) drbd_err(device, "%d EEs in sync list found!\n", rr); rr = drbd_free_peer_reqs(device, &device->read_ee); if (rr) drbd_err(device, "%d EEs in read list found!\n", rr); rr = drbd_free_peer_reqs(device, &device->done_ee); if (rr) drbd_err(device, "%d EEs in done list found!\n", rr); rr = drbd_free_peer_reqs(device, &device->net_ee); if (rr) drbd_err(device, "%d EEs in net list found!\n", rr); } /* caution. no locking. */ void drbd_destroy_device(struct kref *kref) { struct drbd_device *device = container_of(kref, struct drbd_device, kref); struct drbd_resource *resource = device->resource; struct drbd_peer_device *peer_device, *tmp_peer_device; timer_shutdown_sync(&device->request_timer); /* paranoia asserts */ D_ASSERT(device, device->open_cnt == 0); /* end paranoia asserts */ /* cleanup stuff that may have been allocated during * device (re-)configuration or state changes */ drbd_backing_dev_free(device, device->ldev); device->ldev = NULL; drbd_release_all_peer_reqs(device); lc_destroy(device->act_log); lc_destroy(device->resync); kfree(device->p_uuid); /* device->p_uuid = NULL; */ if (device->bitmap) /* should no longer be there. */ drbd_bm_cleanup(device); __free_page(device->md_io.page); put_disk(device->vdisk); kfree(device->rs_plan_s); /* not for_each_connection(connection, resource): * those may have been cleaned up and disassociated already. */ for_each_peer_device_safe(peer_device, tmp_peer_device, device) { kref_put(&peer_device->connection->kref, drbd_destroy_connection); kfree(peer_device); } if (device->submit.wq) destroy_workqueue(device->submit.wq); kfree(device); kref_put(&resource->kref, drbd_destroy_resource); } /* One global retry thread, if we need to push back some bio and have it * reinserted through our make request function. */ static struct retry_worker { struct workqueue_struct *wq; struct work_struct worker; spinlock_t lock; struct list_head writes; } retry; static void do_retry(struct work_struct *ws) { struct retry_worker *retry = container_of(ws, struct retry_worker, worker); LIST_HEAD(writes); struct drbd_request *req, *tmp; spin_lock_irq(&retry->lock); list_splice_init(&retry->writes, &writes); spin_unlock_irq(&retry->lock); list_for_each_entry_safe(req, tmp, &writes, tl_requests) { struct drbd_device *device = req->device; struct bio *bio = req->master_bio; bool expected; expected = expect(device, atomic_read(&req->completion_ref) == 0) && expect(device, req->rq_state & RQ_POSTPONED) && expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 || (req->rq_state & RQ_LOCAL_ABORTED) != 0); if (!expected) drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", req, atomic_read(&req->completion_ref), req->rq_state); /* We still need to put one kref associated with the * "completion_ref" going zero in the code path that queued it * here. The request object may still be referenced by a * frozen local req->private_bio, in case we force-detached. */ kref_put(&req->kref, drbd_req_destroy); /* A single suspended or otherwise blocking device may stall * all others as well. Fortunately, this code path is to * recover from a situation that "should not happen": * concurrent writes in multi-primary setup. * In a "normal" lifecycle, this workqueue is supposed to be * destroyed without ever doing anything. * If it turns out to be an issue anyways, we can do per * resource (replication group) or per device (minor) retry * workqueues instead. */ /* We are not just doing submit_bio_noacct(), * as we want to keep the start_time information. */ inc_ap_bio(device); __drbd_make_request(device, bio); } } /* called via drbd_req_put_completion_ref(), * holds resource->req_lock */ void drbd_restart_request(struct drbd_request *req) { unsigned long flags; spin_lock_irqsave(&retry.lock, flags); list_move_tail(&req->tl_requests, &retry.writes); spin_unlock_irqrestore(&retry.lock, flags); /* Drop the extra reference that would otherwise * have been dropped by complete_master_bio. * do_retry() needs to grab a new one. */ dec_ap_bio(req->device); queue_work(retry.wq, &retry.worker); } void drbd_destroy_resource(struct kref *kref) { struct drbd_resource *resource = container_of(kref, struct drbd_resource, kref); idr_destroy(&resource->devices); free_cpumask_var(resource->cpu_mask); kfree(resource->name); kfree(resource); } void drbd_free_resource(struct drbd_resource *resource) { struct drbd_connection *connection, *tmp; for_each_connection_safe(connection, tmp, resource) { list_del(&connection->connections); drbd_debugfs_connection_cleanup(connection); kref_put(&connection->kref, drbd_destroy_connection); } drbd_debugfs_resource_cleanup(resource); kref_put(&resource->kref, drbd_destroy_resource); } static void drbd_cleanup(void) { unsigned int i; struct drbd_device *device; struct drbd_resource *resource, *tmp; /* first remove proc, * drbdsetup uses it's presence to detect * whether DRBD is loaded. * If we would get stuck in proc removal, * but have netlink already deregistered, * some drbdsetup commands may wait forever * for an answer. */ if (drbd_proc) remove_proc_entry("drbd", NULL); if (retry.wq) destroy_workqueue(retry.wq); drbd_genl_unregister(); idr_for_each_entry(&drbd_devices, device, i) drbd_delete_device(device); /* not _rcu since, no other updater anymore. Genl already unregistered */ for_each_resource_safe(resource, tmp, &drbd_resources) { list_del(&resource->resources); drbd_free_resource(resource); } drbd_debugfs_cleanup(); drbd_destroy_mempools(); unregister_blkdev(DRBD_MAJOR, "drbd"); idr_destroy(&drbd_devices); pr_info("module cleanup done.\n"); } static void drbd_init_workqueue(struct drbd_work_queue* wq) { spin_lock_init(&wq->q_lock); INIT_LIST_HEAD(&wq->q); init_waitqueue_head(&wq->q_wait); } struct completion_work { struct drbd_work w; struct completion done; }; static int w_complete(struct drbd_work *w, int cancel) { struct completion_work *completion_work = container_of(w, struct completion_work, w); complete(&completion_work->done); return 0; } void drbd_flush_workqueue(struct drbd_work_queue *work_queue) { struct completion_work completion_work; completion_work.w.cb = w_complete; init_completion(&completion_work.done); drbd_queue_work(work_queue, &completion_work.w); wait_for_completion(&completion_work.done); } struct drbd_resource *drbd_find_resource(const char *name) { struct drbd_resource *resource; if (!name || !name[0]) return NULL; rcu_read_lock(); for_each_resource_rcu(resource, &drbd_resources) { if (!strcmp(resource->name, name)) { kref_get(&resource->kref); goto found; } } resource = NULL; found: rcu_read_unlock(); return resource; } struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, void *peer_addr, int peer_addr_len) { struct drbd_resource *resource; struct drbd_connection *connection; rcu_read_lock(); for_each_resource_rcu(resource, &drbd_resources) { for_each_connection_rcu(connection, resource) { if (connection->my_addr_len == my_addr_len && connection->peer_addr_len == peer_addr_len && !memcmp(&connection->my_addr, my_addr, my_addr_len) && !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { kref_get(&connection->kref); goto found; } } } connection = NULL; found: rcu_read_unlock(); return connection; } static int drbd_alloc_socket(struct drbd_socket *socket) { socket->rbuf = (void *) __get_free_page(GFP_KERNEL); if (!socket->rbuf) return -ENOMEM; socket->sbuf = (void *) __get_free_page(GFP_KERNEL); if (!socket->sbuf) return -ENOMEM; return 0; } static void drbd_free_socket(struct drbd_socket *socket) { free_page((unsigned long) socket->sbuf); free_page((unsigned long) socket->rbuf); } void conn_free_crypto(struct drbd_connection *connection) { drbd_free_sock(connection); crypto_free_shash(connection->csums_tfm); crypto_free_shash(connection->verify_tfm); crypto_free_shash(connection->cram_hmac_tfm); crypto_free_shash(connection->integrity_tfm); crypto_free_shash(connection->peer_integrity_tfm); kfree(connection->int_dig_in); kfree(connection->int_dig_vv); connection->csums_tfm = NULL; connection->verify_tfm = NULL; connection->cram_hmac_tfm = NULL; connection->integrity_tfm = NULL; connection->peer_integrity_tfm = NULL; connection->int_dig_in = NULL; connection->int_dig_vv = NULL; } int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) { struct drbd_connection *connection; cpumask_var_t new_cpu_mask; int err; if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) return -ENOMEM; /* silently ignore cpu mask on UP kernel */ if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, cpumask_bits(new_cpu_mask), nr_cpu_ids); if (err == -EOVERFLOW) { /* So what. mask it out. */ cpumask_var_t tmp_cpu_mask; if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { cpumask_setall(tmp_cpu_mask); cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", res_opts->cpu_mask, strlen(res_opts->cpu_mask) > 12 ? "..." : "", nr_cpu_ids); free_cpumask_var(tmp_cpu_mask); err = 0; } } if (err) { drbd_warn(resource, "bitmap_parse() failed with %d\n", err); /* retcode = ERR_CPU_MASK_PARSE; */ goto fail; } } resource->res_opts = *res_opts; if (cpumask_empty(new_cpu_mask)) drbd_calc_cpu_mask(&new_cpu_mask); if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { cpumask_copy(resource->cpu_mask, new_cpu_mask); for_each_connection_rcu(connection, resource) { connection->receiver.reset_cpu_mask = 1; connection->ack_receiver.reset_cpu_mask = 1; connection->worker.reset_cpu_mask = 1; } } err = 0; fail: free_cpumask_var(new_cpu_mask); return err; } struct drbd_resource *drbd_create_resource(const char *name) { struct drbd_resource *resource; resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); if (!resource) goto fail; resource->name = kstrdup(name, GFP_KERNEL); if (!resource->name) goto fail_free_resource; if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) goto fail_free_name; kref_init(&resource->kref); idr_init(&resource->devices); INIT_LIST_HEAD(&resource->connections); resource->write_ordering = WO_BDEV_FLUSH; list_add_tail_rcu(&resource->resources, &drbd_resources); mutex_init(&resource->conf_update); mutex_init(&resource->adm_mutex); spin_lock_init(&resource->req_lock); drbd_debugfs_resource_add(resource); return resource; fail_free_name: kfree(resource->name); fail_free_resource: kfree(resource); fail: return NULL; } /* caller must be under adm_mutex */ struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) { struct drbd_resource *resource; struct drbd_connection *connection; connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); if (!connection) return NULL; if (drbd_alloc_socket(&connection->data)) goto fail; if (drbd_alloc_socket(&connection->meta)) goto fail; connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); if (!connection->current_epoch) goto fail; INIT_LIST_HEAD(&connection->transfer_log); INIT_LIST_HEAD(&connection->current_epoch->list); connection->epochs = 1; spin_lock_init(&connection->epoch_lock); connection->send.seen_any_write_yet = false; connection->send.current_epoch_nr = 0; connection->send.current_epoch_writes = 0; resource = drbd_create_resource(name); if (!resource) goto fail; connection->cstate = C_STANDALONE; mutex_init(&connection->cstate_mutex); init_waitqueue_head(&connection->ping_wait); idr_init(&connection->peer_devices); drbd_init_workqueue(&connection->sender_work); mutex_init(&connection->data.mutex); mutex_init(&connection->meta.mutex); drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); connection->receiver.connection = connection; drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); connection->worker.connection = connection; drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); connection->ack_receiver.connection = connection; kref_init(&connection->kref); connection->resource = resource; if (set_resource_options(resource, res_opts)) goto fail_resource; kref_get(&resource->kref); list_add_tail_rcu(&connection->connections, &resource->connections); drbd_debugfs_connection_add(connection); return connection; fail_resource: list_del(&resource->resources); drbd_free_resource(resource); fail: kfree(connection->current_epoch); drbd_free_socket(&connection->meta); drbd_free_socket(&connection->data); kfree(connection); return NULL; } void drbd_destroy_connection(struct kref *kref) { struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); struct drbd_resource *resource = connection->resource; if (atomic_read(&connection->current_epoch->epoch_size) != 0) drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); kfree(connection->current_epoch); idr_destroy(&connection->peer_devices); drbd_free_socket(&connection->meta); drbd_free_socket(&connection->data); kfree(connection->int_dig_in); kfree(connection->int_dig_vv); kfree(connection); kref_put(&resource->kref, drbd_destroy_resource); } static int init_submitter(struct drbd_device *device) { /* opencoded create_singlethread_workqueue(), * to be able to say "drbd%d", ..., minor */ device->submit.wq = alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); if (!device->submit.wq) return -ENOMEM; INIT_WORK(&device->submit.worker, do_submit); INIT_LIST_HEAD(&device->submit.writes); return 0; } enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) { struct drbd_resource *resource = adm_ctx->resource; struct drbd_connection *connection, *n; struct drbd_device *device; struct drbd_peer_device *peer_device, *tmp_peer_device; struct gendisk *disk; int id; int vnr = adm_ctx->volume; enum drbd_ret_code err = ERR_NOMEM; struct queue_limits lim = { /* * Setting the max_hw_sectors to an odd value of 8kibyte here. * This triggers a max_bio_size message upon first attach or * connect. */ .max_hw_sectors = DRBD_MAX_BIO_SIZE_SAFE >> 8, .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | BLK_FEAT_STABLE_WRITES, }; device = minor_to_device(minor); if (device) return ERR_MINOR_OR_VOLUME_EXISTS; /* GFP_KERNEL, we are outside of all write-out paths */ device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); if (!device) return ERR_NOMEM; kref_init(&device->kref); kref_get(&resource->kref); device->resource = resource; device->minor = minor; device->vnr = vnr; drbd_init_set_defaults(device); disk = blk_alloc_disk(&lim, NUMA_NO_NODE); if (IS_ERR(disk)) { err = PTR_ERR(disk); goto out_no_disk; } device->vdisk = disk; device->rq_queue = disk->queue; set_disk_ro(disk, true); disk->major = DRBD_MAJOR; disk->first_minor = minor; disk->minors = 1; disk->fops = &drbd_ops; disk->flags |= GENHD_FL_NO_PART; sprintf(disk->disk_name, "drbd%d", minor); disk->private_data = device; device->md_io.page = alloc_page(GFP_KERNEL); if (!device->md_io.page) goto out_no_io_page; if (drbd_bm_init(device)) goto out_no_bitmap; device->read_requests = RB_ROOT; device->write_requests = RB_ROOT; id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); if (id < 0) { if (id == -ENOSPC) err = ERR_MINOR_OR_VOLUME_EXISTS; goto out_no_minor_idr; } kref_get(&device->kref); id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); if (id < 0) { if (id == -ENOSPC) err = ERR_MINOR_OR_VOLUME_EXISTS; goto out_idr_remove_minor; } kref_get(&device->kref); INIT_LIST_HEAD(&device->peer_devices); INIT_LIST_HEAD(&device->pending_bitmap_io); for_each_connection(connection, resource) { peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); if (!peer_device) goto out_idr_remove_from_resource; peer_device->connection = connection; peer_device->device = device; list_add(&peer_device->peer_devices, &device->peer_devices); kref_get(&device->kref); id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); if (id < 0) { if (id == -ENOSPC) err = ERR_INVALID_REQUEST; goto out_idr_remove_from_resource; } kref_get(&connection->kref); INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); } if (init_submitter(device)) { err = ERR_NOMEM; goto out_idr_remove_from_resource; } err = add_disk(disk); if (err) goto out_destroy_workqueue; /* inherit the connection state */ device->state.conn = first_connection(resource)->cstate; if (device->state.conn == C_WF_REPORT_PARAMS) { for_each_peer_device(peer_device, device) drbd_connected(peer_device); } /* move to create_peer_device() */ for_each_peer_device(peer_device, device) drbd_debugfs_peer_device_add(peer_device); drbd_debugfs_device_add(device); return NO_ERROR; out_destroy_workqueue: destroy_workqueue(device->submit.wq); out_idr_remove_from_resource: for_each_connection_safe(connection, n, resource) { peer_device = idr_remove(&connection->peer_devices, vnr); if (peer_device) kref_put(&connection->kref, drbd_destroy_connection); } for_each_peer_device_safe(peer_device, tmp_peer_device, device) { list_del(&peer_device->peer_devices); kfree(peer_device); } idr_remove(&resource->devices, vnr); out_idr_remove_minor: idr_remove(&drbd_devices, minor); synchronize_rcu(); out_no_minor_idr: drbd_bm_cleanup(device); out_no_bitmap: __free_page(device->md_io.page); out_no_io_page: put_disk(disk); out_no_disk: kref_put(&resource->kref, drbd_destroy_resource); kfree(device); return err; } void drbd_delete_device(struct drbd_device *device) { struct drbd_resource *resource = device->resource; struct drbd_connection *connection; struct drbd_peer_device *peer_device; /* move to free_peer_device() */ for_each_peer_device(peer_device, device) drbd_debugfs_peer_device_cleanup(peer_device); drbd_debugfs_device_cleanup(device); for_each_connection(connection, resource) { idr_remove(&connection->peer_devices, device->vnr); kref_put(&device->kref, drbd_destroy_device); } idr_remove(&resource->devices, device->vnr); kref_put(&device->kref, drbd_destroy_device); idr_remove(&drbd_devices, device_to_minor(device)); kref_put(&device->kref, drbd_destroy_device); del_gendisk(device->vdisk); synchronize_rcu(); kref_put(&device->kref, drbd_destroy_device); } static int __init drbd_init(void) { int err; if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { pr_err("invalid minor_count (%d)\n", drbd_minor_count); #ifdef MODULE return -EINVAL; #else drbd_minor_count = DRBD_MINOR_COUNT_DEF; #endif } err = register_blkdev(DRBD_MAJOR, "drbd"); if (err) { pr_err("unable to register block device major %d\n", DRBD_MAJOR); return err; } /* * allocate all necessary structs */ init_waitqueue_head(&drbd_pp_wait); drbd_proc = NULL; /* play safe for drbd_cleanup */ idr_init(&drbd_devices); mutex_init(&resources_mutex); INIT_LIST_HEAD(&drbd_resources); err = drbd_genl_register(); if (err) { pr_err("unable to register generic netlink family\n"); goto fail; } err = drbd_create_mempools(); if (err) goto fail; err = -ENOMEM; drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); if (!drbd_proc) { pr_err("unable to register proc file\n"); goto fail; } retry.wq = create_singlethread_workqueue("drbd-reissue"); if (!retry.wq) { pr_err("unable to create retry workqueue\n"); goto fail; } INIT_WORK(&retry.worker, do_retry); spin_lock_init(&retry.lock); INIT_LIST_HEAD(&retry.writes); drbd_debugfs_init(); pr_info("initialized. " "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); pr_info("%s\n", drbd_buildtag()); pr_info("registered as block device major %d\n", DRBD_MAJOR); return 0; /* Success! */ fail: drbd_cleanup(); if (err == -ENOMEM) pr_err("ran out of memory\n"); else pr_err("initialization failure\n"); return err; } static void drbd_free_one_sock(struct drbd_socket *ds) { struct socket *s; mutex_lock(&ds->mutex); s = ds->socket; ds->socket = NULL; mutex_unlock(&ds->mutex); if (s) { /* so debugfs does not need to mutex_lock() */ synchronize_rcu(); kernel_sock_shutdown(s, SHUT_RDWR); sock_release(s); } } void drbd_free_sock(struct drbd_connection *connection) { if (connection->data.socket) drbd_free_one_sock(&connection->data); if (connection->meta.socket) drbd_free_one_sock(&connection->meta); } /* meta data management */ void conn_md_sync(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; kref_get(&device->kref); rcu_read_unlock(); drbd_md_sync(device); kref_put(&device->kref, drbd_destroy_device); rcu_read_lock(); } rcu_read_unlock(); } /* aligned 4kByte */ struct meta_data_on_disk { u64 la_size_sect; /* last agreed size. */ u64 uuid[UI_SIZE]; /* UUIDs. */ u64 device_uuid; u64 reserved_u64_1; u32 flags; /* MDF */ u32 magic; u32 md_size_sect; u32 al_offset; /* offset to this block */ u32 al_nr_extents; /* important for restoring the AL (userspace) */ /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ u32 bm_offset; /* offset to the bitmap, from here */ u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ u32 la_peer_max_bio_size; /* last peer max_bio_size */ /* see al_tr_number_to_on_disk_sector() */ u32 al_stripes; u32 al_stripe_size_4k; u8 reserved_u8[4096 - (7*8 + 10*4)]; } __packed; void drbd_md_write(struct drbd_device *device, void *b) { struct meta_data_on_disk *buffer = b; sector_t sector; int i; memset(buffer, 0, sizeof(*buffer)); buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); for (i = UI_CURRENT; i < UI_SIZE; i++) buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); buffer->flags = cpu_to_be32(device->ldev->md.flags); buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); sector = device->ldev->md.md_offset; if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { /* this was a try anyways ... */ drbd_err(device, "meta data update failed!\n"); drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); } } /** * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set * @device: DRBD device. */ void drbd_md_sync(struct drbd_device *device) { struct meta_data_on_disk *buffer; /* Don't accidentally change the DRBD meta data layout. */ BUILD_BUG_ON(UI_SIZE != 4); BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); del_timer(&device->md_sync_timer); /* timer may be rearmed by drbd_md_mark_dirty() now. */ if (!test_and_clear_bit(MD_DIRTY, &device->flags)) return; /* We use here D_FAILED and not D_ATTACHING because we try to write * metadata even if we detach due to a disk failure! */ if (!get_ldev_if_state(device, D_FAILED)) return; buffer = drbd_md_get_buffer(device, __func__); if (!buffer) goto out; drbd_md_write(device, buffer); /* Update device->ldev->md.la_size_sect, * since we updated it on metadata. */ device->ldev->md.la_size_sect = get_capacity(device->vdisk); drbd_md_put_buffer(device); out: put_ldev(device); } static int check_activity_log_stripe_size(struct drbd_device *device, struct meta_data_on_disk *on_disk, struct drbd_md *in_core) { u32 al_stripes = be32_to_cpu(on_disk->al_stripes); u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); u64 al_size_4k; /* both not set: default to old fixed size activity log */ if (al_stripes == 0 && al_stripe_size_4k == 0) { al_stripes = 1; al_stripe_size_4k = MD_32kB_SECT/8; } /* some paranoia plausibility checks */ /* we need both values to be set */ if (al_stripes == 0 || al_stripe_size_4k == 0) goto err; al_size_4k = (u64)al_stripes * al_stripe_size_4k; /* Upper limit of activity log area, to avoid potential overflow * problems in al_tr_number_to_on_disk_sector(). As right now, more * than 72 * 4k blocks total only increases the amount of history, * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ if (al_size_4k > (16 * 1024 * 1024/4)) goto err; /* Lower limit: we need at least 8 transaction slots (32kB) * to not break existing setups */ if (al_size_4k < MD_32kB_SECT/8) goto err; in_core->al_stripe_size_4k = al_stripe_size_4k; in_core->al_stripes = al_stripes; in_core->al_size_4k = al_size_4k; return 0; err: drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", al_stripes, al_stripe_size_4k); return -EINVAL; } static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) { sector_t capacity = drbd_get_capacity(bdev->md_bdev); struct drbd_md *in_core = &bdev->md; s32 on_disk_al_sect; s32 on_disk_bm_sect; /* The on-disk size of the activity log, calculated from offsets, and * the size of the activity log calculated from the stripe settings, * should match. * Though we could relax this a bit: it is ok, if the striped activity log * fits in the available on-disk activity log size. * Right now, that would break how resize is implemented. * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware * of possible unused padding space in the on disk layout. */ if (in_core->al_offset < 0) { if (in_core->bm_offset > in_core->al_offset) goto err; on_disk_al_sect = -in_core->al_offset; on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; } else { if (in_core->al_offset != MD_4kB_SECT) goto err; if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) goto err; on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; } /* old fixed size meta data is exactly that: fixed. */ if (in_core->meta_dev_idx >= 0) { if (in_core->md_size_sect != MD_128MB_SECT || in_core->al_offset != MD_4kB_SECT || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT || in_core->al_stripes != 1 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) goto err; } if (capacity < in_core->md_size_sect) goto err; if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) goto err; /* should be aligned, and at least 32k */ if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) goto err; /* should fit (for now: exactly) into the available on-disk space; * overflow prevention is in check_activity_log_stripe_size() above. */ if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) goto err; /* again, should be aligned */ if (in_core->bm_offset & 7) goto err; /* FIXME check for device grow with flex external meta data? */ /* can the available bitmap space cover the last agreed device size? */ if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) goto err; return 0; err: drbd_err(device, "meta data offsets don't make sense: idx=%d " "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", in_core->meta_dev_idx, in_core->al_stripes, in_core->al_stripe_size_4k, in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, (unsigned long long)in_core->la_size_sect, (unsigned long long)capacity); return -EINVAL; } /** * drbd_md_read() - Reads in the meta data super block * @device: DRBD device. * @bdev: Device from which the meta data should be read in. * * Return NO_ERROR on success, and an enum drbd_ret_code in case * something goes wrong. * * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, * even before @bdev is assigned to @device->ldev. */ int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) { struct meta_data_on_disk *buffer; u32 magic, flags; int i, rv = NO_ERROR; if (device->state.disk != D_DISKLESS) return ERR_DISK_CONFIGURED; buffer = drbd_md_get_buffer(device, __func__); if (!buffer) return ERR_NOMEM; /* First, figure out where our meta data superblock is located, * and read it. */ bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; bdev->md.md_offset = drbd_md_ss(bdev); /* Even for (flexible or indexed) external meta data, * initially restrict us to the 4k superblock for now. * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ bdev->md.md_size_sect = 8; if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, REQ_OP_READ)) { /* NOTE: can't do normal error processing here as this is called BEFORE disk is attached */ drbd_err(device, "Error while reading metadata.\n"); rv = ERR_IO_MD_DISK; goto err; } magic = be32_to_cpu(buffer->magic); flags = be32_to_cpu(buffer->flags); if (magic == DRBD_MD_MAGIC_84_UNCLEAN || (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { /* btw: that's Activity Log clean, not "all" clean. */ drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); rv = ERR_MD_UNCLEAN; goto err; } rv = ERR_MD_INVALID; if (magic != DRBD_MD_MAGIC_08) { if (magic == DRBD_MD_MAGIC_07) drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); else drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); goto err; } if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); goto err; } /* convert to in_core endian */ bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); for (i = UI_CURRENT; i < UI_SIZE; i++) bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); bdev->md.flags = be32_to_cpu(buffer->flags); bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); bdev->md.al_offset = be32_to_cpu(buffer->al_offset); bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); if (check_activity_log_stripe_size(device, buffer, &bdev->md)) goto err; if (check_offsets_and_sizes(device, bdev)) goto err; if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); goto err; } if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { drbd_err(device, "unexpected md_size: %u (expected %u)\n", be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); goto err; } rv = NO_ERROR; spin_lock_irq(&device->resource->req_lock); if (device->state.conn < C_CONNECTED) { unsigned int peer; peer = be32_to_cpu(buffer->la_peer_max_bio_size); peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); device->peer_max_bio_size = peer; } spin_unlock_irq(&device->resource->req_lock); err: drbd_md_put_buffer(device); return rv; } /** * drbd_md_mark_dirty() - Mark meta data super block as dirty * @device: DRBD device. * * Call this function if you change anything that should be written to * the meta-data super block. This function sets MD_DIRTY, and starts a * timer that ensures that within five seconds you have to call drbd_md_sync(). */ void drbd_md_mark_dirty(struct drbd_device *device) { if (!test_and_set_bit(MD_DIRTY, &device->flags)) mod_timer(&device->md_sync_timer, jiffies + 5*HZ); } void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) { int i; for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; } void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) { if (idx == UI_CURRENT) { if (device->state.role == R_PRIMARY) val |= 1; else val &= ~((u64)1); drbd_set_ed_uuid(device, val); } device->ldev->md.uuid[idx] = val; drbd_md_mark_dirty(device); } void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) { unsigned long flags; spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); __drbd_uuid_set(device, idx, val); spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); } void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) { unsigned long flags; spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); if (device->ldev->md.uuid[idx]) { drbd_uuid_move_history(device); device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; } __drbd_uuid_set(device, idx, val); spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); } /** * drbd_uuid_new_current() - Creates a new current UUID * @device: DRBD device. * * Creates a new current UUID, and rotates the old current UUID into * the bitmap slot. Causes an incremental resync upon next connect. */ void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) { u64 val; unsigned long long bm_uuid; get_random_bytes(&val, sizeof(u64)); spin_lock_irq(&device->ldev->md.uuid_lock); bm_uuid = device->ldev->md.uuid[UI_BITMAP]; if (bm_uuid) drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; __drbd_uuid_set(device, UI_CURRENT, val); spin_unlock_irq(&device->ldev->md.uuid_lock); drbd_print_uuids(device, "new current UUID"); /* get it to stable storage _now_ */ drbd_md_sync(device); } void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) { unsigned long flags; spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) { spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); return; } if (val == 0) { drbd_uuid_move_history(device); device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; device->ldev->md.uuid[UI_BITMAP] = 0; } else { unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; if (bm_uuid) drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); } spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); drbd_md_mark_dirty(device); } /** * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() * @device: DRBD device. * @peer_device: Peer DRBD device. * * Sets all bits in the bitmap and writes the whole bitmap to stable storage. */ int drbd_bmio_set_n_write(struct drbd_device *device, struct drbd_peer_device *peer_device) __must_hold(local) { int rv = -EIO; drbd_md_set_flag(device, MDF_FULL_SYNC); drbd_md_sync(device); drbd_bm_set_all(device); rv = drbd_bm_write(device, peer_device); if (!rv) { drbd_md_clear_flag(device, MDF_FULL_SYNC); drbd_md_sync(device); } return rv; } /** * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() * @device: DRBD device. * @peer_device: Peer DRBD device. * * Clears all bits in the bitmap and writes the whole bitmap to stable storage. */ int drbd_bmio_clear_n_write(struct drbd_device *device, struct drbd_peer_device *peer_device) __must_hold(local) { drbd_resume_al(device); drbd_bm_clear_all(device); return drbd_bm_write(device, peer_device); } static int w_bitmap_io(struct drbd_work *w, int unused) { struct drbd_device *device = container_of(w, struct drbd_device, bm_io_work.w); struct bm_io_work *work = &device->bm_io_work; int rv = -EIO; if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { int cnt = atomic_read(&device->ap_bio_cnt); if (cnt) drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", cnt, work->why); } if (get_ldev(device)) { drbd_bm_lock(device, work->why, work->flags); rv = work->io_fn(device, work->peer_device); drbd_bm_unlock(device); put_ldev(device); } clear_bit_unlock(BITMAP_IO, &device->flags); wake_up(&device->misc_wait); if (work->done) work->done(device, rv); clear_bit(BITMAP_IO_QUEUED, &device->flags); work->why = NULL; work->flags = 0; return 0; } /** * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap * @device: DRBD device. * @io_fn: IO callback to be called when bitmap IO is possible * @done: callback to be called after the bitmap IO was performed * @why: Descriptive text of the reason for doing the IO * @flags: Bitmap flags * @peer_device: Peer DRBD device. * * While IO on the bitmap happens we freeze application IO thus we ensure * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be * called from worker context. It MUST NOT be used while a previous such * work is still pending! * * Its worker function encloses the call of io_fn() by get_ldev() and * put_ldev(). */ void drbd_queue_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), void (*done)(struct drbd_device *, int), char *why, enum bm_flag flags, struct drbd_peer_device *peer_device) { D_ASSERT(device, current == peer_device->connection->worker.task); D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); if (device->bm_io_work.why) drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", why, device->bm_io_work.why); device->bm_io_work.peer_device = peer_device; device->bm_io_work.io_fn = io_fn; device->bm_io_work.done = done; device->bm_io_work.why = why; device->bm_io_work.flags = flags; spin_lock_irq(&device->resource->req_lock); set_bit(BITMAP_IO, &device->flags); /* don't wait for pending application IO if the caller indicates that * application IO does not conflict anyways. */ if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) drbd_queue_work(&peer_device->connection->sender_work, &device->bm_io_work.w); } spin_unlock_irq(&device->resource->req_lock); } /** * drbd_bitmap_io() - Does an IO operation on the whole bitmap * @device: DRBD device. * @io_fn: IO callback to be called when bitmap IO is possible * @why: Descriptive text of the reason for doing the IO * @flags: Bitmap flags * @peer_device: Peer DRBD device. * * freezes application IO while that the actual IO operations runs. This * functions MAY NOT be called from worker context. */ int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *, struct drbd_peer_device *), char *why, enum bm_flag flags, struct drbd_peer_device *peer_device) { /* Only suspend io, if some operation is supposed to be locked out */ const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); int rv; D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); if (do_suspend_io) drbd_suspend_io(device); drbd_bm_lock(device, why, flags); rv = io_fn(device, peer_device); drbd_bm_unlock(device); if (do_suspend_io) drbd_resume_io(device); return rv; } void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) { if ((device->ldev->md.flags & flag) != flag) { drbd_md_mark_dirty(device); device->ldev->md.flags |= flag; } } void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) { if ((device->ldev->md.flags & flag) != 0) { drbd_md_mark_dirty(device); device->ldev->md.flags &= ~flag; } } int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) { return (bdev->md.flags & flag) != 0; } static void md_sync_timer_fn(struct timer_list *t) { struct drbd_device *device = from_timer(device, t, md_sync_timer); drbd_device_post_work(device, MD_SYNC); } const char *cmdname(enum drbd_packet cmd) { /* THINK may need to become several global tables * when we want to support more than * one PRO_VERSION */ static const char *cmdnames[] = { [P_DATA] = "Data", [P_DATA_REPLY] = "DataReply", [P_RS_DATA_REPLY] = "RSDataReply", [P_BARRIER] = "Barrier", [P_BITMAP] = "ReportBitMap", [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", [P_UNPLUG_REMOTE] = "UnplugRemote", [P_DATA_REQUEST] = "DataRequest", [P_RS_DATA_REQUEST] = "RSDataRequest", [P_SYNC_PARAM] = "SyncParam", [P_PROTOCOL] = "ReportProtocol", [P_UUIDS] = "ReportUUIDs", [P_SIZES] = "ReportSizes", [P_STATE] = "ReportState", [P_SYNC_UUID] = "ReportSyncUUID", [P_AUTH_CHALLENGE] = "AuthChallenge", [P_AUTH_RESPONSE] = "AuthResponse", [P_STATE_CHG_REQ] = "StateChgRequest", [P_PING] = "Ping", [P_PING_ACK] = "PingAck", [P_RECV_ACK] = "RecvAck", [P_WRITE_ACK] = "WriteAck", [P_RS_WRITE_ACK] = "RSWriteAck", [P_SUPERSEDED] = "Superseded", [P_NEG_ACK] = "NegAck", [P_NEG_DREPLY] = "NegDReply", [P_NEG_RS_DREPLY] = "NegRSDReply", [P_BARRIER_ACK] = "BarrierAck", [P_STATE_CHG_REPLY] = "StateChgReply", [P_OV_REQUEST] = "OVRequest", [P_OV_REPLY] = "OVReply", [P_OV_RESULT] = "OVResult", [P_CSUM_RS_REQUEST] = "CsumRSRequest", [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", [P_SYNC_PARAM89] = "SyncParam89", [P_COMPRESSED_BITMAP] = "CBitmap", [P_DELAY_PROBE] = "DelayProbe", [P_OUT_OF_SYNC] = "OutOfSync", [P_RS_CANCEL] = "RSCancel", [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", [P_PROTOCOL_UPDATE] = "protocol_update", [P_TRIM] = "Trim", [P_RS_THIN_REQ] = "rs_thin_req", [P_RS_DEALLOCATED] = "rs_deallocated", [P_WSAME] = "WriteSame", [P_ZEROES] = "Zeroes", /* enum drbd_packet, but not commands - obsoleted flags: * P_MAY_IGNORE * P_MAX_OPT_CMD */ }; /* too big for the array: 0xfffX */ if (cmd == P_INITIAL_META) return "InitialMeta"; if (cmd == P_INITIAL_DATA) return "InitialData"; if (cmd == P_CONNECTION_FEATURES) return "ConnectionFeatures"; if (cmd >= ARRAY_SIZE(cmdnames)) return "Unknown"; return cmdnames[cmd]; } /** * drbd_wait_misc - wait for a request to make progress * @device: device associated with the request * @i: the struct drbd_interval embedded in struct drbd_request or * struct drbd_peer_request */ int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) { struct net_conf *nc; DEFINE_WAIT(wait); long timeout; rcu_read_lock(); nc = rcu_dereference(first_peer_device(device)->connection->net_conf); if (!nc) { rcu_read_unlock(); return -ETIMEDOUT; } timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; rcu_read_unlock(); /* Indicate to wake up device->misc_wait on progress. */ i->waiting = true; prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); spin_unlock_irq(&device->resource->req_lock); timeout = schedule_timeout(timeout); finish_wait(&device->misc_wait, &wait); spin_lock_irq(&device->resource->req_lock); if (!timeout || device->state.conn < C_CONNECTED) return -ETIMEDOUT; if (signal_pending(current)) return -ERESTARTSYS; return 0; } void lock_all_resources(void) { struct drbd_resource *resource; int __maybe_unused i = 0; mutex_lock(&resources_mutex); local_irq_disable(); for_each_resource(resource, &drbd_resources) spin_lock_nested(&resource->req_lock, i++); } void unlock_all_resources(void) { struct drbd_resource *resource; for_each_resource(resource, &drbd_resources) spin_unlock(&resource->req_lock); local_irq_enable(); mutex_unlock(&resources_mutex); } #ifdef CONFIG_DRBD_FAULT_INJECTION /* Fault insertion support including random number generator shamelessly * stolen from kernel/rcutorture.c */ struct fault_random_state { unsigned long state; unsigned long count; }; #define FAULT_RANDOM_MULT 39916801 /* prime */ #define FAULT_RANDOM_ADD 479001701 /* prime */ #define FAULT_RANDOM_REFRESH 10000 /* * Crude but fast random-number generator. Uses a linear congruential * generator, with occasional help from get_random_bytes(). */ static unsigned long _drbd_fault_random(struct fault_random_state *rsp) { long refresh; if (!rsp->count--) { get_random_bytes(&refresh, sizeof(refresh)); rsp->state += refresh; rsp->count = FAULT_RANDOM_REFRESH; } rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; return swahw32(rsp->state); } static char * _drbd_fault_str(unsigned int type) { static char *_faults[] = { [DRBD_FAULT_MD_WR] = "Meta-data write", [DRBD_FAULT_MD_RD] = "Meta-data read", [DRBD_FAULT_RS_WR] = "Resync write", [DRBD_FAULT_RS_RD] = "Resync read", [DRBD_FAULT_DT_WR] = "Data write", [DRBD_FAULT_DT_RD] = "Data read", [DRBD_FAULT_DT_RA] = "Data read ahead", [DRBD_FAULT_BM_ALLOC] = "BM allocation", [DRBD_FAULT_AL_EE] = "EE allocation", [DRBD_FAULT_RECEIVE] = "receive data corruption", }; return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; } unsigned int _drbd_insert_fault(struct drbd_device *device, unsigned int type) { static struct fault_random_state rrs = {0, 0}; unsigned int ret = ( (drbd_fault_devs == 0 || ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); if (ret) { drbd_fault_count++; if (drbd_ratelimit()) drbd_warn(device, "***Simulating %s failure\n", _drbd_fault_str(type)); } return ret; } #endif module_init(drbd_init) module_exit(drbd_cleanup) EXPORT_SYMBOL(drbd_conn_str); EXPORT_SYMBOL(drbd_role_str); EXPORT_SYMBOL(drbd_disk_str); EXPORT_SYMBOL(drbd_set_st_err_str);