// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020-2023 Intel Corporation */ #include #include #include "ivpu_drv.h" #include "ivpu_hw_mtl_reg.h" #include "ivpu_hw_reg_io.h" #include "ivpu_mmu.h" #include "ivpu_mmu_context.h" #define IVPU_MMU_IDR0_REF 0x080f3e0f #define IVPU_MMU_IDR0_REF_SIMICS 0x080f3e1f #define IVPU_MMU_IDR1_REF 0x0e739d18 #define IVPU_MMU_IDR3_REF 0x0000003c #define IVPU_MMU_IDR5_REF 0x00040070 #define IVPU_MMU_IDR5_REF_SIMICS 0x00000075 #define IVPU_MMU_IDR5_REF_FPGA 0x00800075 #define IVPU_MMU_CDTAB_ENT_SIZE 64 #define IVPU_MMU_CDTAB_ENT_COUNT_LOG2 8 /* 256 entries */ #define IVPU_MMU_CDTAB_ENT_COUNT ((u32)1 << IVPU_MMU_CDTAB_ENT_COUNT_LOG2) #define IVPU_MMU_STREAM_ID0 0 #define IVPU_MMU_STREAM_ID3 3 #define IVPU_MMU_STRTAB_ENT_SIZE 64 #define IVPU_MMU_STRTAB_ENT_COUNT 4 #define IVPU_MMU_STRTAB_CFG_LOG2SIZE 2 #define IVPU_MMU_STRTAB_CFG IVPU_MMU_STRTAB_CFG_LOG2SIZE #define IVPU_MMU_Q_COUNT_LOG2 4 /* 16 entries */ #define IVPU_MMU_Q_COUNT ((u32)1 << IVPU_MMU_Q_COUNT_LOG2) #define IVPU_MMU_Q_WRAP_BIT (IVPU_MMU_Q_COUNT << 1) #define IVPU_MMU_Q_WRAP_MASK (IVPU_MMU_Q_WRAP_BIT - 1) #define IVPU_MMU_Q_IDX_MASK (IVPU_MMU_Q_COUNT - 1) #define IVPU_MMU_Q_IDX(val) ((val) & IVPU_MMU_Q_IDX_MASK) #define IVPU_MMU_CMDQ_CMD_SIZE 16 #define IVPU_MMU_CMDQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_CMDQ_CMD_SIZE) #define IVPU_MMU_EVTQ_CMD_SIZE 32 #define IVPU_MMU_EVTQ_SIZE (IVPU_MMU_Q_COUNT * IVPU_MMU_EVTQ_CMD_SIZE) #define IVPU_MMU_CMD_OPCODE GENMASK(7, 0) #define IVPU_MMU_CMD_SYNC_0_CS GENMASK(13, 12) #define IVPU_MMU_CMD_SYNC_0_MSH GENMASK(23, 22) #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24) #define IVPU_MMU_CMD_SYNC_0_MSI_ATTR GENMASK(27, 24) #define IVPU_MMU_CMD_SYNC_0_MSI_DATA GENMASK(63, 32) #define IVPU_MMU_CMD_CFGI_0_SSEC BIT(10) #define IVPU_MMU_CMD_CFGI_0_SSV BIT(11) #define IVPU_MMU_CMD_CFGI_0_SSID GENMASK(31, 12) #define IVPU_MMU_CMD_CFGI_0_SID GENMASK(63, 32) #define IVPU_MMU_CMD_CFGI_1_RANGE GENMASK(4, 0) #define IVPU_MMU_CMD_TLBI_0_ASID GENMASK(63, 48) #define IVPU_MMU_CMD_TLBI_0_VMID GENMASK(47, 32) #define CMD_PREFETCH_CFG 0x1 #define CMD_CFGI_STE 0x3 #define CMD_CFGI_ALL 0x4 #define CMD_CFGI_CD 0x5 #define CMD_CFGI_CD_ALL 0x6 #define CMD_TLBI_NH_ASID 0x11 #define CMD_TLBI_EL2_ALL 0x20 #define CMD_TLBI_NSNH_ALL 0x30 #define CMD_SYNC 0x46 #define IVPU_MMU_EVT_F_UUT 0x01 #define IVPU_MMU_EVT_C_BAD_STREAMID 0x02 #define IVPU_MMU_EVT_F_STE_FETCH 0x03 #define IVPU_MMU_EVT_C_BAD_STE 0x04 #define IVPU_MMU_EVT_F_BAD_ATS_TREQ 0x05 #define IVPU_MMU_EVT_F_STREAM_DISABLED 0x06 #define IVPU_MMU_EVT_F_TRANSL_FORBIDDEN 0x07 #define IVPU_MMU_EVT_C_BAD_SUBSTREAMID 0x08 #define IVPU_MMU_EVT_F_CD_FETCH 0x09 #define IVPU_MMU_EVT_C_BAD_CD 0x0a #define IVPU_MMU_EVT_F_WALK_EABT 0x0b #define IVPU_MMU_EVT_F_TRANSLATION 0x10 #define IVPU_MMU_EVT_F_ADDR_SIZE 0x11 #define IVPU_MMU_EVT_F_ACCESS 0x12 #define IVPU_MMU_EVT_F_PERMISSION 0x13 #define IVPU_MMU_EVT_F_TLB_CONFLICT 0x20 #define IVPU_MMU_EVT_F_CFG_CONFLICT 0x21 #define IVPU_MMU_EVT_E_PAGE_REQUEST 0x24 #define IVPU_MMU_EVT_F_VMS_FETCH 0x25 #define IVPU_MMU_EVT_OP_MASK GENMASK_ULL(7, 0) #define IVPU_MMU_EVT_SSID_MASK GENMASK_ULL(31, 12) #define IVPU_MMU_Q_BASE_RWA BIT(62) #define IVPU_MMU_Q_BASE_ADDR_MASK GENMASK_ULL(51, 5) #define IVPU_MMU_STRTAB_BASE_RA BIT(62) #define IVPU_MMU_STRTAB_BASE_ADDR_MASK GENMASK_ULL(51, 6) #define IVPU_MMU_IRQ_EVTQ_EN BIT(2) #define IVPU_MMU_IRQ_GERROR_EN BIT(0) #define IVPU_MMU_CR0_ATSCHK BIT(4) #define IVPU_MMU_CR0_CMDQEN BIT(3) #define IVPU_MMU_CR0_EVTQEN BIT(2) #define IVPU_MMU_CR0_PRIQEN BIT(1) #define IVPU_MMU_CR0_SMMUEN BIT(0) #define IVPU_MMU_CR1_TABLE_SH GENMASK(11, 10) #define IVPU_MMU_CR1_TABLE_OC GENMASK(9, 8) #define IVPU_MMU_CR1_TABLE_IC GENMASK(7, 6) #define IVPU_MMU_CR1_QUEUE_SH GENMASK(5, 4) #define IVPU_MMU_CR1_QUEUE_OC GENMASK(3, 2) #define IVPU_MMU_CR1_QUEUE_IC GENMASK(1, 0) #define IVPU_MMU_CACHE_NC 0 #define IVPU_MMU_CACHE_WB 1 #define IVPU_MMU_CACHE_WT 2 #define IVPU_MMU_SH_NSH 0 #define IVPU_MMU_SH_OSH 2 #define IVPU_MMU_SH_ISH 3 #define IVPU_MMU_CMDQ_OP GENMASK_ULL(7, 0) #define IVPU_MMU_CD_0_TCR_T0SZ GENMASK_ULL(5, 0) #define IVPU_MMU_CD_0_TCR_TG0 GENMASK_ULL(7, 6) #define IVPU_MMU_CD_0_TCR_IRGN0 GENMASK_ULL(9, 8) #define IVPU_MMU_CD_0_TCR_ORGN0 GENMASK_ULL(11, 10) #define IVPU_MMU_CD_0_TCR_SH0 GENMASK_ULL(13, 12) #define IVPU_MMU_CD_0_TCR_EPD0 BIT_ULL(14) #define IVPU_MMU_CD_0_TCR_EPD1 BIT_ULL(30) #define IVPU_MMU_CD_0_ENDI BIT(15) #define IVPU_MMU_CD_0_V BIT(31) #define IVPU_MMU_CD_0_TCR_IPS GENMASK_ULL(34, 32) #define IVPU_MMU_CD_0_TCR_TBI0 BIT_ULL(38) #define IVPU_MMU_CD_0_AA64 BIT(41) #define IVPU_MMU_CD_0_S BIT(44) #define IVPU_MMU_CD_0_R BIT(45) #define IVPU_MMU_CD_0_A BIT(46) #define IVPU_MMU_CD_0_ASET BIT(47) #define IVPU_MMU_CD_0_ASID GENMASK_ULL(63, 48) #define IVPU_MMU_CD_1_TTB0_MASK GENMASK_ULL(51, 4) #define IVPU_MMU_STE_0_S1CDMAX GENMASK_ULL(63, 59) #define IVPU_MMU_STE_0_S1FMT GENMASK_ULL(5, 4) #define IVPU_MMU_STE_0_S1FMT_LINEAR 0 #define IVPU_MMU_STE_DWORDS 8 #define IVPU_MMU_STE_0_CFG_S1_TRANS 5 #define IVPU_MMU_STE_0_CFG GENMASK_ULL(3, 1) #define IVPU_MMU_STE_0_S1CTXPTR_MASK GENMASK_ULL(51, 6) #define IVPU_MMU_STE_0_V BIT(0) #define IVPU_MMU_STE_1_STRW_NSEL1 0ul #define IVPU_MMU_STE_1_CONT GENMASK_ULL(16, 13) #define IVPU_MMU_STE_1_STRW GENMASK_ULL(31, 30) #define IVPU_MMU_STE_1_PRIVCFG GENMASK_ULL(49, 48) #define IVPU_MMU_STE_1_PRIVCFG_UNPRIV 2ul #define IVPU_MMU_STE_1_INSTCFG GENMASK_ULL(51, 50) #define IVPU_MMU_STE_1_INSTCFG_DATA 2ul #define IVPU_MMU_STE_1_MEV BIT(19) #define IVPU_MMU_STE_1_S1STALLD BIT(27) #define IVPU_MMU_STE_1_S1C_CACHE_NC 0ul #define IVPU_MMU_STE_1_S1C_CACHE_WBRA 1ul #define IVPU_MMU_STE_1_S1C_CACHE_WT 2ul #define IVPU_MMU_STE_1_S1C_CACHE_WB 3ul #define IVPU_MMU_STE_1_S1CIR GENMASK_ULL(3, 2) #define IVPU_MMU_STE_1_S1COR GENMASK_ULL(5, 4) #define IVPU_MMU_STE_1_S1CSH GENMASK_ULL(7, 6) #define IVPU_MMU_STE_1_S1DSS GENMASK_ULL(1, 0) #define IVPU_MMU_STE_1_S1DSS_TERMINATE 0x0 #define IVPU_MMU_REG_TIMEOUT_US (10 * USEC_PER_MSEC) #define IVPU_MMU_QUEUE_TIMEOUT_US (100 * USEC_PER_MSEC) #define IVPU_MMU_GERROR_ERR_MASK ((REG_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT)) | \ (REG_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT))) static char *ivpu_mmu_event_to_str(u32 cmd) { switch (cmd) { case IVPU_MMU_EVT_F_UUT: return "Unsupported Upstream Transaction"; case IVPU_MMU_EVT_C_BAD_STREAMID: return "Transaction StreamID out of range"; case IVPU_MMU_EVT_F_STE_FETCH: return "Fetch of STE caused external abort"; case IVPU_MMU_EVT_C_BAD_STE: return "Used STE invalid"; case IVPU_MMU_EVT_F_BAD_ATS_TREQ: return "Address Request disallowed for a StreamID"; case IVPU_MMU_EVT_F_STREAM_DISABLED: return "Transaction marks non-substream disabled"; case IVPU_MMU_EVT_F_TRANSL_FORBIDDEN: return "MMU bypass is disallowed for this StreamID"; case IVPU_MMU_EVT_C_BAD_SUBSTREAMID: return "Invalid StreamID"; case IVPU_MMU_EVT_F_CD_FETCH: return "Fetch of CD caused external abort"; case IVPU_MMU_EVT_C_BAD_CD: return "Fetched CD invalid"; case IVPU_MMU_EVT_F_WALK_EABT: return " An external abort occurred fetching a TLB"; case IVPU_MMU_EVT_F_TRANSLATION: return "Translation fault"; case IVPU_MMU_EVT_F_ADDR_SIZE: return " Output address caused address size fault"; case IVPU_MMU_EVT_F_ACCESS: return "Access flag fault"; case IVPU_MMU_EVT_F_PERMISSION: return "Permission fault occurred on page access"; case IVPU_MMU_EVT_F_TLB_CONFLICT: return "A TLB conflict"; case IVPU_MMU_EVT_F_CFG_CONFLICT: return "A configuration cache conflict"; case IVPU_MMU_EVT_E_PAGE_REQUEST: return "Page request hint from a client device"; case IVPU_MMU_EVT_F_VMS_FETCH: return "Fetch of VMS caused external abort"; default: return "Unknown CMDQ command"; } } static void ivpu_mmu_config_check(struct ivpu_device *vdev) { u32 val_ref; u32 val; if (ivpu_is_simics(vdev)) val_ref = IVPU_MMU_IDR0_REF_SIMICS; else val_ref = IVPU_MMU_IDR0_REF; val = REGV_RD32(MTL_VPU_HOST_MMU_IDR0); if (val != val_ref) ivpu_dbg(vdev, MMU, "IDR0 0x%x != IDR0_REF 0x%x\n", val, val_ref); val = REGV_RD32(MTL_VPU_HOST_MMU_IDR1); if (val != IVPU_MMU_IDR1_REF) ivpu_dbg(vdev, MMU, "IDR1 0x%x != IDR1_REF 0x%x\n", val, IVPU_MMU_IDR1_REF); val = REGV_RD32(MTL_VPU_HOST_MMU_IDR3); if (val != IVPU_MMU_IDR3_REF) ivpu_dbg(vdev, MMU, "IDR3 0x%x != IDR3_REF 0x%x\n", val, IVPU_MMU_IDR3_REF); if (ivpu_is_simics(vdev)) val_ref = IVPU_MMU_IDR5_REF_SIMICS; else if (ivpu_is_fpga(vdev)) val_ref = IVPU_MMU_IDR5_REF_FPGA; else val_ref = IVPU_MMU_IDR5_REF; val = REGV_RD32(MTL_VPU_HOST_MMU_IDR5); if (val != val_ref) ivpu_dbg(vdev, MMU, "IDR5 0x%x != IDR5_REF 0x%x\n", val, val_ref); } static int ivpu_mmu_cdtab_alloc(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; size_t size = IVPU_MMU_CDTAB_ENT_COUNT * IVPU_MMU_CDTAB_ENT_SIZE; cdtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &cdtab->dma, GFP_KERNEL); if (!cdtab->base) return -ENOMEM; ivpu_dbg(vdev, MMU, "CDTAB alloc: dma=%pad size=%zu\n", &cdtab->dma, size); return 0; } static int ivpu_mmu_strtab_alloc(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_strtab *strtab = &mmu->strtab; size_t size = IVPU_MMU_STRTAB_ENT_COUNT * IVPU_MMU_STRTAB_ENT_SIZE; strtab->base = dmam_alloc_coherent(vdev->drm.dev, size, &strtab->dma, GFP_KERNEL); if (!strtab->base) return -ENOMEM; strtab->base_cfg = IVPU_MMU_STRTAB_CFG; strtab->dma_q = IVPU_MMU_STRTAB_BASE_RA; strtab->dma_q |= strtab->dma & IVPU_MMU_STRTAB_BASE_ADDR_MASK; ivpu_dbg(vdev, MMU, "STRTAB alloc: dma=%pad dma_q=%pad size=%zu\n", &strtab->dma, &strtab->dma_q, size); return 0; } static int ivpu_mmu_cmdq_alloc(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_queue *q = &mmu->cmdq; q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_CMDQ_SIZE, &q->dma, GFP_KERNEL); if (!q->base) return -ENOMEM; q->dma_q = IVPU_MMU_Q_BASE_RWA; q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK; q->dma_q |= IVPU_MMU_Q_COUNT_LOG2; ivpu_dbg(vdev, MMU, "CMDQ alloc: dma=%pad dma_q=%pad size=%u\n", &q->dma, &q->dma_q, IVPU_MMU_CMDQ_SIZE); return 0; } static int ivpu_mmu_evtq_alloc(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_queue *q = &mmu->evtq; q->base = dmam_alloc_coherent(vdev->drm.dev, IVPU_MMU_EVTQ_SIZE, &q->dma, GFP_KERNEL); if (!q->base) return -ENOMEM; q->dma_q = IVPU_MMU_Q_BASE_RWA; q->dma_q |= q->dma & IVPU_MMU_Q_BASE_ADDR_MASK; q->dma_q |= IVPU_MMU_Q_COUNT_LOG2; ivpu_dbg(vdev, MMU, "EVTQ alloc: dma=%pad dma_q=%pad size=%u\n", &q->dma, &q->dma_q, IVPU_MMU_EVTQ_SIZE); return 0; } static int ivpu_mmu_structs_alloc(struct ivpu_device *vdev) { int ret; ret = ivpu_mmu_cdtab_alloc(vdev); if (ret) { ivpu_err(vdev, "Failed to allocate cdtab: %d\n", ret); return ret; } ret = ivpu_mmu_strtab_alloc(vdev); if (ret) { ivpu_err(vdev, "Failed to allocate strtab: %d\n", ret); return ret; } ret = ivpu_mmu_cmdq_alloc(vdev); if (ret) { ivpu_err(vdev, "Failed to allocate cmdq: %d\n", ret); return ret; } ret = ivpu_mmu_evtq_alloc(vdev); if (ret) ivpu_err(vdev, "Failed to allocate evtq: %d\n", ret); return ret; } static int ivpu_mmu_reg_write(struct ivpu_device *vdev, u32 reg, u32 val) { u32 reg_ack = reg + 4; /* ACK register is 4B after base register */ u32 val_ack; int ret; REGV_WR32(reg, val); ret = REGV_POLL(reg_ack, val_ack, (val == val_ack), IVPU_MMU_REG_TIMEOUT_US); if (ret) ivpu_err(vdev, "Failed to write register 0x%x\n", reg); return ret; } static int ivpu_mmu_irqs_setup(struct ivpu_device *vdev) { u32 irq_ctrl = IVPU_MMU_IRQ_EVTQ_EN | IVPU_MMU_IRQ_GERROR_EN; int ret; ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, 0); if (ret) return ret; return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_IRQ_CTRL, irq_ctrl); } static int ivpu_mmu_cmdq_wait_for_cons(struct ivpu_device *vdev) { struct ivpu_mmu_queue *cmdq = &vdev->mmu->cmdq; return REGV_POLL(MTL_VPU_HOST_MMU_CMDQ_CONS, cmdq->cons, (cmdq->prod == cmdq->cons), IVPU_MMU_QUEUE_TIMEOUT_US); } static int ivpu_mmu_cmdq_cmd_write(struct ivpu_device *vdev, const char *name, u64 data0, u64 data1) { struct ivpu_mmu_queue *q = &vdev->mmu->cmdq; u64 *queue_buffer = q->base; int idx = IVPU_MMU_Q_IDX(q->prod) * (IVPU_MMU_CMDQ_CMD_SIZE / sizeof(*queue_buffer)); if (!CIRC_SPACE(IVPU_MMU_Q_IDX(q->prod), IVPU_MMU_Q_IDX(q->cons), IVPU_MMU_Q_COUNT)) { ivpu_err(vdev, "Failed to write MMU CMD %s\n", name); return -EBUSY; } queue_buffer[idx] = data0; queue_buffer[idx + 1] = data1; q->prod = (q->prod + 1) & IVPU_MMU_Q_WRAP_MASK; ivpu_dbg(vdev, MMU, "CMD write: %s data: 0x%llx 0x%llx\n", name, data0, data1); return 0; } static int ivpu_mmu_cmdq_sync(struct ivpu_device *vdev) { struct ivpu_mmu_queue *q = &vdev->mmu->cmdq; u64 val; int ret; val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_SYNC) | FIELD_PREP(IVPU_MMU_CMD_SYNC_0_CS, 0x2) | FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSH, 0x3) | FIELD_PREP(IVPU_MMU_CMD_SYNC_0_MSI_ATTR, 0xf); ret = ivpu_mmu_cmdq_cmd_write(vdev, "SYNC", val, 0); if (ret) return ret; clflush_cache_range(q->base, IVPU_MMU_CMDQ_SIZE); REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, q->prod); ret = ivpu_mmu_cmdq_wait_for_cons(vdev); if (ret) ivpu_err(vdev, "Timed out waiting for consumer: %d\n", ret); return ret; } static int ivpu_mmu_cmdq_write_cfgi_all(struct ivpu_device *vdev) { u64 data0 = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_CFGI_ALL); u64 data1 = FIELD_PREP(IVPU_MMU_CMD_CFGI_1_RANGE, 0x1f); return ivpu_mmu_cmdq_cmd_write(vdev, "CFGI_ALL", data0, data1); } static int ivpu_mmu_cmdq_write_tlbi_nh_asid(struct ivpu_device *vdev, u16 ssid) { u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NH_ASID) | FIELD_PREP(IVPU_MMU_CMD_TLBI_0_ASID, ssid); return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NH_ASID", val, 0); } static int ivpu_mmu_cmdq_write_tlbi_nsnh_all(struct ivpu_device *vdev) { u64 val = FIELD_PREP(IVPU_MMU_CMD_OPCODE, CMD_TLBI_NSNH_ALL); return ivpu_mmu_cmdq_cmd_write(vdev, "TLBI_NSNH_ALL", val, 0); } static int ivpu_mmu_reset(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; u32 val; int ret; memset(mmu->cmdq.base, 0, IVPU_MMU_CMDQ_SIZE); clflush_cache_range(mmu->cmdq.base, IVPU_MMU_CMDQ_SIZE); mmu->cmdq.prod = 0; mmu->cmdq.cons = 0; memset(mmu->evtq.base, 0, IVPU_MMU_EVTQ_SIZE); clflush_cache_range(mmu->evtq.base, IVPU_MMU_EVTQ_SIZE); mmu->evtq.prod = 0; mmu->evtq.cons = 0; ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, 0); if (ret) return ret; val = FIELD_PREP(IVPU_MMU_CR1_TABLE_SH, IVPU_MMU_SH_ISH) | FIELD_PREP(IVPU_MMU_CR1_TABLE_OC, IVPU_MMU_CACHE_WB) | FIELD_PREP(IVPU_MMU_CR1_TABLE_IC, IVPU_MMU_CACHE_WB) | FIELD_PREP(IVPU_MMU_CR1_QUEUE_SH, IVPU_MMU_SH_ISH) | FIELD_PREP(IVPU_MMU_CR1_QUEUE_OC, IVPU_MMU_CACHE_WB) | FIELD_PREP(IVPU_MMU_CR1_QUEUE_IC, IVPU_MMU_CACHE_WB); REGV_WR32(MTL_VPU_HOST_MMU_CR1, val); REGV_WR64(MTL_VPU_HOST_MMU_STRTAB_BASE, mmu->strtab.dma_q); REGV_WR32(MTL_VPU_HOST_MMU_STRTAB_BASE_CFG, mmu->strtab.base_cfg); REGV_WR64(MTL_VPU_HOST_MMU_CMDQ_BASE, mmu->cmdq.dma_q); REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_PROD, 0); REGV_WR32(MTL_VPU_HOST_MMU_CMDQ_CONS, 0); val = IVPU_MMU_CR0_CMDQEN; ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); if (ret) return ret; ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); if (ret) return ret; ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev); if (ret) return ret; ret = ivpu_mmu_cmdq_sync(vdev); if (ret) return ret; REGV_WR64(MTL_VPU_HOST_MMU_EVTQ_BASE, mmu->evtq.dma_q); REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC, 0); REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, 0); val |= IVPU_MMU_CR0_EVTQEN; ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); if (ret) return ret; val |= IVPU_MMU_CR0_ATSCHK; ret = ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); if (ret) return ret; ret = ivpu_mmu_irqs_setup(vdev); if (ret) return ret; val |= IVPU_MMU_CR0_SMMUEN; return ivpu_mmu_reg_write(vdev, MTL_VPU_HOST_MMU_CR0, val); } static void ivpu_mmu_strtab_link_cd(struct ivpu_device *vdev, u32 sid) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_strtab *strtab = &mmu->strtab; struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; u64 *entry = strtab->base + (sid * IVPU_MMU_STRTAB_ENT_SIZE); u64 str[2]; str[0] = FIELD_PREP(IVPU_MMU_STE_0_CFG, IVPU_MMU_STE_0_CFG_S1_TRANS) | FIELD_PREP(IVPU_MMU_STE_0_S1CDMAX, IVPU_MMU_CDTAB_ENT_COUNT_LOG2) | FIELD_PREP(IVPU_MMU_STE_0_S1FMT, IVPU_MMU_STE_0_S1FMT_LINEAR) | IVPU_MMU_STE_0_V | (cdtab->dma & IVPU_MMU_STE_0_S1CTXPTR_MASK); str[1] = FIELD_PREP(IVPU_MMU_STE_1_S1DSS, IVPU_MMU_STE_1_S1DSS_TERMINATE) | FIELD_PREP(IVPU_MMU_STE_1_S1CIR, IVPU_MMU_STE_1_S1C_CACHE_NC) | FIELD_PREP(IVPU_MMU_STE_1_S1COR, IVPU_MMU_STE_1_S1C_CACHE_NC) | FIELD_PREP(IVPU_MMU_STE_1_S1CSH, IVPU_MMU_SH_NSH) | FIELD_PREP(IVPU_MMU_STE_1_PRIVCFG, IVPU_MMU_STE_1_PRIVCFG_UNPRIV) | FIELD_PREP(IVPU_MMU_STE_1_INSTCFG, IVPU_MMU_STE_1_INSTCFG_DATA) | FIELD_PREP(IVPU_MMU_STE_1_STRW, IVPU_MMU_STE_1_STRW_NSEL1) | FIELD_PREP(IVPU_MMU_STE_1_CONT, IVPU_MMU_STRTAB_CFG_LOG2SIZE) | IVPU_MMU_STE_1_MEV | IVPU_MMU_STE_1_S1STALLD; WRITE_ONCE(entry[1], str[1]); WRITE_ONCE(entry[0], str[0]); clflush_cache_range(entry, IVPU_MMU_STRTAB_ENT_SIZE); ivpu_dbg(vdev, MMU, "STRTAB write entry (SSID=%u): 0x%llx, 0x%llx\n", sid, str[0], str[1]); } static int ivpu_mmu_strtab_init(struct ivpu_device *vdev) { ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID0); ivpu_mmu_strtab_link_cd(vdev, IVPU_MMU_STREAM_ID3); return 0; } int ivpu_mmu_invalidate_tlb(struct ivpu_device *vdev, u16 ssid) { struct ivpu_mmu_info *mmu = vdev->mmu; int ret; ret = mutex_lock_interruptible(&mmu->lock); if (ret) return ret; if (!mmu->on) { ret = 0; goto unlock; } ret = ivpu_mmu_cmdq_write_tlbi_nh_asid(vdev, ssid); if (ret) goto unlock; ret = ivpu_mmu_cmdq_sync(vdev); unlock: mutex_unlock(&mmu->lock); return ret; } static int ivpu_mmu_cd_add(struct ivpu_device *vdev, u32 ssid, u64 cd_dma) { struct ivpu_mmu_info *mmu = vdev->mmu; struct ivpu_mmu_cdtab *cdtab = &mmu->cdtab; u64 *entry; u64 cd[4]; int ret; if (ssid > IVPU_MMU_CDTAB_ENT_COUNT) return -EINVAL; entry = cdtab->base + (ssid * IVPU_MMU_CDTAB_ENT_SIZE); if (cd_dma != 0) { cd[0] = FIELD_PREP(IVPU_MMU_CD_0_TCR_T0SZ, 26) | FIELD_PREP(IVPU_MMU_CD_0_TCR_TG0, 0) | FIELD_PREP(IVPU_MMU_CD_0_TCR_IRGN0, 0) | FIELD_PREP(IVPU_MMU_CD_0_TCR_ORGN0, 0) | FIELD_PREP(IVPU_MMU_CD_0_TCR_SH0, 0) | FIELD_PREP(IVPU_MMU_CD_0_TCR_IPS, 3) | FIELD_PREP(IVPU_MMU_CD_0_ASID, ssid) | IVPU_MMU_CD_0_TCR_EPD1 | IVPU_MMU_CD_0_AA64 | IVPU_MMU_CD_0_R | IVPU_MMU_CD_0_ASET | IVPU_MMU_CD_0_V; cd[1] = cd_dma & IVPU_MMU_CD_1_TTB0_MASK; cd[2] = 0; cd[3] = 0x0000000000007444; /* For global context generate memory fault on VPU */ if (ssid == IVPU_GLOBAL_CONTEXT_MMU_SSID) cd[0] |= IVPU_MMU_CD_0_A; } else { memset(cd, 0, sizeof(cd)); } WRITE_ONCE(entry[1], cd[1]); WRITE_ONCE(entry[2], cd[2]); WRITE_ONCE(entry[3], cd[3]); WRITE_ONCE(entry[0], cd[0]); clflush_cache_range(entry, IVPU_MMU_CDTAB_ENT_SIZE); ivpu_dbg(vdev, MMU, "CDTAB %s entry (SSID=%u, dma=%pad): 0x%llx, 0x%llx, 0x%llx, 0x%llx\n", cd_dma ? "write" : "clear", ssid, &cd_dma, cd[0], cd[1], cd[2], cd[3]); ret = mutex_lock_interruptible(&mmu->lock); if (ret) return ret; if (!mmu->on) { ret = 0; goto unlock; } ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); if (ret) goto unlock; ret = ivpu_mmu_cmdq_sync(vdev); unlock: mutex_unlock(&mmu->lock); return ret; } static int ivpu_mmu_cd_add_gbl(struct ivpu_device *vdev) { int ret; ret = ivpu_mmu_cd_add(vdev, 0, vdev->gctx.pgtable.pgd_dma); if (ret) ivpu_err(vdev, "Failed to add global CD entry: %d\n", ret); return ret; } static int ivpu_mmu_cd_add_user(struct ivpu_device *vdev, u32 ssid, dma_addr_t cd_dma) { int ret; if (ssid == 0) { ivpu_err(vdev, "Invalid SSID: %u\n", ssid); return -EINVAL; } ret = ivpu_mmu_cd_add(vdev, ssid, cd_dma); if (ret) ivpu_err(vdev, "Failed to add CD entry SSID=%u: %d\n", ssid, ret); return ret; } int ivpu_mmu_init(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; int ret; ivpu_dbg(vdev, MMU, "Init..\n"); drmm_mutex_init(&vdev->drm, &mmu->lock); ivpu_mmu_config_check(vdev); ret = ivpu_mmu_structs_alloc(vdev); if (ret) return ret; ret = ivpu_mmu_strtab_init(vdev); if (ret) { ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret); return ret; } ret = ivpu_mmu_cd_add_gbl(vdev); if (ret) { ivpu_err(vdev, "Failed to initialize strtab: %d\n", ret); return ret; } ret = ivpu_mmu_enable(vdev); if (ret) { ivpu_err(vdev, "Failed to resume MMU: %d\n", ret); return ret; } ivpu_dbg(vdev, MMU, "Init done\n"); return 0; } int ivpu_mmu_enable(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; int ret; mutex_lock(&mmu->lock); mmu->on = true; ret = ivpu_mmu_reset(vdev); if (ret) { ivpu_err(vdev, "Failed to reset MMU: %d\n", ret); goto err; } ret = ivpu_mmu_cmdq_write_cfgi_all(vdev); if (ret) goto err; ret = ivpu_mmu_cmdq_write_tlbi_nsnh_all(vdev); if (ret) goto err; ret = ivpu_mmu_cmdq_sync(vdev); if (ret) goto err; mutex_unlock(&mmu->lock); return 0; err: mmu->on = false; mutex_unlock(&mmu->lock); return ret; } void ivpu_mmu_disable(struct ivpu_device *vdev) { struct ivpu_mmu_info *mmu = vdev->mmu; mutex_lock(&mmu->lock); mmu->on = false; mutex_unlock(&mmu->lock); } static void ivpu_mmu_dump_event(struct ivpu_device *vdev, u32 *event) { u32 ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]); u32 op = FIELD_GET(IVPU_MMU_EVT_OP_MASK, event[0]); u64 fetch_addr = ((u64)event[7]) << 32 | event[6]; u64 in_addr = ((u64)event[5]) << 32 | event[4]; u32 sid = event[1]; ivpu_err(vdev, "MMU EVTQ: 0x%x (%s) SSID: %d SID: %d, e[2] %08x, e[3] %08x, in addr: 0x%llx, fetch addr: 0x%llx\n", op, ivpu_mmu_event_to_str(op), ssid, sid, event[2], event[3], in_addr, fetch_addr); } static u32 *ivpu_mmu_get_event(struct ivpu_device *vdev) { struct ivpu_mmu_queue *evtq = &vdev->mmu->evtq; u32 idx = IVPU_MMU_Q_IDX(evtq->cons); u32 *evt = evtq->base + (idx * IVPU_MMU_EVTQ_CMD_SIZE); evtq->prod = REGV_RD32(MTL_VPU_HOST_MMU_EVTQ_PROD_SEC); if (!CIRC_CNT(IVPU_MMU_Q_IDX(evtq->prod), IVPU_MMU_Q_IDX(evtq->cons), IVPU_MMU_Q_COUNT)) return NULL; clflush_cache_range(evt, IVPU_MMU_EVTQ_CMD_SIZE); evtq->cons = (evtq->cons + 1) & IVPU_MMU_Q_WRAP_MASK; REGV_WR32(MTL_VPU_HOST_MMU_EVTQ_CONS_SEC, evtq->cons); return evt; } void ivpu_mmu_irq_evtq_handler(struct ivpu_device *vdev) { u32 *event; u32 ssid; ivpu_dbg(vdev, IRQ, "MMU event queue\n"); while ((event = ivpu_mmu_get_event(vdev)) != NULL) { ivpu_mmu_dump_event(vdev, event); ssid = FIELD_GET(IVPU_MMU_EVT_SSID_MASK, event[0]); if (ssid != IVPU_GLOBAL_CONTEXT_MMU_SSID) ivpu_mmu_user_context_mark_invalid(vdev, ssid); } } void ivpu_mmu_irq_gerr_handler(struct ivpu_device *vdev) { u32 gerror_val, gerrorn_val, active; ivpu_dbg(vdev, IRQ, "MMU error\n"); gerror_val = REGV_RD32(MTL_VPU_HOST_MMU_GERROR); gerrorn_val = REGV_RD32(MTL_VPU_HOST_MMU_GERRORN); active = gerror_val ^ gerrorn_val; if (!(active & IVPU_MMU_GERROR_ERR_MASK)) return; if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_ABT, active)) ivpu_warn_ratelimited(vdev, "MMU MSI ABT write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_PRIQ_ABT, active)) ivpu_warn_ratelimited(vdev, "MMU PRIQ MSI ABT write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_EVTQ_ABT, active)) ivpu_warn_ratelimited(vdev, "MMU EVTQ MSI ABT write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, MSI_CMDQ_ABT, active)) ivpu_warn_ratelimited(vdev, "MMU CMDQ MSI ABT write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, PRIQ_ABT, active)) ivpu_err_ratelimited(vdev, "MMU PRIQ write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, EVTQ_ABT, active)) ivpu_err_ratelimited(vdev, "MMU EVTQ write aborted\n"); if (REG_TEST_FLD(MTL_VPU_HOST_MMU_GERROR, CMDQ, active)) ivpu_err_ratelimited(vdev, "MMU CMDQ write aborted\n"); REGV_WR32(MTL_VPU_HOST_MMU_GERRORN, gerror_val); } int ivpu_mmu_set_pgtable(struct ivpu_device *vdev, int ssid, struct ivpu_mmu_pgtable *pgtable) { return ivpu_mmu_cd_add_user(vdev, ssid, pgtable->pgd_dma); } void ivpu_mmu_clear_pgtable(struct ivpu_device *vdev, int ssid) { ivpu_mmu_cd_add_user(vdev, ssid, 0); /* 0 will clear CD entry */ }